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Abstract: The article presents research results on the possibility of shaping the structure and properties
of Co-Cr-W-C-Ti alloys (type Stellite 6) using laser cladding technology. Cobalt-based alloys are
used in several industries because they are characterized by high erosion, abrasion, and corrosion
resistance, retaining these properties at high temperatures. To further increase erosion resistance, it
seems appropriate to reinforce material by in situ synthesis of hard phases. Among the transition
metal carbides (TMCs), titanium carbide is one of the hardest and can have a positive effect on the
extension of the lifetime of components made from cobalt-based alloys. In this article, concentration
of C, W, and Ti due to the possibility of in situ synthesis of titanium carbides was subjected to
detailed analysis. The provided research includes macrostructure and microstructure analysis, X-ray
diffraction (XRD), microhardness, and penetrant tests. It was found that the optimal concentrations
of Ti and C in the Co-Cr-W-C alloy allow the formation of titanium carbides, which significantly
improves erosion resistance for low impact angles. Depending on the concentrations of titanium,
carbon, and tungsten in the molten metal pool, it is possible to shape the alloy structure by influencing
to morphology and size of the reinforcing phase in the form of the complex carbide (Ti,W)C.

Keywords: Stellite 6; in situ; laser cladding; erosive wear; TiC; cobalt-based alloys

1. Introduction

Cobalt alloys are attracting constantly growing interest as materials used in many
industries due to high resistance to abrasives, erosive wear, and corrosion in aggressive
environments, combined with the ability to work in high temperatures (up to 1000 ◦C).
One of the most popular varieties of cobalt alloy is the Co-Cr-W-C alloy, which is available
in the industry under many trade names (Stellite 6, MetcoClad 6). It is most often used
as a material to produce coatings, where heat sources such as a gas flame, electric arc,
plasma, or laser beam can be used [1–4]. Particular attention should be paid to the laser
cladding process, which is characterized by unique properties, such as the possibility
of precise control of generated heat, the ability to limit thermal deformations, and short
crystallization time enabling obtaining fine-grained structures or metastable phases. The
described technology, despite the relatively high costs of the device, has several advantages,
which is why there has been a constant increase in interest in technological processes related
to cladding [5–8]. One of the alternatives to laser cladding is electrospark deposition (ESD)
technology. ESD offers high precision, low thermal input, minimal dilution, low device cost,
and versatility across various materials. However, it has a slower deposition rate, often
requires post-processing for a smooth surface finish, and is limited in coating thickness. In
contrast, laser cladding provides a higher deposition rate, excellent control over deposition
parameters, a smoother surface finish, and the possibility of processing a wide range of
materials [9,10].
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The Co-Cr-W-C alloy owes its useful properties to its structure, which consists of
the γ-Co phase and eutectics containing M7C3 and M23C6 carbides. However, due to
the high cost of material and constantly increasing production costs, there is interest in
further improving their wear resistance [11–13]. A particularly interesting approach to
increase the erosion resistance and tribological resistance of Co-Cr-W-C alloy coatings
is the in situ synthesis of carbide phases by adding into the base powder elements with
a strong carbide-forming tendency, which lead to metallurgical reactions in the molten
metal pool, enabling the formation of reinforcing phases during the crystallization process.
The main advantages of in situ synthesis of reinforcing phases compared to the ex situ
method are unoxidized and uncontaminated interfacial surfaces between the matrix and
reinforcing phase, ensuring high-quality coatings. Additionally, in situ phases in metal
matrix composites (MMC) are characterized by high thermodynamic stability in the alloy
matrix, showing better properties during operation at elevated temperatures [14–18].

Research reported by Wang et al. [11] on Stellite 6 alloy reinforced with 27.13% TiFe
+ 17.86% Cr3C2 showed a fivefold increase in wear resistance compared to the pure Stellite
6 alloy due to the formation of a TiC phase, which also contributed to an increase in
average hardness up to 658 HV. An experiment conducted by Acevedo et al. [19] on Stellite
6 coatings reinforced by nano-TiC particles showed that the addition of 2% TiC content
resulted in a significant improvement in wear resistance. Shahroozi et al. [20] concentrated
on tungsten inert arc welding (TIG) of Stellite 6 alloy with 10–40 wt% of TiC. The results of
the investigation showed that the addition of TiC improved the alloy coatings’ hardness
and wear resistance with an increase in TiC concentration. In the study conducted by Wu
et al. [21] on Stellite 6 modified by Ti + Ni, the morphology of the carbides was altered by the
addition of titanium, changing from M23C6 eutectic carbides to isolated TiC. Furthermore,
the chromium, which was initially present in eutectic carbides, segregates in the cobalt
matrix as a result of titanium’s reaction with carbon, lowering the stacking-fault energy
(SFE) and causing the formation of the ε-Co phase, while the addition of nickel stabilizes
the γ-Co phase by increasing the SFE.

The relationship between erosion resistance and the chemical composition of Stellite
alloys has not yet been systematized or published in a broader publication. Research
conducted by a group of scientists represented by Levin et al. [22] concerned the erosion
of cobalt superalloy clads (focusing on the Stellite 6 and Ultimet from the group of cobalt
alloys). It has been stated that under conditions of stable erosive wear at elevated tempera-
tures (400 ◦C), the Stellite 6 alloy shows reduced resistance to erosive wear compared to
materials such as 316L stainless steel, Inconel-625, or Ultimet alloy. The author demon-
strated the lack of dependence of erosion loss on the impingement angle, stating that for
the Stellite 6 alloy at a temperature of 400 ◦C, erosion loss occurred as a result of plastic
deformation of the material.

Nsoesie et al. [23] showed that Stellite alloys owe their erosion-resistance properties to
the high content of carbides, while alloys with reduced carbon content form the intermetallic
compounds Co3Mo and CoMo6, which have the same strengthening mechanism as carbides,
ensuring low erosion loss. The analysis of the tests carried out allowed the conclusion
that at an erodent impingement angle of 30◦, the resistance to erosive wear is closely
related to the carbon content and hardness of the material. This is due to the increase in
resistance to microcutting processes as the surface hardness increases. Despite the high
content of relatively large-sized (W,Co)C carbides in the microstructure, the samples were
characterized by reduced erosion resistance compared to materials containing fine Cr7C3
carbide precipitates in their microstructure. This is due to the fact that under the constant
impact of the erodent, large carbides are more easily cracked and torn out of the matrix due
to their high brittleness. This is especially evident in the case of large (W,Co)C precipitates.

The presented literature review indicates that the in situ synthesis of in situ titanium
carbides in cobalt alloys can contribute to a significant increase in resistance to erosive
wear [24,25]. In this study, the results regarding the possibility of shaping the structure and
properties of cobalt-based alloys (type Stellite 6) fabricated by laser cladding were provided
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to enhance the erosion resistance wear of obtained coatings. The effect of the concentration
of elements in the Co-Cr-W-C-Ti alloy on the possibility of in situ synthesis of titanium
carbide was subjected to a detailed analysis. In particular, the effect of the addition of
titanium and carbon on the ability to control the reinforcing-phase content and morphology
was investigated. Subsequently, the produced coatings were subjected to erosion tests and
determination of the erosion wear mechanism.

2. Materials and Methods
2.1. Materials and Laser Processing

Laser cladding of the Co-Cr-W-C alloy was performed on 10 mm thickness S355JR steel
(Cognor, Stalowa Wola, Poland), meeting the requirements of EN 10025-2 standard [26].
Samples were subjected to grinding and degreased using ethyl alcohol (Stanlab, Lublin,
Poland). For the cladding process, powders of Stellite 6 (Metcoclad 6 gas atomized powder,
Oerlikon, Westbury, NY, USA), 99.0% Ti (Amperit 154, H.C. Starck, Germany), and 99.5%
C (1.04206.9025, Merck, Germany) were used. Before the cladding process, the powders
were mixed in a vertical planetary ball mill for 30 min and dried for 1 h at temperature of
50 ◦C. The fraction of powder particles was in the range of 45–106 µm (according to ASTM
B214-22 standard [27]). The chemical compositions of the powder mixtures are presented
in Table 1.

Table 1. Chemical compositions of powder mixtures.

Sample Designation C Co Cr Fe Mn Mo Ni Si W Ti

M6 1.1 balance 27.3 0.1 0.1 0.1 0.8 1.6 4.4 -
M6TiC 2.1 balance 25.9 0.1 0.1 0.1 0.8 1.5 4.2 4.0

The powder laser cladding process was carried out on a test stand equipped with a
solid-state laser (TRUMPF, Ditzingen, Germany) with a numerically controlled laser head
positioning system. The laser beam was focused 30 mm above the surface of the workpiece
material to avoid excessive penetration of the base material and to increase the surface
heating area. This value was selected based on preliminary geometric measurements of the
cross-section of the obtained clads. The laser head was tilted 10◦ from the vertical position,
and the powder was injected into the molten pool through a 2.1 mm diameter cylindrical
nozzle from 15 mm. As a shielding and transporting gas, argon with a purity of 99.999%
was used (flow rates—15 L/min and 3 L/min, respectively). Samples were not preheated
before the cladding process, and the interpass temperature was less than 50 ◦C. Scheme of
the laser cladding process is shown in Figure 1. Based on preliminary tests, the optimal
cladding parameters were determined to be as follows: laser power of 1750 W, cladding
speed of 200 mm/min, and powder feed rate of 35 mg/min. The linear energy, calculated
as the laser power divided by the cladding speed, was 525 J/mm.
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2.2. Non-Destructive Tests and Macroscopic Examination

Penetrant tests were carried out in the color contrast technique with 10 min dwell
and 15 min development time. For this test, the cleaner MR 79, penetrant 68 NF, and
developer MR70 (MR Chemie, Unna, Germany) were used. Samples’ temperature during
penetrant examination was 23 ◦C, while the light intensity was 920 lux. Macroscopic
observations were performed on a stereoscopic optical light microscope SZX9 (Olypmus,
Tokyo, Japan). Based on the macro photographs, the geometric parameters of the coatings
were determined using AutoCad 2024 software (Autodesk, CA, USA). The dilution of
coatings was determined using Equation (1), where FBM is the cross-sectional area of the
melted substrate and Fc is cross-sectional area of the coating.

U =
FBM

FBM + FC
× 100 [%] (1)

Microscopic observations were performed on a Phenom World Pro scanning elec-
tron microscope (SEM) equipped with energy-dispersive spectroscopy (EDS) for chemical
composition analysis. The surface area of individual phases was calculated using the
planimetric method in 6 areas for each of the samples considering areas with secondary
thermal cycles due to the 50% overlap between each of the passes. Transmission electron
microscopy (TEM) examinations were performed on Titan 80/300 (FEI, Hillsboro, OR,
USA), using high-resolution transmission electron microscopy (HRTEM) and scanning
transmission electron microscopy (STEM). To determine the obtained phases, diffraction
images taken from selected areas of the sample using the selected-area electron diffraction
(SAED) technique were obtained. Thin foil for TEM investigation was prepared using
the Xe-PFIB (plasma focused ion beam) technology. The X-ray diffraction (XRD) analysis
was performed using a PANalytical X’Pert PRO MPD diffractometer (Malvern Panalitycal,
Malvern, UK) with a cobalt anode. The diffraction patterns were obtained in continuous
scan mode (2θ range of 25◦ to 130◦) with a step size of 0.1444◦ and 0.026 s counting time
per step.

Microhardness tests were carried out using the Vickers method on cross-sections
of coatings. For this purpose, a Wilson Wolpert 401 MVD (Wilson Instruments, Instron
Company, Norwood, MA, USA) hardness tester was used. The measurements were carried
out with a load of 300 g and a dwell time of 10 s. The tests were conducted across six
measurement lines (3 in the laser pass axis with a distance between the lines of 0.1 mm and
3 in the interpass area with a distance between the lines of 0.1 mm), as shown in Figure 2.
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Figure 2. Schematic diagram of microhardness measurement lines.

Erosion resistance tests were performed on a testing stand meeting the requirements of
ASTM G76-04 [28] standard. As an erodent, Al2O3 powder with a grain size of 50 µm was
used. The particles were transported in a stream of dry air with an abrasive particle velocity
of 30 m/s, while the powder flow rate was 2 g/min. The erodent distributing nozzle was
located 10 mm above the test surface with a test duration time 10 min for each sample.
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Erosion resistance examinations were carried out for two impingement angles—30◦ and
90◦. Mass loss calculations were carried out on a WAX 60/220 laboratory scale (Radwag,
Radom, Poland). Parameters of erosion rate and erosion value were calculated based on
Equations (2) and (3).

Erosion rate =
mass loss [g]

test time [min]
(2)

Erosion value =
volume loss

[
mm3]

total mass of abrasive [g]
(3)

3. Results and Discussion
3.1. Penetrant Tests

The penetrant tests, presented in Figure 3, showed only false indications for all of the
samples at the end of the cladding process. This is the result of craters in these areas and
the powder particles that have not been completely melted, making it impossible to clean
the excess of penetrant from these areas. The lack of linear indications shows the high
quality of the coating M6TiC, where the addition of carbon and titanium did not weaken
the interface bonding between matrix and reinforcing phases, which is very often observed
in titanium carbide-reinforced MMC coatings [12].
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Figure 3. Surfaces of the samples after penetrant test: (a) M6; (b) M6TiC; designation in accordance
with Table 1.

3.2. Macrostructure

Regardless of the different chemical compositions of coatings, samples were char-
acterized on cross-section by the absence of any welding imperfections in the form of
cracks, which are often observed in MMC coatings with carbide phases in their structure,
as presented in Figure 4. The selected 50% overlap between each of the passes resulted in
very low surface waviness, which is an important aspect due to the possibility of reducing
potential machining. Macrostructure analysis showed that the depth of fusion into the base
material was characterized by the highest value for the first pass for each coating. This is a
result of cladding technology, where, during the first pass, the substrate material undergoes
intense melting, while the overlapping of each subsequent pass causes partial melting of
the previously deposited layers. The parameters of width, height, and cross-sectional area
of the coatings increased with the addition of graphite, as presented in Table 2. This can
be attributed to the fact that carbon increases the absorption of laser radiation [29], which
leads to an increase in the surface area of the molten pool.

Table 2. Geometrical parameters of coatings.

Sample
Designation Width (mm) Height (mm) Cross-Sectional

Area (mm2) Dilution (%)

M6 12.0 ± 0.1 0.94 ± 0.05 9.27 ± 0.17 1.6
M6TiC 12.7 ± 0.2 1.06 ± 0.05 12.08 ± 0.26 9.6
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3.3. Microstructure

A microstructure analysis of M6 coating (made of a commercial hypoeutectic Co-
Cr-W-C alloy—type Stellite 6) was performed for comparative analysis of changes in
the microstructure under the influence of Ti and C alloying elements in sample M6TiC.
Microstructural analysis of M6 coating shows that in the first stage, the alloy crystallizes
as dendrites of the solid solution of the γ-(Co) phase (FCC) in Figure 5a. In the next stage,
the eutectic crystallizes in the interdendritic spaces, consisting of M7C3/M23C6 carbide
precipitates and the γ-(Co) phase. XRD studies, presented in Figure 6a, indicate that
further cooling causes a partial transformation of γ-(Co) to the ε-(Co) phase (HCP). The
results are consistent with published data on the Co-Cr-W-C alloy cladding process, where
Jackson [30] revealed in quantitative XRD analysis 2–3% of the ε-(Co) phase in coatings.
At the fusion line, columnar dendrites with long lengths up to 300 µm can be observed
(Figure 5b), which is typical for low undercooling [31]. The direction of their growth is
directly related to the heat flow direction during the crystallization process, where the
growth of dendrites starts from the fusion line and extends towards the surface of the
coating. Typical columnar dendrites were not observed in the near-surface zone, which is
directly related to the change of heat flow direction in these regions during cooling.
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The addition of titanium and carbon led to significant changes in the microstructure
of the M6TiC coating by crystallization of the reinforcing phase in the form of primary
titanium carbides. Titanium, which possesses a high affinity for carbon, enabled the
synthesis of TiC carbide directly in a molten metal pool, which was in agreement with the
presented calculations of the phase equilibrium system for cobalt alloys by Bandyopadhyay
et al. [32]. The carbon concentration of 2.1 wt% and titanium concentration of 4.0 wt%
ensured the crystallization of titanium carbide as the primary phase, as evidenced by
the cubic morphology of the observed precipitates and their presence within the primary
dendrites of the γ-(Co) phase, rather than in the eutectic regions, as presented in Figure 7a.
The analysis of the reinforcing primary carbide phase revealed that tungsten atoms dissolve
in the carbide’s crystal lattice, as confirmed by microstructure images (Figure 8a). The SEM
EDS analysis of the coating (Figure 8b,c) indicates that primary carbides initially nucleate at
lower tungsten concentrations. However, as they grow, an increasing number of tungsten
atoms dissolve into the titanium carbide crystal lattice, resulting in gradient concentrations
of Ti and W in carbide.
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After the crystallization of primary carbides, the eutectic consisting of (Ti,W)C carbide
and dendrites of the γ-(Co) phase crystallize; then, they partially transform into the ε-(Co)
phase, as shown in XRD analysis (Figure 6b) and TEM investigations (Figure 7b). The
nucleation of eutectic (Ti,W)C carbide begins from the primary carbides. They exhibit
different morphology, as laths approximately 1–2 µm in length, as presented in Figure 9.
The average volume fraction of eutectic (Ti,W)C phase precipitates in the coating was about
6.5%, which is a similar value to the primary carbides: 5.9% (Table 3). With the addition
of titanium in M6TiC coating, the quantity of eutectic chromium carbide precipitates
significantly decreases to a 10.1% volume fraction. This observed relationship results
from the fact that titanium has a higher affinity for carbon than chromium, leading to a
reduction in the volume fraction of eutectic chromium carbides. Consequently, the solid
solution matrix is characterized by a higher chromium concentration, which promotes the
transformation of γ-(Co) → ε-(Co) in the cobalt solid solution.

Materials 2024, 17, 3101 10 of 15 
 

 

 
Figure 9. Microstructure of M6TiC coating. 

Table 3. Average volume fraction. 

Sample Designa-
tion (acc. to Ta-

ble 1) 

Average Vol-
ume Fraction 

of Primary 
(Ti,W)C Car-

bides [%] 

Average Vol-
ume Fraction 

of Eutectic 
(Ti,W)C Car-

bides [%] 

Average Volume 
Fraction of Co-

based Solid Solu-
tion [%] 

Average Volume 
Fraction of Eutectic 

Consisting of 
M7C3/M23C6 Car-

bides [%] 
M6 - - 65.3 ± 0.7 34.7 ± 0.7 

M6TiC 5.9 ± 0.7 6.5 ± 0.6 77.5 ± 0.3 10.1 ± 1.1 

3.4. Microhardness 
The microhardness distributions on the cross-section of the coatings along the laser 

pass axis and in the interpass zone are presented in Figure 10. The microhardness analysis 
of the interpass area of sample M6 revealed a slight decrease in hardness, where, due to 
the additional thermal cycle, grain growth of the cobalt solid solution and eutectic phases 
occurs. The hardness of the heat-affected zone for all samples ranged from 190 to 328 
HV0.3, which then stabilized in the base material at a value of 120 to 140 HV0.3. The M6TiC 
sample exhibited higher uniformity of hardness distribution along the cross-section of the 
coating. This can be directly attributed to the absence of microstructural changes in the 
areas affected by the subsequent thermal cycle during multi-pass cladding, where high 
thermal stability of the (Ti,W)C phases ensured structural homogeneity and, conse-
quently, stability of the hardness parameter distribution.  

The presented data show slight changes in the microhardness parameter with varia-
tions in the chemical composition of the powders used for the laser cladding process (sam-
ples M6 and M6TiC). The microstructure of the M6 coating consisted of dendrites of the 
cobalt solid solution and a eutectic containing carbides of the Cr7C3 and Cr23C6 types, 
whose uniform distribution within the alloy structure directly contributed to the high 
hardness of the coating, ranging from 469 to 530 HV0.3, which is consistent with the re-
search of Kołodziejczak et al. [33]. In the case of the M6TiC sample, the high hardness was 
due to the presence of both chromium carbide eutectics and titanium carbides in the struc-
ture. 

Figure 9. Microstructure of M6TiC coating.

Table 3. Average volume fraction.

Sample
Designation

(acc. to Table 1)

Average Volume
Fraction of

Primary (Ti,W)C
Carbides [%]

Average Volume
Fraction of

Eutectic (Ti,W)C
Carbides [%]

Average Volume
Fraction of

Co-Based Solid
Solution [%]

Average Volume
Fraction of

Eutectic
Consisting of
M7C3/M23C6
Carbides [%]

M6 - - 65.3 ± 0.7 34.7 ± 0.7
M6TiC 5.9 ± 0.7 6.5 ± 0.6 77.5 ± 0.3 10.1 ± 1.1

In the analyzed M6TiC coating, the typical columnar growth of dendrites from the
fusion line (visible in sample M6) was inhibited. This is due to the high thermodynamic
stability of (Ti,W)C carbides, which precipitate in the first stage of the crystallization process
and, as previously mentioned, serve as a substrate for nucleation and growth of dendritic
γ-(Co) solid solution crystals.
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3.4. Microhardness

The microhardness distributions on the cross-section of the coatings along the laser
pass axis and in the interpass zone are presented in Figure 10. The microhardness analysis
of the interpass area of sample M6 revealed a slight decrease in hardness, where, due to
the additional thermal cycle, grain growth of the cobalt solid solution and eutectic phases
occurs. The hardness of the heat-affected zone for all samples ranged from 190 to 328 HV0.3,
which then stabilized in the base material at a value of 120 to 140 HV0.3. The M6TiC sample
exhibited higher uniformity of hardness distribution along the cross-section of the coating.
This can be directly attributed to the absence of microstructural changes in the areas affected
by the subsequent thermal cycle during multi-pass cladding, where high thermal stability
of the (Ti,W)C phases ensured structural homogeneity and, consequently, stability of the
hardness parameter distribution.
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The presented data show slight changes in the microhardness parameter with vari-
ations in the chemical composition of the powders used for the laser cladding process
(samples M6 and M6TiC). The microstructure of the M6 coating consisted of dendrites
of the cobalt solid solution and a eutectic containing carbides of the Cr7C3 and Cr23C6
types, whose uniform distribution within the alloy structure directly contributed to the
high hardness of the coating, ranging from 469 to 530 HV0.3, which is consistent with the
research of Kołodziejczak et al. [33]. In the case of the M6TiC sample, the high hardness
was due to the presence of both chromium carbide eutectics and titanium carbides in
the structure.

3.5. Solid Particle Erosion Tests

Erosion resistance tests have shown that addition of Ti and C to the Co-Cr-W-C alloy
significantly influences erosive wear. The in situ synthesis of (Ti,W)C carbides enhanced the
erosion resistance compared to the base Co-Cr-W-C alloy (M6 sample) at an impingement
angle of 30◦, while maintaining high erosion resistance at a 90◦ angle, Table 4.

Table 4. Solid particle erosion test results.

Sample
Designation

(acc. to Table 1)

Average
Erosion Rate [mg/min]

Average
Erosion Value [mm3/g]

30◦ 90◦ 30◦ 90◦

M6 0.020 ± 0.001 0.015 ± 0.001 0.34 ± 0.02 0.25 ± 0.02
M6TiC 0.014 ± 0.002 0.016 ± 0.002 0.22 ± 0.04 0.25 ± 0.02

Solid particle erosion tests conducted at an erodent impingement angle of 90◦ revealed
a similar erosion rate for all of coatings, with an average value of 25 mg/min. For the same
impingement angle, the erosion value for sample M6 was 0.015 mm3/g, while the M6TiC
sample exhibited a value of 0.016 mm3/g. Considering the standard deviation, it can be
concluded that the described samples exhibited the same level of erosion value. For the
30◦ erodent impingement angle, significant changes in the erosion value could be observed.
In comparison to the base coating M6, the M6TiC sample exhibited a significant decrease
in erosion value by 35% (0.012 mm3/g), Table 4. The conducted studies did not reveal
a clear trend between the hardness of the coatings and their resistance to erosion wear.
The presence of the titanium carbides and chromium eutectic carbides in the structure of
sample M6TiC did not significantly affect the erosion value at an erodent impingement
angle of 90◦ but markedly reduced the intensity of erosion at a 30◦ impingement angle. The
analyzed composite coatings, due to their complex microstructure consisting of a matrix
and reinforcing phase in the form of titanium carbides, exhibited two distinct erosion wear
mechanisms. The first mechanism involved plastic deformation of the matrix material
(visible grooves and fragments of plastically deformed material), indicating an erosion
wear mechanism typical for ductile materials (Figure 11a,b). The second mechanism
involved cracking of the reinforcing phase, characterized by high hardness, which is a
typical erosion wear mechanism observed for brittle materials (Figure 11c–e). SEM imaging
of the M6 sample after erosion tests, as presented in Figure 11a, shows grooves caused
by microcutting by erodent particles, as a result of material plastic deformation. This
observation is consistent with the research of Sidhu et al. on the solid particle erosion of
Stellite 6 [34]. Changing the erodent impingement angle to 90◦ did not alter the observed
surface damage; however, the visible grooves were significantly shorter in length, as
presented in Figure 11b. In the M6TiC coating containing the reinforcing phase in the
form of (Ti,W)C carbides, cracking and spalling of the hard reinforcing phase particles was
observed, combined with microcutting of the matrix material (Figure 11e).
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Figure 11. SEM image after erosion tests: (a) sample M6 30◦ impingement angle; (b) sample M6
90◦ impingement angle; (c) sample M6TiC 30◦ impingement angle; (d) sample M6TiC 90◦ impinge-
ment angle; (e) sample M6TiC showing chipped TiC carbide with an EDS diffractogram of point 1.

4. Conclusions

Based on the conducted studies on the possibility of in situ synthesis of TiC in Co-Cr-
W-C alloys (type Stellite 6), the following conclusions can be formulated:

• The laser cladding process using Co-Cr-W-C powder (type Stellite 6) with addition of
Ti and C makes it possible to obtain homogenous coatings with composite structure
reinforced by an in situ TiC phase.

• The addition of titanium to the Co-Cr-W-C alloy leads to the crystallization of primary
(Ti,W)C carbides, characterized by a gradient tungsten concentration, where the
tungsten content increases with the growth of the carbide.

• The addition of titanium to the Co-Cr-W-C alloy leads to the reduction of eutectics
composed of chromium carbides. This phenomenon occurs because titanium has a
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greater affinity for carbon than chromium, resulting in the precipitation of primary
(Ti,W)C carbides in the first stage of the crystallization process.

• The presence of the reinforcing phase in the form of (Ti,W)C carbides results in in-
creased erosion resistance at an erodent impingement angle of 30◦ (a 35% decrease
in the erosion value parameter compared to the base coating made of Co-Cr-W-C
alloy) while maintaining high erosion wear resistance at an erodent impingement
angle of 90◦.

• The composite coating reinforced by in situ titanium carbide exhibits two distinct
erosion wear mechanisms: one typical of ductile materials, resulting in the loss of
matrix material, and another typical of brittle materials, where the hard particles of
the reinforcing phase undergo cracking.
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3. Czupryński, A.; Wyględacz, B. Comparative Analysis of Laser and Plasma Surfacing by Nickel-Based Superalloy of Heat Resistant

Steel. Materials 2020, 13, 2367. [CrossRef] [PubMed]
4. Santerre, F.; El Khakani, M.; Chaker, M.; Dodelet, J. Properties of TiC thin films grown by pulsed laser deposition. Appl. Surf. Sci.

1999, 148, 24–33. [CrossRef]
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