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Abstract: To improve the laser cleaning surface quality of rust layers in Q390 steel, a method
of determining the optimal cleaning parameters is proposed that is based on response surface
methodology and the second-generation non-dominated sorting genetic algorithm (NSGA-II). It
involves constructing a mathematical model of the input variables (laser power, cleaning speed,
scanning speed, and repetition frequency) and the objective values (surface oxygen content, rust
layer removal rate, and surface roughness). The effects of the laser cleaning process parameters
on the cleaning surface quality were analyzed in our study, and accordingly, NSGA-II was used to
determine the optimal process parameters. The results indicate that the optimal process parameters
are as follows: a laser power of 44.99 W, cleaning speed of 174.01 mm/min, scanning speed of
3852.03 mm/s, and repetition frequency of 116 kHz. With these parameters, the surface corrosion is
effectively removed, revealing a distinct metal luster and meeting the standard for surface treatment
before welding.

Keywords: laser cleaning; carbon steel; response surface methodology; NSGA-II algorithm;
multi-objective optimization

1. Introduction

In the construction of nuclear power plants, the use of embedded steel rebar and
steel plate components is ubiquitous, and among these components, Q390 steel plates are
commonly used [1,2]. There is typically a loose rust layer on the surface, and in the welding
process, water absorbed by the rust layer decomposes and produces a large amount of
hydrogen, which cannot be discharged in time during the cooling process of the weld.
The gases accumulate in the weld, forming pores and other defects, which significantly
affects the homogeneity of the metal and the joint quality. Therefore, it is necessary to
properly treat the surface of Q390 steel plates before welding. Although the commonly
used treatment methods, such as manual grinding, mechanical grinding, and chemical
cleaning, have practical applications, they also have limitations [3,4].

As an advanced manufacturing technology, laser cleaning has been widely used
in various industrial fields, including electronics and semiconductors [5], healthcare [6],
automotive manufacturing [7], aerospace [8], and heritage protection [9]. As industrial
demand grows, research on the process parameters, surface quality, and performance of
laser cleaning is expanding. For example, Ma et al. [10] conducted single-factor experiments
to investigate the effects of laser cleaning on the rust layer of Q345 steel used in mining
machinery. They specifically examined the influences of laser power and spot overlap rate
on the post-cleaning surface integrity, ultimately determining optimal cleaning process
parameters. Separately, Yao et al. [11] studied methods for cleaning rust layers on AH36
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steel surfaces, successfully reducing surface roughness and enhancing corrosion resistance.
Narayanan et al. [12] systematically observed the effects of varying parameters such as
scanning speed and the number of passes on the removal depth, surface profile, roughness,
and hardness of processed surfaces. In addition, Li et al. [3] explored the impact of laser
scanning speed on the cleaning quality of Q345 steel, finding that the optimal cleaning effect
was achieved at 3000 mm/s and noting a trend where oxygen content decreased initially
and then increased as speed increased from 1000 mm/s to 6000 mm/s post-cleaning. Finally,
Wu et al. [13] investigated how laser power and cleaning speed affected the macroscopic
and microscopic surface morphology of cleaned specimens, revealing the formation of a
re-melted layer on the substrate surface post-cleaning, which correspondingly enhanced its
corrosion resistance. The types of lasers used by these researchers are shown in Table 1.

Table 1. The types of lasers used by other researchers.

Substrate Laser Type Ref.

Q345 Solid-state laser with flat-top laser energy [10]
AH36 Ultraviolet nanosecond laser [11]
Q345 Nanosecond pulsed laser [3]
Mild steel Nanosecond pulsed laser [12]
Q235B 1080 nm continuous laser [13]

However, despite the progress made in existing research, studies in the field of laser
cleaning have mainly focused on the impact of a single factor on the cleaning effect of the
substrate, and few studies have considered the relationships between multiple factors and
their overall impact on the quality of metal surface cleaning. In addition, genetic algorithms
have not been widely used to optimize process parameters in the field of laser cleaning.
The optimization strategy of response surface methodology (RSM) combined with a genetic
algorithm is used in other fields such as laser cladding [14–18]. Therefore, in the present
study, this method was introduced to the field of laser cleaning.

The rust layer of Q390 carbon steel was selected as the subject of study, and a fiber-
optic pulsed laser was used to conduct experiments. Using the Box–Behnken design
methodology, a mathematical model for the relationships between the laser cleaning process
parameters (energy density, scanning speed, and cleaning speed) and the parameters of
the surface quality assessment after cleaning (oxygen content, removal rate, and surface
roughness) was developed. By analyzing the interaction patterns under different parameter
combinations, this study attempted to optimize the impact indicators using a combination
of response surface-based surrogate models and multi-objective genetic algorithms, thereby
determining the optimal laser cleaning process parameters. This approach provides a
scientific methodological basis and technical support for the laser cleaning of various
carbon steels in real-life production.

2. Experimental Conditions and Methods
2.1. Materials and Equipment

In this study, Q390 steel was selected as the experimental material, and its chemical
composition is presented in Table 2. The surface rust layer of the steel was formed in
the natural environment, and a scanning electron microscopy (SEM) image of the sample
surface (Figure 1) indicated that the rust layer was covered with a large number of cracks
and pores. This indicated that the surface structure was relatively loose, making it difficult
to block water and oxygen penetration; therefore, further corrosion of the interior was
easily accelerated. Analysis of SEM images of the sample sections (Figure 2) revealed that
the thickness of the rust layer varied between 50 and 65 µm, with significant positional
differences. The cross-sectional micromorphology exhibited large pores in the middle of
the rust layer and cracks in the upper locations, confirming that the structure of the rust
layer was loose. The rust layer was not uniformly distributed on the specimen surface
but grew from the surface to the internal pores. In addition, Figure 3 shows the results of
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an elemental content analysis of the surface rust layer; the rust was mainly composed of
oxygen and iron, and it also contained carbon and trace amounts of other elements. The
main thermophysical parameters of substrate and rust layer are shown in Table 3.

Table 2. Chemical composition of Q390 steel.

Element Fe C Mn Si S, P Al Ceq

Content (wt.%) base ≤0.20 1.00–1.60 0.55 ≤0.030 0.038 0.37–0.42
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In the experiment, a fiber pulsed laser (HLCM-100W, Han’S Laser, Shenzhen, China)
was used as the cleaning equipment. It had various adjustable parameters, such as the laser
energy density, scanning speed, and repetition frequency, which were precisely adjusted
through the control system. The detailed workflow of the experiment is shown in Figure 4.
In this process, the laser beam was reflected through a scanning galvanometer, and a precise
laser cleaning operation was performed in the X-direction. Simultaneously, the sample was
moved along the Y-direction by controlling the two-dimensional moving platform, and
its speed was defined as the laser cleaning speed. The main parameter ranges of the laser
cleaning platform are presented in Table 4.
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Table 3. Main thermophysical parameters of carbon steel plate substrate and rust layer [13,19].

Thermophysical Parameter Carbon Steel Rust Layer

Destiny/(kg·m−3) 7860 5200
Thermal conductivity/(W·m−1·K−1) 44.5 4.3

Constant pressure heat capacity/(J·kg−1·K−1) 600 900
Absorption ratio 0.49 0.8

Melting temperature/K 1808 1773
Vaporization temperature/K 3133 2973
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Table 4. Ranges of the main parameters of the laser cleaning platform.

Parameter Value

Wavelength 1064 nm
Pulse width 100 ns

Focused spot diameter 100 µm
Laser power 0–100 W

Repetition frequency 10–100 kHz
Scanning speed 0–8000 mm/s
Cleaning speed 0–1000 mm/min
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2.2. Experimental Design

In the pre-experiment stage, the surface rust layer of the sample was unevenly dis-
tributed, which made it difficult to accurately control the process parameters of single-laser
cleaning and could have easily lead to ablation of oxide residues in some areas. Therefore,
the high-power and low-power double-laser cleaning method was adopted during the
secondary cleaning, and differences in the laser absorption rate of the material were uti-
lized for process refinement [20–22]. The parameters of the second laser cleaning process
significantly affect the quality of the cleaned surface.

To better investigate the effects of the parameters of the secondary laser cleaning
process on the cleaning quality, the parameters were optimized using the RSM according to
the equation of regression between each of the factors and the response values. The RSM is
more effective than other methods in establishing predictive models for inputs and outputs,
is suitable for precise optimization of continuous variables, and offers greater flexibility in
the post-experimental phase. It allows for detailed exploration of nonlinear relationships
and complex interactions among variables. By inputting the independent variables of laser
cleaning process parameters and describing the degrees of correlation between multiple
response values and the input factors, which are measurable, controllable, and continuous
for k independent factors, the response function can be expressed as [23]

y = f (x1, x2, x3, . . . , xk−1, xk).

Its quadratic regression equation is [24–26]

y = b0 + ∑k
i=1 bixi + ∑k

i=1 bijx2
ii + ∑k

i=1 ∑k
j=1 bijxixj + ε.

A three-factor, three-level Box–Behnken design (BBD) was used to design the exper-
imental plan, and the RSM was applied to optimize the parameters of secondary laser
cleaning in the laser cleaning process. The laser power (P), laser cleaning speed (Vx), laser
repetition frequency (f), and laser scanning speed (Vy) were considered as independent
variables for laser cleaning and rust removal. According to the results of previous experi-
ments, the experiment levels were coded using the statistical software Design Expert 13, as
shown in Table 5.

Table 5. BBD experiment factor and level design.

Variable
Code

Low (−1) Medium (0) High (1)

Laser power (W) 30 40 50
Laser cleaning speed Vy (mm/min) 150 200 250
Laser scanning speed Vx (mm/s) 2000 4000 6000
Laser repetition rate f (kHz) 80 100 120

After the cleaning experiment, the surface removal rate (R%) was calculated using
Image-Pro Plus 6 software. The surface morphology of the cleaned sample was observed
using a field-emission scanning electron microscope (SEM, SU8020,Hitachi, Tokyo, Japan)
and the oxygen content (O%) on the surface was analyzed with the attached energy-
dispersive spectrometer (EDS, EX 350i, HORIBA, Paris, France). The maximum detection
depth of the instrument is approximately 1 µm. Additionally, a 3D optical profilometer
(Sensofar S neox 090, Sensofar, Barcelona, Spain) was employed to measure the surface
roughness (Sa). The matrix and results of the experimental design are presented in Table 6,
and the surface morphology images of the samples after cleaning corresponding to the
experimental sequence in Table 6 are shown in Figure 5.
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Table 6. Experimental design matrix and experimental results.

Run P Vy Vx f O% R% Sa

1 40 300 4000 80 7.11 86.04 4.7125
2 50 200 4000 80 11.89 94.89 5.5212
3 40 200 4000 100 5.49 88.49 3.8995
4 40 200 4000 100 4.57 88.64 3.9142
5 50 300 4000 100 10.28 91.45 4.9915
6 40 200 4000 100 4.88 88.75 3.9867
7 40 200 6000 80 6.01 87.58 4.0968
8 30 200 2000 100 8.81 91.47 3.7948
9 50 200 6000 100 10.12 94.38 4.4054

10 30 200 4000 120 11.53 89.06 2.9451
11 40 300 6000 100 8.45 84.31 3.6047
12 50 100 4000 100 16.67 98.95 4.7757
13 30 200 6000 100 9.43 83.56 3.1897
14 40 100 2000 100 11.52 97.03 4.5034
15 50 200 4000 120 10.32 95.82 4.2125
16 40 200 2000 80 7.52 89.85 5.3625
17 40 100 4000 80 12.36 94.42 4.6921
18 40 200 2000 120 8.53 91.86 4.1341
19 40 200 4000 100 4.55 89.56 4.0245
20 40 200 4000 100 5.12 89.56 3.9456
21 30 200 4000 80 8.59 88.15 4.0525
22 40 200 6000 120 7.29 86.95 3.3254
23 40 300 2000 100 9.51 88.26 4.6378
24 50 200 2000 100 10.93 96.02 5.4712
25 40 300 4000 120 9.86 87.02 3.3534
26 30 300 4000 100 13.59 84.21 3.3895
27 40 100 4000 120 10.12 96.69 3.4057
28 30 100 4000 100 11.03 93.57 3.2565
29 40 100 6000 100 10.52 92.82 3.6458

3. Effects of Parameters on Quality Characteristics
3.1. Mathematical Relationships and Analysis of Variance

The quadratic polynomials constructed from the response surface test describing the
functional relationship between the input variables and the response values are as follows:

f (1) = 135.2185 − 1.693x1 − 0.580x2 − 0.0017x3 − 0.6870x4 − 0.004x1x2 − 1.7875 × 10−5x1x3

−0.0056x1x4 − 1.5 × 10−7x2x3 + 0.0012x2x4 + 1.6875 × 10−6x3x4 + 0.04105x2
1

+0.0015x2
2 + 2.5902 × 10−7x2

3 + 0.0034x2
4,

f (2) = 176.1046 − 1.8118x1 − 0.3281x2 − 0.0032x3 − 0.1788x4 + 0.0009x1x2 + 0.0001x1x3

+2.5 × 10−5x1x4 + 6.5 × 10−7x2x3 − 0.0003x2x4 − 1.65 × 10−5x3x4 + 0.0189x2
1

+0.0006x2
2 − 7.114 × 10−8x2

3 + 0.0017x2
4

f (3) = 8.8716 + 0.0099x1 + 0.0028x2 − 0.0005x3 − 0.0795x4 + 4.14 × 10−5x1x2

−5.75875 × 10−6x1x3 − 0.0003x1x4 − 4.3875 × 10−7x2x3 − 1.8175 × 10−5x2x4

+2.8563 × 10−6x3x4 + 0.0013x2
1 − 3.866 × 10−7x2

2 + 3.7352 × 10−8x2
3 + 0.00026x2

4.

Here, f (1) represents the surface oxygen content, f (2) represents the rust layer removal
rate, f (3) represents the surface roughness, x1 represents the laser power, x2 represents the
cleaning speed, x3 represents the scanning speed, and x4 represents the repetition frequency.

Table 7 presents the analysis of variance (ANOVA) results for the three response values.
The p-values for the oxygen content, rust layer removal rate, and surface roughness model
are all <0.0001, the degrees of freedom (F-values) are large, and the values of the misfit
terms are all >0.1, indicating that the selected confidence interval is reasonable and the
model is effective. Correlation coefficients were used in this study to verify the reliability
of the fit; e.g., the correlation squared coefficient was R2 = 0.9723 for the oxygen content
model, indicating that 97.23% of the experimental data can be explained by this model.
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Similarly, both the rust layer removal rate model and the surface roughness model were
shown to be reliable through their correlation coefficients. The signal-to-noise ratios for all
three response values were >4, indicating that the test results were reliable.

Table 7. Response values of the ANOVA.

Variance Source

Response Value

Oxygen Content Removal Rate Roughness

F-Value p-Value F-Value p-Value F-Value p-Value

Model 71.16 <0.0001 96.5 <0.0001 105.78 <0.0001
A 19.09 0.0006 376.23 <0.0001 695.67 <0.0001
B 65.76 <0.0001 673.93 <0.0001 1.53 0.2366
C 9.13 0.0092 114.53 <0.0001 288.66 <0.0001
D 6.35 0.0245 10.38 0.0061 453.14 <0.0001

AB 87.74 <0.0001 2.41 0.1428 0.1869 0.6721
AC 2.24 0.1567 58.53 <0.0001 5.79 0.0305
AD 22.28 0.0003 0.0003 0.9865 1.1 0.311
BC 0.0039 0.9508 0.0503 0.8258 0.8397 0.375
BD 27.28 0.0001 1.24 0.2846 0.1441 0.7099
CD 0.0799 0.7816 5.19 0.039 5.69 0.0317
A2 478.89 <0.0001 68.8 <0.0001 11.71 0.0041
B2 417.69 <0.0001 41.59 <0.0001 0.0007 0.9799
C2 30.51 <0.0001 1.56 0.2317 15.79 0.0014
D2 51.59 <0.0001 8.68 0.0106 7.75 0.0146

Lack of fit 1.64 0.3345 1.34 0.4167 4.42 0.0826
R2 0.9861 0.9897 0.9906

Adjusted R2 0.9723 0.9795 0.9813
Predicted R2 0.9316 0.9508 0.9493

Adeq precision 34.6257 38.7301 38.2623

Residual plots corresponding to the oxygen content, rust layer removal rate, and
surface roughness models are shown in Figure 6. All the points are distributed around
a straight line. Normally distributed probabilities closer to the straight line indicate a
better fit.
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In summary, the developed laser cleaning agent model establishes a close-to-real nonlin-
ear relationship between the two factors with good significance and high prediction accuracy.
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3.2. Effects of Parameters of Laser Cleaning and Rust Removal Process on Surface Quality
3.2.1. Effects of Process Parameters on Oxygen Content

According to the results from “Table 6: Response values of the ANOVA”, factors that
significantly affect the oxygen content on the surface include the following: A, B, C, D,
AB, AD, BD, A2, B2, C2, and D2. Among individual factors, the effects of cleaning speed
and laser power are more significant than the other two parameters. The analysis shows
that the interactions between power, cleaning speed, and repetition frequency, as well as
between cleaning speed and scanning speed, are significant. Figure 7 demonstrates how
these interactions influence the oxygen content. It is observed that in the lower-level range,
the impact of laser power exceeds that of cleaning speed whereas in the higher level range,
the influence of cleaning speed becomes more pronounced. However, merely changing
the laser’s scanning speed and repetition frequency has no significant effect on the surface
oxygen content.

Materials 2024, 17, x FOR PEER REVIEW 10 of 18 
 

 

repetition frequency on the temperature field. Therefore, the effect of the laser repetition 
frequency on the surface oxygen content is insignificant compared with those of the laser 
power and cleaning speed. As shown in Figure 8, the surface oxygen content can be re-
duced by using a combination of the median parameter values of the cleaning speed, laser 
power, and repetition frequency. 

 
Figure 7. The impact of interactions among various factors on oxygen content. 

 
Figure 8. Effects of the cleaning process parameters on the oxygen content: (a) power vs. cleaning 
speed; (b) power vs. repetition frequency; (c) cleaning speed vs. repetition frequency. 

3.2.2. Effects of Process Parameters on Removal Rate 
Combining the response values of the ANOVA from Table 6 with the effects of the 

interactions of various factors shown on the removal rate in Figure 9, it is evident that the 
significant factors influencing the removal rate of the rust layer are A, B, C, D, AC, CD, A2, 
B2, and D2, among which the single factors with the most significant influence are the laser 
cleaning speed and laser power, also the change law of laser power is opposite to that of 
cleaning speed. 

Figure 7. The impact of interactions among various factors on oxygen content.

As can be seen from Figure 8, the elemental oxygen content increases with an increase
or decrease in the cleaning speed, which is explained as follows. Under excessive cleaning
speeds, the temperature field in the thicker area of the surface rust layer does not fully
reach the vaporization point of the rust layer, causing oxidized particles to remain on the
substrate surface after cleaning [27]. When the cleaning speed is too low, there is a sharp
increase in the surface temperature field, resulting in a prominent “ploughing effect” on
the sample surface and ablation of the substrate, which causes the secondary oxidation of
the substrate surface, increasing the surface oxygen content. The laser output energy can
be effectively controlled by adjusting the laser output power and repetition frequency. In
the circumstance of a higher cleaning speed, increasing the laser power can enhance the
cleaning of residual oxidized particles, reducing the surface oxygen content, and when the
cleaning speed is low, excessive power aggravates the substrate ablation. Increasing the
laser repetition frequency reduces the laser energy density and increases the overlap rate of
the laser spot. The two factors affect each other, weakening the effect of the laser repetition
frequency on the temperature field. Therefore, the effect of the laser repetition frequency
on the surface oxygen content is insignificant compared with those of the laser power and
cleaning speed. As shown in Figure 8, the surface oxygen content can be reduced by using
a combination of the median parameter values of the cleaning speed, laser power, and
repetition frequency.
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3.2.2. Effects of Process Parameters on Removal Rate

Combining the response values of the ANOVA from Table 6 with the effects of the
interactions of various factors shown on the removal rate in Figure 9, it is evident that the
significant factors influencing the removal rate of the rust layer are A, B, C, D, AC, CD, A2,
B2, and D2, among which the single factors with the most significant influence are the laser
cleaning speed and laser power, also the change law of laser power is opposite to that of
cleaning speed.
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Figure 9. The impact of interactions among various factors on removal rate.

Figure 10 shows two significant interaction terms of cleaning speed and laser power
and their combined interactions with regard to removal rate. As shown in Figure 10a,
when the laser power increases and the cleaning speed decreases, the rust layer removal
rate increases rapidly, reaching a maximum of 98.95%. This is because when the laser
cleaning speed is reduced, the laser residence time per unit area is increased, implying
that the rust layer absorbs more energy per unit time and vaporizes more material on the
surface layer. Meanwhile, the increase in laser power increases the energy density input
to the sample surface and thus increases the removal rate of the rust layer. In contrast, in
Figure 10b, increases in the laser scanning speed reduce the superposition rate of the spot,
weakening the cumulative thermal effect of the surface temperature field and hindering
the removal of the rust layer. Figure 10c shows the interaction between the laser repetition
frequency and scanning speed. With the combination of a low scanning speed and high
repetition frequency, a high removal rate can be obtained. Therefore, according to the
three-dimensional response surface model, the combination of a low cleaning speed, high
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laser power, low scanning speed, and high repetition frequency results in a high rate of
removal of the rust layer.
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3.2.3. Effects of Process Parameters on Roughness

As shown in Table 7 and Figure 11, the factors that have a significant effect on the sample
surface roughness after the cleaning process are A, C, D, AC, CD, A2, B2, and D2, among
which the most significant single factor is the laser power. The laser power is an important
parameter that determines the total energy of the laser output, and when it increases, the
peak energy density of the laser increases, more energy is received at a single point, and
the ablation becomes deeper, increasing the sample surface roughness. The factor with the
second-most significant effect is the laser repetition frequency. Although increasing the laser
repetition frequency reduces the spot overlap rate of the laser, it increases the output energy
density of the laser. Therefore, as indicated by the interaction between the laser power and
repetition frequency in Figure 12b, the surface roughness increases significantly with an
increase in laser power and a reduction in repetition frequency and the interaction between
the laser power and scanning speed follows a similar pattern. As shown in Figure 12a,
simultaneously increasing the power and reducing the scanning speed strengthens the
“ploughing effect” on the sample surface, which leads to deeper grooves on the substrate
surface, significantly increasing the roughness of the substrate. Regarding the interaction
between the laser repetition frequency and laser scanning speed, as shown in Figure 12c,
when the repetition frequency increases, the effect of the scanning speed on the surface
roughness weakens. In summary, for reducing the surface roughness, the laser power should
be reduced and the scanning speed and repetition frequency should be increased.
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3.3. Optimization of Surface Quality Characteristics after Cleaning Based on NSGA-II

The second-generation non-dominated sorting genetic algorithm (NSGA-II) is an
algorithm for multi-objective optimization problems proposed by Deb et al. [28,29]. It
ensures the diversity and excellence of solutions through rapid non-dominated ordering
and crowding distance computation. In practice, NSGA-II combines binary tournament
selection, crossover, and mutation to generate new populations and employs an elite
strategy to maintain the propagation of superior solutions. It is suitable for finding the
Pareto-optimal solution sets and has been widely used to solve complex multi-objective
optimization problems [30–32]. NSGA-II has several significant advantages over particle
swarm optimization [33,34] and other genetic algorithms [35]. First, it does not compute
the algorithmic fitness function and weights; nor does it need to perform second-order
fitting based on function fitting. Second, it is highly adaptable to complex problems, such as
non-convex and nonlinear problems, and does not require excessive parameter tuning [36].
Thus, it has good performance for multi-objective optimization problems—especially in
maintaining diversity and finding Pareto-optimal solutions.

In the previous study described in Section 3, a mathematical model was developed us-
ing Response Surface Methodology (RSM) to solve a multi-objective optimization problem.
This problem involved process parameters such as laser power, cleaning speed, scanning
speed, and repetition frequency, with the objective variables being oxygen content, removal
rate, and surface roughness. The oxygen content and roughness needed to be minimized,
while the removal rate needed to be maximized. Typically, optimization problems mean
finding the minimum value of a function; therefore, when the minimization of an objective
is required, the straightforward method is to solve for the minimum value. To address the
removal rate function within a unified optimization framework, the problem of objective
maximization is transformed into a minimization problem by prefixing the objective func-
tion of the removal rate with a negative sign, ensuring that all optimization objectives are
efficiently dealt with. Thus, the following functional equation is obtained:

minF(x1, x2, x3, x4) =


minF1(x1, x2, x3, x4)
maxF2(x1, x2, x3, x4)
minF3(x1, x2, x3, x4)

subject to


30 ≤ x1 ≤ 50

150 ≤ x2 ≤ 250
2000 ≤ x3 ≤ 4000

80 ≤ x4 ≤ 120

NSGA-II was used to obtain the Pareto-optimal solution sets, as shown in Figure 13.
The parameters were set as follows: the population size was 250, the number of iterations
was 200, and the crossover ratio was 0.85. The obtained Pareto-optimal solution set
contained 105 groups of solutions. Results from the algorithm indicated that there are
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constraints among the optimal solution set and that the surface removal rate (F3) decreases
when the surface oxygen content (F1) or surface roughness (F2) of the sample decreases.
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On the basis of the actual laser cleaning process and steel surface treatment stan-
dards [37], an evaluation standard for the laser cleaning of Q390 steel rust layers is pro-
posed. After laser cleaning, the substrate surface should exhibit a clear metal luster with
no rust layer residue, the oxygen content should be controlled at ≤10 wt.%, the surface
removal rate should be ≥90% [23], and the laser-cleaned sample surface should be smooth
enough in cases where light spot cleaning marks are permitted to make sure the flowability
of the weld pool reaches the standard during the subsequent welding process, to enhance
the bonding between the weld metal and the base material, and to improve the stress
corrosion cracking resistance of the material [38,39].

According to the aforementioned criteria, there are 28 groups of solutions that meet
the requirements, and the corresponding number of intervals for each variable is shown
in Figure 14. For most of the optimal solutions, the laser power is in the range of
35–45 W. Similarly, for the scanning speed, the optimal solutions are mainly concentrated in
the center segment. When the cleaning speed is low, all the optimal solutions are within the
interval of 150–200 mm/min. Meanwhile, most of the satisfactory repetition frequencies
are concentrated in the interval of 110–120 kHz.
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3.4. Optimization Results and Validation of Surface Quality and Laser Process Parameters

According to the standard requirements of laser cleaning, four groups were randomly
selected from the twenty-eight groups of satisfactory solutions for verification experiments,
and the results are presented in Table 8. The error ranges of all the objective values were
≤5%, the surfaces of the samples exhibited a clear metallic luster, and the oxygen con-
tent was <10%. The No. 1 area was selected to examine its surface morphology, and
the results are shown in Figure 15. The surface rust layer was completely removed and
the surface roughness of the sample was appropriately reduced while allowing cleaning
marks to remain. According to the laser cleaning evaluation method mentioned above,
the rust removal effect was good and the rust removal efficiency was high. The result-
ing optimal parameter set was as follows: a laser power of 44.99 W, cleaning speed of
174.01 mm/min, scanning speed of 3852.03 mm/s, and repetition frequency of 116 kHz.
By comparing its results with the multi-objective optimization results generated using the
Design Expert software (refer to Table A1 in Appendix A), it was found that its accuracy
is significantly higher than the accuracy of the optimization results obtained through the
response surface method.

Table 8. Optimization results and experimental validation.

No P/W Vy/(mm/min) Vx (mm/s) f/kHz
O%

E%
R%

E%
Sa/µm

E%
Pre Act Pre Act Pre Act

1 44.59 174.01 3852.03 116 8.65 8.48 2.01% 94.71 93.85 0.9% 3.9415 3.9039 0.96%
2 33.31 173.29 4691.38 114 8.29 8.41 1.42% 90.05 90.82 0.85% 3.0111 3.1542 4.53%
3 41.42 155.18 3922.68 117 9.71 9.59 1.25% 95.85 93.11 2.94% 3.6094 3.6854 2.06%
4 44.29 177.49 3707.94 99 7.31 7.13 2.52% 92.57 93.77 1.27% 4.2975 4.3512 1.23%
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4. Conclusions

The objective of this study was to explore the optimization strategy of the laser cleaning
process for removing the surface rust layer of Q390 steel through experimental methods.
RSM was applied to design the experiments and build the corresponding statistical models,
and the models were optimized using NSGA-II to accurately predict the surface quality
after laser cleaning. This paper has detailed the experimental design, model construction,
and optimization process. The accuracy of the model predictions was verified through
experiments. The results of the experimental analysis were as follows:
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(1) The relationship between the objective value and the input variables had been effec-
tively represented by the proxy mode based on the response surface, and evaluation
parameters such as the p-value, F-value, and signal-to-noise ratio indicated that the
proxy model was well fitted.

(2) The pattern of the influence of each single factor on the surface cleaning quality after
secondary laser cleaning was analyzed, along with the influence pattern for the inter-
action of laser power, cleaning speed, scanning speed, and repetition frequency. For
the surface oxygen content, the single factors with the most significant influence were
the cleaning speed and laser power, and the median value of each process parameter
could be selected to minimize the oxygen content. Regarding the surface removal rate,
the combination of a low cleaning speed, high laser power, and low scanning speed
resulted in the highest removal rate. The single factor most significantly affecting the
surface roughness was the laser power, and the surface roughness could be reduced
by increasing the scanning speed and repetition frequency.

(3) On the basis of the mathematical model constructed using the response surface,
NSGA-II was employed to find the optimum, from which good objective values were
obtained, and the optimal process parameters were obtained as follows: a laser power
of 44.99 W, cleaning speed of 174.01 mm/min, scanning speed of 3852.03 mm/s, and
repetition frequency of 116 kHz.

In this paper, a new optimization method for laser cleaning parameters of carbon steel
rust layers has been proposed, and the influence of parameters on the target value has been
studied, which has provided effective support for practical production applications. It is
hoped that a comprehensive reference framework for laser cleaning process parameters of
carbon steel will be constructed on this basis to guide and improve the cleaning process
in industrial applications. Next, attempts will be made to further optimize the NSGA-
II algorithm and to integrate it with the BP genetic algorithm in order to analyze the
optimization effects of laser cleaning process parameters.
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Appendix A

Appendix A.1 Computational Formul

Laser fluence [23,40]:

F0 =
4P

πd2 f

Laser energy density refers to the energy distributed by a laser beam over a unit area.
It is calculated by dividing the total energy of the laser beam by the area it irradiates.

Laser spot overlap rate [23,40]:

η =

(
1 − v

f ·d

)
× 100%
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In laser processing, the overlap ratio of laser spots refers to the degree of mutual
overlap of successive laser spots on the surface of the workpiece.

In the formula, P represents the average laser power; d denotes the focused diameter
of the laser spot (mm), f indicates the pulse repetition frequency (Hz), and v represents the
scanning speed (mm/s).

Appendix A.2 Response Surface Multi-Objective Optimization Results

Parameter settings were conducted in Design Expert software, setting the weights for
the oxidation amount and removal rate at 5, and the weight for roughness at 4, for optimiza-
tion. Three sets of parameters were randomly selected from the results for experimental
verification. The parameter sets and verification results are shown in Table A1 below.

Table A1. Multi-objective solution set based on Design Expert.

No P/W Vy/(mm/min) Vx (mm/s) f/kHz
O%

E%
R%

E%
Sa/µm

E%
Pre Act Pre Act Pre Act

1 37.168 162.73 3354.06 120 8.841 9.294 4.8% 94.81 90.12 5.23% 3.390 3.7812 10.34%
2 44.845 183.442 4834.93 120 8.027 9.812 18.1% 93.30 91.56 1.90% 3.681 3.8754 5.01%
3 37.232 163.63 3311.70 119 8.766 8.156 7.47% 94.75 89.22 6.19% 3.402 3.7185 8.51%
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