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Abstract: Shape Memory Alloys (SMAs) are used to design actuators, which are one of the most
fascinating applications of SMA. Usually, they are on-off actuators because, in the case of continuous
actuators, the nonlinearity of their characteristics is the problem. The main problem, especially in
control systems in these actuators, is a hysteretic loop. There are many models of hysteresis, but
from a control theory point of view, they are not helpful. This study used an artificial neural network
(ANN) to model the SMA actuator hysteresis. The ANN structure and training method are presented
in the paper. Data were generated from the Preisach model for training. This approach allowed for
quick and controllable data generation, making experiments thoroughly planned and repeatable. The
advantage and disadvantage of this approach is the lack of disturbances. The paper’s main goal is
to model an SMA actuator. Additionally, it explores whether and how an ANN can describe and
model the hysteresis loop. A literature review shows that ANNs are used to model hysteresis, but to
a limited extent; this means that the hysteresis loop was modelled with a hysteretic element.

Keywords: hysteresis model; neural network; SMA; Preisach model; LSTM

1. Introduction

Shape Memory Alloys (SMAs) are a member of the smart materials group. They
are unique materials that have the ability to return to a remembered shape due to phase
transformation when we add energy to a system, e.g., heat. In SMAs, we can distinguish
the one-way shape memory effect, two-way shape memory effect and superelasticity; in
some alloys, we can observe rubberlike behaviour. SMAs are fascinating materials that
have many applications across industries due to their unique abilities. They are used to
build biomedical devices such as stents and occluders in cardiology, orthodontic wires and
braces in orthodontics, clamps and spacers in orthopaedics, etc. Apart from this, SMAs are
also used in minimally invasive surgical tools, such as catheters and guidewires, where
their ability to change shape with temperature enables precise control and manoeuvrability
within the body.

SMAs are employed in eyeglass frames, allowing them to return to their original shape
even after being bent or twisted. In the textile industry, SMAs are used in smart fabrics
for applications such as self-tying shoelaces, shape-changing garments, and adjustable
tightness in clothing. In aerospace and defence, SMAs are used in applications requiring
lightweight and reliable actuation systems, such as adaptive wing structures, deployable
antennae, and morphing structures for aerodynamic control. In automotive engineering,
SMAs are used in various applications, including actuators for active aerodynamics, smart
materials for vibration damping, and shape memory alloy springs for active suspension
systems. They are used in seismic dampers for buildings and bridges to absorb and
dissipate energy during earthquakes, thus enhancing structural resilience and safety. In
consumer electronics, SMAs are used in mobile phone antennas and as various types of
springs for energy storage or as miscellaneous actuators. They can produce large strains
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and forces in response to small temperature changes, making them suitable for precise
control in applications such as valves, micropositioning systems, and robotics.

This last application is the most interesting from this article’s point of view. SMAs,
besides unique, beneficial phenomena, unfortunately have disadvantages. The most awk-
ward is hysteresis, which causes many problems in control systems, especially in actuators
that control position. A suitable mathematical hysteresis model could solve the problem.
There are many works about modelling hysteresis in SMA, but generally, it is not easy to
describe because this phenomenon in SMA depends on many factors. To solve this problem,
many types of models have been created. There are various models that represent SMAs
from different perspectives, such as macroscopic, mesoscopic, or microscopic. The choice
of the appropriate model depends on the analysis we want to perform.

Numerous studies have been conducted on the subject of SMA modelling, with Khan-
delwal and Buravalla delving into various models in their publication [1]. Specifically, they
examine models presented by Birman [2], Paiva and Savi [3], Smith [4], and Lagoudas [5].
Their analysis focuses on continuum models in particular. Khandelwal and Buravalla
have identified a specific subset of input–output black box models that are particularly
valuable for macroscopic modelling of SMA phenomena. These models are highly effective
for control systems and are commonly used to describe hysteresis. The most popular
models of this kind include the Preisach [6–8] and Duhem–Madelung models [4], but
they have disadvantages that could be solved by the ANN model. Thus, recently, another
model of this type emerged, incorporating an ANN. In their research, Parastoo Vahdati
Yektaa et al. tackled the challenge of modelling SMAs using ANN [6]. They utilised ANN
and genetic algorithms to predict a permalloy’s magnetic properties and hysteresis loop
based on inputs such as sample thickness, annealing temperature, holding time, and field
strength. Dang X. and Tan Y. explored modelling hysteresis with ANN in their work [7].
They combined the Preisach model with a diagonal recurrent ANN to model dynamic
hysteresis. Additionally, these authors used radial basis function ANNs to model hysteresis
in a piezoceramic actuator [8]. In [9], Sixdenier et al. used a feed-forward ANN to model
scalar hysteresis in a rate-independent manner. Li Y. et al. employed a back propagation
ANN to combine Jiles–Atherton and Preisach models for hysteresis modelling. Similarly,
Nguyen Trong Tai et al. utilised a functional link ANN with a hysteresis operator to model
an SMA actuator in [10], an analogical solution one can find in [11]. In [12], the authors used
a relatively small ANN for the rate-dependent model of hysteresis. However, the above
papers present various models that combine ANN with a model of hysteresis formulated
in other ways, as we see in [13,14].

So, the article’s main goal is to adopt only an ANN for hysteresis modelling. This
article presents a neural model that effectively describes the SMA actuator, focusing on
addressing the complex hysteresis loop.

2. Materials and Methods

This article discusses the topic of SMA modelling using a neural network. It was
assumed that the modelled object is an SMA actuator whose input is temperature and
output is displacement; no other signals are considered in this model. The actuator is
understood as an executive element that generates displacement under the influence of the
supplied thermal energy. This actuator uses the one-way shape memory effect. It performs
useful movement under the influence of the supplied thermal energy, while the return
movement is carried out using dead mass. This highly simplified model aims to check
the possibility of modelling the SMA actuator using a neural network without the classic
hysteron model. As shown in the literature review, existing models of neural SMA do
not model hysteresis itself. In neural models, elementary hysteresis models are used to
model hysteresis.

This article used an LSTM network to model the SMA actuator, which was trained
using data obtained from the Preisach model. Various data sources can be used to train
the network. Since this article only deals with checking the method, a fully controllable
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data source was chosen. Thanks to this, you can test the method using different signals in
training and testing in a quick and cheap way.

This article presents a solution that employs long short-term memory (LSTM) [15], a
recurrent ANN type. LSTM is particularly suitable for describing hysteresis loops, given its
capacity to memorise sequences. Additionally, LSTM, as described by Equation (1), can
retain its state between predictions, making it a valuable tool for time series analysis, even
when the complete time series is unavailable or when long-term predictions are required.
As described in [15], LSTM is described below:

ft = σg

(
W f xt + U f ht−1 + b f

)
it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)
∼
c t = σc(Wcxt + Ucht−1 + bc)

ct = ft
⊙

ct−1 + it
⊙ ∼

c t
ht = ot

⊙
σt(ct)

(1)

where:
ft forget gate’s activation vector;
it input gate’s activation vector;
ot output gate’s activation vector;
∼
c t cell input activation vector;
ct cell state vector;
ht hidden state vector;
xt input vector to ANN;
σg sigmoid function;
σc hyperbolic tangent function;
b∗ bias vector subscript * means the same as above;

W∗, U∗
weight matrices of input and connections, respectively, subscript * means input
gate i, output gate o, forget gate f, memory cell c;

⊙ denotes the Hadamard product.

An ANN with the structure shown below consists of a course input layer with sequence
data inputs and an output layer. Between these two layers, there are one or more LSTM
layers with a number of hidden units, a fully connected layer and a regression layer as
a single-output layer. During experiments, there are changed numbers of LSTM layers,
hidden units, and training epochs. The network was trained based on data from the discrete
Preisach hysteresis model. A number of hidden units in the LSTM layer were changed
during each experiment.

The ANN was trained using data obtained from the Preisach model. This was because
the data from the mathematical model are always fully controllable, and data are repeatable.
We can easily prepare data sets exactly as we want. Since this article focuses on testing the
possibility of training ANN hysteresis, the data source was not significant.

Preisach model of hysteresis is the result of an infinite number of elementary hysteresis
operators named hysterons, shown in Figure 1. Each hysteron functions like a relay that
switches on when the input signal u(t) reaches the value α from left side as it follows the
abcde curve in Figure 1, so in case u(t) ≥ α, γ̌αβ(u(t)) = +1. Conversely, the hysteron
switches off, and the hysteresis operator takes the value γ̌αβ(u(t)) = −1, when the input u(t)
decreases along the edfba curve (u(t) ≤ β). The hysteron is defined by two independent
parameters, α and β, and it satisfies the condition α ≥ β.
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The Preisach hysteresis model is formulated below.

f (t) =
x

α≥β

µ(α,β)γ̌αβ(u(t))dαdβ (2)

where:
µ(α, β) weight function;
u(t) input signal;
γ̌αβ hysteron.

To obtain data for training and testing, the Preisach model was excited by sine and tri-
angle waves with various amplitudes; for each amplitude, multiple periods per amplitude
were prepared. During each experiment, the data used to train ANN were the same. The
data used to testify and to train networks were prepared separately. The model’s response,
as well as the excitation signal, were used as data to train the network. Separate data were
generated to test the network at other amplitudes.

The Preisach model was used to obtain data for training and testing. A test data
set consisting of 4 sequences of numbers generated as time sequences of various signals
was prepared. Each of them contained 13 different amplitudes, thanks to which the
temperatures varied from 0 ◦C to 40 ◦C, 45 ◦C, 55 ◦C, 60 ◦C, 62 ◦C, 64 ◦C, 66 ◦C, 68 ◦C,
70 ◦C, 72 ◦C, 74 ◦C, 78 ◦C, and 81 ◦C. This non-linear distribution was created to best match
these waveforms to the modelled hysteresis, the loop of which is in the range of 38–78 ◦C.
These sequences were organized in such a way that two of them were series of triangular
waveforms with amplitudes varying as indicated above, with the second of the series
having a frequency ten times lower. The next two excitation waveforms were sinusoidal
and were organized similarly; the second in the series had a ten times lower frequency.
With this signal, the Preisach model was activated. The results obtained from the Preisach
model were compared with the test signal (described above), which constituted the training
signal. The length of this training signal was 15,736 points. During each experiment, the
data used to train ANN were the same.

The data used to testify trained networks were prepared separately. The test signal
was organized in the same way as the training signal, but it was shortened to two triangular
waveforms with amplitudes such that the temperature varied from 0 ◦C to 58 ◦C, 61 ◦C,
65 ◦C, 67 ◦C, 71 ◦C, 75 ◦C, and 77 ◦C.

The data obtained from the Preisach model were used to train and test a network with
the structure mentioned earlier. During testing, the number of hidden units in the LSTM
layer was modified, along with the number of learning epochs. After training the network,
it was tested with a previously prepared test signal, and the results were presented in
the form of charts, which showed the relationship between the shortening of the SMA
wire and its temperature. The SMA wire was the actuator tested, and the input was the
temperature in Celsius degrees. The percentage shortening of the SMA wire was given in
numerical form.

The motivation for conducting this research was a desire to answer the following
questions: is it possible to model hysteresis with only ANN without a hysteretic element?
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What number of hidden units should we use to obtain an exact model, and what should
the structure of ANN be? A number of tests were conducted to answer these questions.
The chosen results are shown in this article.

At the beginning, a series of tests aimed to determine the number of training epochs.
To achieve this, the same dataset was used to train a network with varying numbers
of hidden units and training epochs while keeping all other parameters the same. The
training sets and test signals also remained unchanged. The experiment was conducted
for the following numbers of hidden units: 10, 50, 100, 300, 500, 1000 and 100, 200, 300,
500, 1000 epochs. All results were obtained under the same conditions. After analysing
the results of these experiments, 1000 training epochs were chosen. Next, experiments
were prepared and conducted with different numbers of LSTM layers. The structure of
the network is shown below. As one can see, it consists of an input layer, one or more
LSTM layers, a fully connected layer and an output layer. The number of LSTM layers was
changed between each series of experiments. Four series of experiments were conducted
with one, two, three, and five LSTM layers.

Networklayers = [sequenceInputLayer(featureDimension) . . . Input layer
lstmLayer(numHiddenUnits,”OutputMode”,”sequence”) . . . 1st LSTM layer
lstmLayer(numHiddenUnits,”OutputMode”,”sequence”) . . . 2nd LSTM layer
lstmLayer(numHiddenUnits,”OutputMode”,”sequence”) . . . 3rd LSTM layer
lstmLayer(numHiddenUnits,”OutputMode”,”sequence”) . . . 4th LSTM layer
lstmLayer(numHiddenUnits) . . . 5th LSTM layer
fullyConnectedLayer(numResponses) . . . fully connected layer
regressionLayer]; Output layer

Other parameters of the training environment are shown below.
solverName = ‘adam’;
options = trainingOptions(solverName, . . .
‘MaxEpochs’, maxEpochs, . . .
‘MiniBatchSize’, miniBatchSize, . . .
‘GradientThreshold’, 10, . . .
‘Plots’,‘training-progress’, . . .
‘ExecutionEnvironment’, ‘gpu’, . . .
‘TrainRateDropPeriod’, 100, . . .
‘Verbose’,0);

3. Results

The figures below provide a summary of data obtained from a number series of tests
for ANN with 1, 2, 3, 5 LSTM layers. The results of the experiments are displayed in
Figures 2–13. The results are chosen to show the behaviour of ANN and to show how
structure influences results. The results are organised in such a manner as to make the
analysis of them easier. Figures are sorted from the simplest structure of ANN to the most
complicated. Each series conducted tests with different numbers of hidden units. In each
series, hidden units were set to 10, 50, 100, 300, 500, and 1000. In each series of tests, a
number of hidden units were changed in the same manner. For the purity of the tests,
no other parameters of the ANN itself were changed, and no training parameters were
changed. The results of the tests for each series of tests are shown below. In Figures 2–4,
ANN has only one LSTM layer; in Figures 5–7, ANN has two LSTM layers, while in
Figures 8–10, ANN has three LSTM layers, and at the end, in Figures 11–13, ANN has five
LSTM layers.
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Each figure shows the reference response obtained from the Preisach model drawn
with a solid black line and the response of the trained ANN drawn with a solid red line.
Each of the figures includes basic information about a number of hidden units and a number
of training epochs. The arrows show the branches responding to increasing (up arrow) and
decreasing (down arrow) input signals. The response is a relative displacement understood
as the percentage shortening of the SMA length of the wire in response to a change in
wire temperature.

Figures 2–4 show the test signal responses of an ANN containing one LSTM layer. As
we can see, the answers differ significantly from the pattern. In fact, it should be said that
this model does not describe the hysteresis of the SMA wire. Although the model differs
qualitatively nor quantitatively from the model, it can be seen that a hysteresis loop exists
and that it responds to a change in the amplitude of the forcing signal.

In turn, Figures 5–7 show the responses to the test signal of an ANN containing two
LSTM layers. As we can see, the responses of this network describe the hysteresis of the
SMA wire much better. For a network composed of two LSTM layers containing 500 and
1000 hidden units, the network responses are satisfactory in the main part. Even for small
temperature values, the model has large errors. If we use a model built and trained in this
way, we can obtain satisfactory answers for temperatures around the actuator operating
range. This model could be sufficient in many cases.

Figures 8–10 show the test signal responses of an ANN containing three LSTM layers.
In this case, the responses shown in Figures 9b and 10 are almost perfect in the actuator’s
operating range, i.e., in the temperature range from 20 ◦C to 80 ◦C, but the model is incorrect
for lower temperatures.

The final test series shown in Figures 11–13 shows the responses to the test signal of an
ANN containing five LSTM layers. In this case, the responses shown in Figures 12 and 13
are proper over the entire range, although not perfect like in Figures 9b and 10 with the
operating range narrowed to temperatures from the range of 20 ◦C to 80 ◦C. In this case,
the responses of the network containing 10 and 50 hidden units are wrong.

To sum up, it is possible to find an ANN with such a number of LSTM layers and
hidden units that the hysteresis of the SMA actuator is described in the same way as the
Preisach model. However, when using ANN, we can expect that it will also describe
various types of artefacts observed in the characteristics of real SMA actuators obtained
in a laboratory. What the Preisach model cannot take into account, ANN can learn. The
selection of the ANN structure and parameters will be time-consuming, but such a model
may be more perfect than the currently used hysteresis models.

4. Conclusions

In this paper, an ANN was utilised to model an SMA actuator, with the addition of an
actuator exhibiting hysteresis. A literature analysis revealed that while there are existing
neural models for hysteresis objects, the hysteresis loop itself has not yet been modelled
using ANN but by other mathematical models of elementary hysteresis. Thus, the main
goal of the article was to capture the hysteresis phenomenon using ANN, and the results
demonstrated that the LSTM network is effective in doing so. The second goal of the article
was to find how to design the ANN. It is worth knowing how to design an ANN, and what
structure and what parameters to use to obtain fully satisfactory results. So, the results
for four different structures of ANN and for different numbers of hidden units are shown
in the article. The results show the way in which we can find the optimal structure and
parameters of ANN. This article does not answer what optimal ANNs are, but it shows
where the solution is lying and what the possibilities are. To answer what the structure and
parameters of ANN should be, we need to answer a few questions, e.g., what precision we
need, whether we need to describe specific artefacts or not, what time of calculations is
satisfactory, etc.

We see that we can find an optimal ANN. Now, the more interesting question is if the
ANN could change to describe changes in SMA features, and if it can, what limitations and
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risks are hidden in the adaptation mechanism and how can we design an ANN to ensure
the potentiality of the network to satisfy the needs of the adaptation mechanism.
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