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Abstract: Fatigue cracking is one of the primary distresses of asphalt pavements, which significantly
affects the asphalt pavement performance. The fatigue behavior of the asphalt mixture observed in
the laboratory test can vary depending on the type of fatigue test and the dimension and shape of
the test specimen. The variations can make it difficult to accurately evaluate the fatigue properties
of the field asphalt concrete. Accordingly, this study proposed a reliable method to evaluate the
fatigue behavior of the asphalt field cores based on discrete element modeling (DEM). The mesoscopic
geometric model was built using discrete element software PFC (Particle Flow Code) and CT scan
images of the asphalt field cores. The virtual fatigue test was simulated in accordance with the
semi-circular bending (SCB) test. The mesoscopic parameters of the contacting model in the virtual
test were determined through the uniaxial compression dynamic modulus test and SCB test. Based
on the virtual SCB test, the displacement, contact forces, and crack growth were analyzed. The
test results show that the fatigue life simulated in the virtual test was consistent with that of the
SCB fatigue test. The fatigue cracks in the asphalt mixture were observed in three stages, i.e., crack
initiation, crack propagation, and failure. It was found that the crack propagation stage consumes a
significant portion of the fatigue life since the tensile contact forces mainly increase in this stage.

Keywords: fatigue behavior; asphalt field cores; discrete element method (DEM); semi-circular
bending (SCB) test

1. Introduction

Fatigue cracking is one of the most common distresses of asphalt pavement. Crack
initiation and propagation can reduce the bearing capacity of the pavement structure and
allow the penetration of water into the structure, resulting in other distresses such as water
damage [1]. Fatigue cracking is mainly caused by repeated traffic loading. The repeated
loading can lead to the micro-cracks forming and merging, eventually propagating into
macro-cracks, i.e., alligator cracking, which can weaken the overall structural capacity of
the asphalt pavement and deteriorate the bonding between asphalt and aggregates [2].
Therefore, it is of significance to evaluate the fatigue behavior of the asphalt mixture, which
could help prolong the fatigue life.

Most of the existing studies have primarily analyzed the fatigue behavior of the asphalt
mixture using laboratory tests and summarized the mechanism of fatigue cracking [3–5].
However, most of the previous studies focused on the properties of lab-fabricated asphalt
mixture specimens and were limited when evaluating the properties of the core samples,
which can lead to inefficient utilization of the core samples. Moreover, in practical pavement
applications, asphalt pavement is constructed through three phases of compaction and
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ages under in-service conditions, which are subject to environmental fluctuations, such as
temperature variation, precipitation, and ultraviolet rays. Thus, there is much difference in
the internal structural distribution and aging between the lab-fabricated asphalt mixture
specimens and those in the field. Consequently, many researchers have shifted focus to the
asphalt field cores, studying the fracture properties of the cores drilled from the in-service
pavement over various durations.

There are many lab tests to study the fatigue properties of the asphalt mixture, such
as the indirect tensile (IDT) test, direct tensile (DT) test, overlay test (OT), four-point
bending test, and semi-circular bending (SCB) test. Barman et al. conducted the IDT test
to characterize the fatigue resistance of the asphalt mixture and proposed a simple data
analysis approach [6]. Luo et al. used the controlled-strain repeated direct tensile test to
evaluate the fatigue cracking [7]. Gu et al. conducted the overlay test to investigate the
fracture properties of the field-aged asphalt concrete and found that the cracking resistance
of the field reduced from 1st month to the 9th month [8]. Kim et al. performed a four-point
bending test to investigate the fatigue life of a total of ten asphalt mixtures, including hot-
mix asphalt (HMA) and warm-mix asphalt (WMA) with different amounts of reclaimed
asphalt pavement (RAP) and recycled asphalt shingles (RAS) [9]. Du et al. performed the
SCB test on the layer core samples drilled from five expressways to analyze the sensitivity
of fracture energy to factors such as the equivalent single axle load, air void, service age,
etc. [10]. These studies demonstrate that the field core samples can reflect the asphalt
pavement conditions, and the test results of core samples can be effectively used for the
decision-making related to pavement maintenance actions.

Based on the results of the fatigue test of the asphalt mixture, the fatigue cracking
models of the asphalt mixtures were developed. The fracture mechanics and the dissipated
energy approach are most widely used to evaluate the fatigue resistance of the asphalt
mixtures [11]. However, the fatigue test results cannot describe the crack propagation of
asphalt mixture at the mesoscopic level. Moreover, it is hard to validate the fatigue cracking
models with only a limited number of core samples.

In recent years, researchers have attempted to use computer technology to simulate
the fracture evolution of the asphalt mixture and investigate the various influencing factors
on the fatigue behavior. The discrete element method (DEM) has been widely used in pave-
ment engineering since discrete elements can reflect the discontinuous and non-uniform
structural characteristics of asphalt mixtures. It can also help reveal the internal structural
deformation, cracking, and other mechanical behaviors of asphalt mixtures. Ma et al. built
a virtual specimen based on the DEM to estimate the fatigue life of an asphalt mixture
and investigated the influence of air void on fatigue life [12]. Xue et al. developed a new
approach combining algorithmic techniques and DEM to perform a heterogeneous fracture
simulation, and the study proved that the DEM could provide a valid understanding of
the fracture behavior of materials so as to be used to diminish the need for numerous
laboratory tests [13]. Peng et al. adopted Python language and DEM to generate irregular
particles and establish a three-dimensional (3D) discrete element model of asphalt surface
to study the mechanical response under different working conditions [14]. However, due
to the limitation of obtaining the raw material parameters, most of the existing studies
depended on lab-fabricated specimens and were limited to discrete element simulation
of the fractures of the core samples. Moreover, it is unclear whether the calibration of the
mesoscopic parameters for the simulation through the lab tests can be effectively applied
to the limited number of core samples.

The objective of this study is to propose a reliable method to evaluate the fatigue
behavior of the asphalt field cores based on discrete element modeling and to conduct
mesoscopic contact parameter calibration through lab tests, including the uniaxial com-
pression dynamic modulus test, SCB test, and SCB fatigue test, which can enhance the
utilization efficiency of core samples and provide a reliable representation of the fatigue
behavior of the core samples.
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This paper is organized as follows. The following section presents the test samples
and lab tests conducted to determine the mesoscopic contact parameters in the discrete
element modeling. The next section describes the establishment of the virtual specimen
using CT scanning of the asphalt field cores and image processing technologies, as well as
mesoscopic contact parameter calibration and virtual fatigue tests using discrete element
modeling. The fatigue life obtained from the lab test and virtual fatigue test is compared,
and the virtual test results of force chains, crack evolution, and displacement are discussed
in the following section. The final section summarizes the findings of this study.

2. Laboratory Test

The field cores were drilled from the in-service asphalt pavement and used to conduct
laboratory tests, including the uniaxial compression dynamic modulus test, SCB test, and
SCB fatigue test, to evaluate the material properties of the field cores. The lab test results can
be used to calibrate the mesoscopic parameters required in the discrete element modeling.

2.1. Asphalt Field Core

The asphalt field cores used in this study were taken from the Hubei sections of the
G4 Beijing–Hong Kong–Macao Expressway, which opened to traffic in 2002. The Hubei
sections have an asphalt surface course with a thickness of 16 cm in total. Even though
the Hubei sections have been in service for over 20 years, pavement rehabilitation has
been undertaken several times, and the originally designed structure of the asphalt surface
course has still been chosen. The asphalt surface course are composed of three asphalt
layers, i.e., the asphalt surface layer, asphalt middle layer, and asphalt bottom layer, as
detailed in Table 1. The asphalt mixture composition was sourced from the original design
documents. In the asphalt surface layer, basalt was used, while limestone was used for
the asphalt middle and bottom layers. The modified asphalt binder with anti-stripping
additives was used, and asphalt content in the mixtures ranged between 3% and 4%.

Table 1. Structure of the asphalt surface course.

No. Directions Materials Thickness (cm)

1 Asphalt surface layer SUP-12.5 4
2 Asphalt middle layer AC-20I 6
3 Asphalt bottom layer AC-20S 6

The field cores were drilled as cylinders near the wheel path. The cylinder of the field
cores is 150 mm in diameter and 30 cm in thickness. The drilled cylinders were first cut into
slices 50 mm in thickness and then cut into semi-cylinders as the SCB test specimen in the
laboratory. Figure 1 shows the process of the drilled field cores into the SCB test specimen.
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2.2. Uniaxial Compression Dynamic Modulus Tests

The uniaxial compression dynamic modulus test was conducted by the multifunctional
test system (MTS), as shown in Figure 2. This test was conducted by following the Chinese
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specification JTG E20-2011 at the temperatures of 5 ◦C, 20 ◦C, 35 ◦C, and 50 ◦C and
frequencies of 0.1 Hz, 0.5 Hz, 1 Hz, 5 Hz, 10 Hz, and 25 Hz [15]. From low to high
temperature and from high to low frequency, the sinusoidal load was applied to the
specimen under the condition of no side limit, and the dynamic modulus and phase angle of
each structural layer of the asphalt mixture were calculated according to the obtained stress–
strain data and hysteresis time to quantify the linear viscoelastic mechanical properties of
the asphalt mixture. The test results can be used to obtain the parameters of the viscoelastic
contact model (e.g., Burgers model) in discrete element simulation.
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2.3. SCB Test

The semi-circular bending (SCB) test was conducted by the MTS machine and followed
the control mode of the constant displacement rate loading according to the method of
TP105-13 [16]. The test was conducted at a constant loading rate of 2 mm/min and
a temperature of 20 ◦C. The dimensions of the semi-circular specimen are 150 mm in
diameter, 75 mm in height, and 40 mm in thickness, which align with the thickness of the
asphalt surface layer (4 cm). The notch was placed 10 mm in length and 1 mm in width
at the center of the specimen to ensure the occurrence of crack initiation and propagation
at the notch tip during the test. The test specimens were positioned on two rollers with a
distance of 120 mm, which is 0.8 times the diameter of the specimen. Figure 3 shows the
dimension of the semi-circular specimen. The SCB test results were obtained to determine
the parameters of the parallel bonding model in the discrete element modeling.
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2.4. SCB Fatigue Test

The SCB fatigue test was conducted in the loading mode of the stress control with a
temperature of 20 ◦C. The loading mode of the semi-sinusoidal wave at the frequency of
10 Hz was adopted. Considering the cracking self-healing properties of the asphalt mixture,
continuous loading without the intermittent time was selected. Since the stress ratio can
greatly affect the fatigue life of the asphalt mixture, this study selected the stress ratio of
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0.4, 0.5, and 0.6 based on the pre-test results to ensure that fatigue life could fall into the
range between thousands and tens of thousands of cycles.

3. Discrete Element Modeling
3.1. The Establishment of Mesoscopic Virtual Specimen

The virtual specimen was established by CT scanning and the Digital Image Process
(DIP) method. The CT scanning of the asphalt field cores was first conducted, and the
scanned image of the field cores was processed by using Image-Pro Plus software (version
7.0). It was found that the air void content of the field cores is higher at both ends compared
to the middle, ranging between 3% and 5%. Hence, the median value of 4% was set as the air
void content of the virtual specimen for discrete element modeling. The CT-scanned images
were proportionally cut by using Photoshop to ensure the geometry of the virtual specimen
corresponded to that of the actual specimen. The distribution of aggregate and mortar in
the actual specimen was further obtained by using the DIP method, which includes image
enhancement, image noise reduction, threshold segmentation, feature extraction, and object
recognition. The edge extraction was used to identify the edges of coarse aggregate [17].
The extracted outlines were converted into DXF file format, as shown in Figure 4.
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Figure 4. Image processing process. (a) Original image. The grayscale image shows the original
CT scan of the asphalt core sample. (b) The enhanced image. (c) Image edge recognition. The blue
lines delineate the boundaries of coarse aggregates. (d) Complete geometric model. The green area
represents the aggregates and blue area represents the asphalt mortar.

Based on the CT scanning, the images at the center of the asphalt field cores with
distinct structures of asphalt layers were selected and then processed. The distribution
of coarse aggregates in the field cores was obtained using Photoshop software (version
21.2.11). To simulate the prefabricated notch, the particles at the center bottom of the virtual
specimen were deleted. The wall was added at the top of the virtual specimen as a loading
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plate, and circular rigid walls were added at the bottom as constraints. The loading mode
applied on the virtual specimen was consistent with that used in the lab test. The virtual
specimens for the asphalt surface, middle, and bottom layers are shown in Figure 5.
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asphalt middle layer, and (c) at the asphalt bottom layer. The blue circles at the bottom represent the
circular rigid walls as constraints. The blue line at the top represents the wall as a loading plate.

3.2. Contact Models and Parameter Calibration

The discrete element modeling was performed using the PFC (Particle Flow Code)
software (version 5.0). The PFC software has four basic contact models, including the
stiffness model, slipping model, parallel bonding model, and viscoelastic contact model.
To simplify the contact between the asphalt mixture, the different contact models between
the particle elements were selected, as shown in Table 2.

Table 2. Selection of contact model between particle elements.

Particle Elements Contact Model Selection

Between coarse aggregate particle units Linear stiffness model
Between coarse aggregate and asphalt mortar Burgers model + parallel connection model

Between asphalt mortar Burgers model + parallel connection model
Between the particle unit and the wall Linear stiffness model

In this study, the viscoelastic behavior of the asphalt mixture is characterized using
the Burgers model, which combines the Maxwell model and the Kelvin model, which act
in series but in normal and shear directions, as depicted in Figure 6. The Maxwell and
Kelvin models both include a spring with stiffness parameters and a dashpot with viscosity
parameters. In the Maxwell model, these components are connected in series, while in the
Kelvin model, they are connected in parallel. Hence, the Burgers model is divided into
normal and shear directions at the mesoscopic level, resulting in eight parameters of the
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contact model between aggregate and asphalt mortar. These parameters can be calculated
by the following equations.

Cmn = η1LKmn = E1LCkn = η2LKkn = E2L (1)

Kms =
E1L

2(1 + ν)
Cms =

η1L
2(1 + ν)

Kks =
E2L

2(1 + ν)
Cks =

η2L
2(1 + ν)

(2)

where Kmn and Cmn are the stiffness and viscosity parameters of the Maxwell model, and
Kkn and Ckn are the stiffness and viscosity parameters of the Kelvin model in the normal
direction; since Burgers model can sustain tensile stress, Kms and Cms are the stiffness and
viscosity parameters of the Maxwell model, and Kks and Cks are the stiffness and viscosity
parameter of the Kelvin model in the shear direction. These parameters of stiffness and
viscosity in the Burgers model determine the creep behavior of the virtual specimen. L is
the length of the two-contacting discrete particle element for aggregate, i.e., the sum of two
contacting particle radii; E1, η1, E2, and η2 are the macro-parameters of the Burgers model.
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The macro-parameters of the Burgers model (E1, η1, E2, η2) were converted from
the uniaxial compression dynamic modulus test results of the field core specimen, as
shown in Table 3. The macro-parameters of the Burgers model can be calculated by the
following equations:

E1 = [|E∗|]ω=ωmax
(3)

η1 =

[
|E∗|
ω

]
ω=ωmin

(4)

1
|E∗| =

√
1

E2
1
+

1
η2

1ω2
+

1 + 2(E2/E1 + η2/η1)

E2
2 + η2

2ω2
(5)

tan φ =
E1

[
E2

2 + η2(η1 + η2)ω
2]

η1ω
(
E2

2 + E1E2 + η2
2ω2

) (6)

where ωmax and ωmin are, respectively, the maximum and minimum values of angular
frequency in the laboratory test. Using 20 ◦C as an example, the four macro-parameters of
the asphalt surface, middle, and bottom layers of the pavement core sample are shown in
Table 4.
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Table 3. Dynamic modulus test results of each structural layer of the core sample at 20 ◦C.

Frequency

Asphalt Surface Layer Asphalt Middle Layer Asphalt Bottom Layer

Dynamic
Modulus, MPa Phase Angle Dynamic

Modulus, MPa Phase Angle Dynamic
Modulus, MPa Phase Angle

25 Hz 16,174 12.58 12,128 15.33 12,669 12.87
10 Hz 13,199 13.51 10,478 16.89 11,551 14.45
5 Hz 11,503 14.72 9152 18.52 10,172 15.64
1 Hz 8214 19.83 6199 24.15 7030 20.41

0.5 Hz 6871 21.90 5119 26.72 5855 22.60
0.1 Hz 4567 23.23 3177 30.66 3844 25.58

Table 4. Macroscopic parameters of the contact Burgers model at 20 ◦C.

Model Parameter Asphalt Surface Layer Asphalt Middle Layer Asphalt Bottom Layer

E1/GPa 14.96 12.46 12.88
E2/GPa 10.72 7.08 8.98

η1/(GPa·s) 23.89 11.93 17.70
η2/(GPa·s) 1.22 0.82 0.99

Based on the conversion from the macro-parameters (E1, η1, E2, η2) to the mesoscopic
parameters using Equations (1) and (2), the mesoscopic parameters of the contact models
were calculated at 20 ◦C, as shown in Table 5.

Table 5. Calibration results of meso-contact parameters in Burgers model at 20 ◦C.

Meso-Structure Parameter Asphalt Surface Layer Asphalt Middle Layer Asphalt Bottom Layer

Kmn 1.70 × 107 1.25 × 107 1.50 × 107

Cmn 2.10 × 107 1.10 × 107 1.50 × 107

Kkn 9.00 × 106 8.00 × 106 1.20 × 107

Ckn 1.45 × 106 9.50 × 105 1.10 × 106

Kms 6.00 × 106 5.00 × 106 5.20 × 106

Cms 1.00 × 107 1.20 × 107 7.00 × 106

Kks 4.20 × 106 2.80 × 106 3.60 × 106

Cks 5.00 × 105 3.50 × 105 4.00 × 105

3.3. Contact Parameter Calibration of Parallel Bonding Model

The parameters of the parallel bonding model were determined based on the SCB
test results of the asphalt field cores and discrete element simulation. Firstly, the initial
values and range of the parameters were selected based on the previous studies, as shown
in Table 6. The parameters of the parallel bonding model were further determined by the
trial-and-error approach based on the effect of parameters on the stress–strain curve in the
discrete element simulation. Table 7 presents the contact parameters of the parallel bonding
model calibrated and validated through the SCB test.

Table 6. Initial values of main parameters of the parallel bonding model.

Parameter Label Parameter Unit Initial Value Value Range

pb_emod Parallel bond modulus Pa 6.00 × 105 6.00 × 104~8.00 × 106

pb_ten Strength of extension Pa 8.00 × 105 8.00 × 104~8.00 × 106

pb_coh Bonding force Pa 4.00 × 105 4.00 × 104~4.00 × 106

pb_krat Stiffness ratio / 2.0 1~3
pb_fa Internal friction angle ◦ 35 –

pb_rad Parallel bond radius mm 0.5 –



Materials 2024, 17, 3108 9 of 15

Table 7. Contact parameter values of parallel bonding model.

Parameter Label Asphalt Surface Layer Asphalt Middle Layer Asphalt Bottom Layer

pb_emod 3.20 × 105 7.40 × 105 3.20 × 106

pb_ten 8.40 × 105 2.20 × 106 3.80 × 106

pb_coh 1.00 × 106 7.50 × 105 6.50 × 105

pb_krat 2.0 1.7 1.5
pb_fa 35 35 35

pb_rad 0.5 0.5 0.5

3.4. Virtual Fatigue Test

The virtual fatigue test was performed to simulate the SCB fatigue test with the loading
mode consistent with that in the laboratory SCB fatigue test. In the virtual fatigue test, the
fatigue behavior of the asphalt mixture is characterized by the deterioration at contacts
within the asphalt mortar and between the aggregate and asphalt mortar. Hence, the virtual
fatigue test of the asphalt mixture was conducted to investigate the deterioration of the
mechanical properties of the parallel bonding model in the discrete element simulation. The
micro-mechanical fatigue damage model was determined by the following equation [18,19].

dD
dt

= β1

(
σ

σc

)α1

tβ2(
σ
σc )

α2
(7)

where D is the bonding diameter at contacts; t is the loading time; σc is the ultimate tensile
strength; σ is the tensile stress between particle elements; and β1, β2, α1, and α2 are the
coefficients of the fatigue damage model. The coefficients were initialized based on the
existing studies [18,19] and then calibrated through the iterative virtual fatigue test to
correspond with the SCB fatigue test results. Table 8 presents the calibrated coefficients of
the fatigue damage model.

Table 8. Coefficients of the fatigue damage model.

Structural Layer α1 α2 β1 β2

Asphalt surface layer −1.420 0.053 2.20 × 106 −1.066
Asphalt middle layer −1.350 0.050 2.50 × 106 −1.710
Asphalt bottom layer −1.435 0.042 3.10 × 106 −1.790

4. Results and Discussion
4.1. Comparison between Laboratory and Virtual Fatigue Test

Table 9 presents the comparison of the results of fatigue life between the laboratory test
and discrete element modeling at different stress ratios of 0.4, 0.5, and 0.6 for each asphalt
structural layer. It was found that fatigue life decreases with the increase in the stress ratio
and the depth of asphalt layers. The results from both lab and virtual tests indicate that
the fatigue life of the asphalt surface layer was roughly twice as long as that of the asphalt
bottom layer. The comparison, as shown in Table 9, also shows that the simulated fatigue
life was shorter than the fatigue life from the lab test, which may result from the self-healing
properties of the asphalt mortar. The variation in distribution and air void content may
contribute to the differences in fatigue life between laboratory and virtual fatigue tests.
However, the trend of the result of the virtual fatigue test was consistent with that of the
lab test, and the error was below 20%. Compared to the benchmark established in the
literature [12], the error range is considered acceptable. The comparison result indicates
the virtual fatigue test simulated by discrete element modeling is reliable and acceptable.
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Table 9. Comparison of fatigue life between lab and virtual fatigue test.

Asphalt Structure Layer Stress Ratio Test Fatigue Life Simulated Fatigue Life Error (%)

Asphalt surface layer
0.6 4310 3587 16.77
0.5 6867 5388 21.54
0.4 24,478 19,566 18.47

Middle layer
0.6 2155 1816 15.73
0.5 4458 3653 18.06
0.4 12,135 9585 21.01

Bottom layer
0.6 1751 1950 11.36
0.5 4274 3653 17.00
0.4 10,097 8086 19.91

4.2. Force Chain Evolution Process

The force chain, formed by the interaction between contacting particles, was analyzed
to study the stress distribution of the virtual specimen since the evolution of the force chain
reflects the variation in the mechanical response of the virtual specimen during loading.
The process of force chain at three stages, i.e., the early, middle, and final stages (i.e., the
crack initiation, crack propagation, and failure), is illustrated in Figure 7. The blue and
green denote compressive and tensile stress, respectively, and the line size of the force chain
reflects the stress level between particle contacts. It is observed from Figure 7 that in the
early stage, the compressive force chains are primarily located near the aggregate particles.
In the middle stage, the compressive force chains were concentrated to the loading point at
the top and two bottom supports. The tensile force chains mainly appear near the notch
cracks at the bottom center of the virtual specimen. In the final stage, the virtual specimen
eventually failed due to fracture damage. It was found that crack propagation is mainly
caused by concentrated tensile stress during loading.
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Table 10 presents the distribution of the force chain under different stress ratios. We
utilized the “Contact force chain” command in the PFC (Particle Flow Code) software to
record the force chain evolution under loading. The term “proportion of the tensile force
chain” in Table 10 refers to the percentage of the tensile force chains to all force chains.
The variation in the proportion of the tensile/compressive force chains can reflect the
mechanical response of the virtual specimen under loading, which can help to evaluate the
fatigue behavior of the virtual specimen. It is observed that with the increase in the stress
ratio, the tensile and compressive force chains increase slightly, and the proportion of the
tensile force chains rises from 37.4% to 40.41%. The peak values of the force chains were
observed as the tensile force chain of 5.18 × 104, 6.62 × 104, and 7.54 × 104 at the stress ratio
of 0.4, 0.5, and 0.6, respectively. This indicates that crack propagation is closely associated
with the growth of the tensile chains, which suggests that the crack propagation stage
could consume a significant portion of the fatigue life since tensile force mainly increases
in this stage.

Table 10. Distribution of force chains under different stress ratios.

Stress Ratio Tensile Force Chain Tensile Force Chain
Proportion (%)

Compressive Force
Chain

Compressive Force Chain
Proportion (%)

0.4 11,843 37.40 19,819 62.60
0.5 13,536 40.22 20,121 59.78
0.6 13,688 40.41 20,185 59.59

4.3. Crack Evolution Process

Figure 8 shows the crack path of both virtual and lab specimens. It was found that the
two crack paths are relatively consistent, and both of them first appear at the prefabricated
notch and then gradually propagate to the top along the middle of the specimen. In the
virtual test, the crack path turned close to a straight line, and the internal crack of the
aggregate interface and asphalt mortar interface happened simultaneously. By contrast, in
the lab test, the crack path seemed to wiggle and mostly grew along the aggregate interface.
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Figure 8. Crack propagation path: (a) virtual path. (b) test path.

Figure 9 shows the crack quantities and direction at three stages (i.e., the early stage,
middle stage, and final stage) under loading. In Figure 9, it can be seen that in the early stage,
cracks mainly grow vertically, and the direction of crack growth ranges between 90 and
110 degrees. At this stage, the cracks have not yet propagated upward at the prefabricated
notch. In the middle stage, the crack growth deviates from the vertical direction and ranges
from 60 to 100 degrees. In the final stage, the crack gradually propagates to the top of the
specimen, and the direction of crack growth extends to a range between 50 and 130 degrees.
The extension of the crack growth angle results in the formation of micro-crack branches.
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4.4. Displacement Evolution Process

The displacement field in the discrete element modeling is crucial to studying the
movement of particle elements under loading and further evaluating fatigue behavior.
Figure 10 shows the displacement field in the early, middle, and final stages of loading. It
was found that the horizontal and vertical displacement fields of particles seem asymmetri-
cal and close to zero, which indicates that the relative motion between particles is small. In
the middle stage, the displacement between particles is symmetrically distributed with the
central axis of the virtual specimen. In the horizontal direction (X direction), the relative
displacement at the bottom near the prefabricated notch is the largest, about 0.25 mm. In
the vertical direction (Y direction), the displacement at the loading head seems largest,
about 0.43 mm. In the final stage, the displacement near the notch reaches about 2 mm
in the horizontal direction. In the vertical direction, the displacement near the crack path
appears consistent, yet the displacement field seems tortuous along the symmetry axis of
the central axis due to the variation of the air void distribution. The vertical displacement
near the loading head is about 2.2 mm, which shows a good agreement with the results of
the SCB fatigue test.
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5. Conclusions

In this study, the virtual SCB fatigue test was simulated by using discrete element
modeling to evaluate the fatigue behavior of the asphalt field cores. The CT scan test was
conducted to build the mesoscopic geometric model of the asphalt field cores. Additionally,
the uniaxial compression dynamic modulus test and SCB test were performed to determine
the parameters of the contact model in the virtual fatigue test. Based on the virtual SCB
fatigue test, the displacement and contact forces, as well as crack growth, were analyzed.
The main findings of this study can be drawn as follows.

(1) The evaluation methodology of fatigue behavior of the asphalt field cores based
on the discrete element simulation was developed and can be used to enhance the
effective usage of the field cores, which can help with the decision-making of pavement
maintenance actions.

(2) The fatigue life simulated in the virtual fatigue test was consistent with that of the
laboratory SCB fatigue test. The error between the simulated and test fatigue life was
below 20%, which shows that the virtual fatigue test result is acceptable and reliable.

(3) It was found from the analysis of the force chain evolution process that concentrated
tensile stress during loading can lead to crack initiation and propagation, ultimately
resulting in material failure.

(4) The fatigue cracks in the asphalt mixture were observed as the three stages, i.e., crack
initiation, crack propagation, and failure. It was found that the crack propagation
stage consumes a significant portion of the fatigue life since tensile contact force
mainly increases in this stage.

In this study, the discrete element modeling was restricted within 2D simulation due
to the limited computational power. In future work, the 3D discrete element simulation will
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be performed to evaluate the fatigue behavior of the asphalt field cores, which could further
improve the simulation accuracy. Additionally, future work will compare the asphalt field
cores with the different aging times and investigate the difference in the fatigue behavior
among them.
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