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Abstract: Using waste materials as replacements for sand in building materials helps reduce waste
and improve the properties and sustainability of the construction materials. Authors proved the
possibility of using imperial smelting furnace (ISF) slag granules as a 100% substitute for natural sand
in self-compacting (SCC) cement-based mortars of calcium sulfoaluminates (CSA). The study proved
that ISF slag’s radioactive properties meet this area’s requirements. CSA cement eliminates the noted
problem in the case of concrete with Portland cement, which is the extended setting of the cement
binder. The research findings indicate that using slag to replace sand up to 100% in mortars without
grains smaller than 0.125 mm allows high flowability, compaction, low porosity and mechanical
parameters. The compressive strength of the CSA cement mortars was about 110 MPa, and more
than 140 MPa for geopolymer mortar. Unfortunately, the alkaline pH of a geopolymer causes high
leachability of barium and sodium. Thus, the CSA cement is in a more favourable binder to achieve
high strength, is environmentally friendly, and is a self-compacting mortar or concrete.

Keywords: ISF slag; CSA cement; geopolymer; immobilisation; leachability

1. Introduction

Despite its widespread availability, natural sand faces various resource-related issues
that may impact its long-term viability as a raw material [1–5]. In developed economies
with high ecological awareness, alternative aggregates produce a significant portion of
total aggregate production. This is illustrated in Figure 1; the following years brought
an increasing use of recycled aggregates in concrete. In 2022 (Figure 1a), countries like
Great Britain (with 68 million tons) and the Netherlands (with 18 million tons) produce
around 25% of their total aggregate production as alternative aggregates. Other countries
like Belgium (16 million tons), Germany (the largest producer with nearly 100 million tons),
and Denmark (8 million tons) also have a share of over 15% of total production. However,
alternative aggregates produce only about 3.5% of the total aggregate output in Poland. On
average, the share of artificial aggregates for EU-27 countries is almost 9% [6].

Using alternative aggregates aligns with waste management’s primary goals and
principles [6]. These goals include reducing waste volume and environmental impact
and recovering through environmental protection principles [7,8]. Additionally, it aids
in protecting natural aggregate deposits. “Alternative aggregates” describe these raw
materials’ origins and roles.
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Imperial smelting furnace (ISF) slag was identified as a promising material for concrete
production [9–11]. Research proved that adequate ISF slag can be used as an aggregate or
cement production additive to improve its mechanical properties [9,12]. Research results
show that ISF slag can be used to improve the resistance of concrete. ISF slag enhances
the resistance of cementitious materials to corrosion caused by carbonation. Due to the
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heterogeneity of the shape of slag particles, the porosity decreases, and the alkalinity of the
cement matrix increases, which slows down the diffusion of carbon dioxide into concrete.
Nevertheless, from the resistance and mechanical parameters, from a concrete point of
view, the proportion of ISF slag to natural aggregate is essential. The potential corrosion
rate tests have shown that the best protective properties are found in mixtures where
the sand was replaced with ISF slag at up to 10%. The disadvantage is that the mixtures
showed reduced abrasion resistance when ISF slag was used as fine aggregate, even at
10% utilization. With this application, mining and environmental problems related to ISF
storage can be effectively solved, thus making the zinc industry more sustainable [12]. The
best properties protecting against the penetration of chloride ions are demonstrated by
concrete made using ISF slag as a sand substitute in amounts up to 25%. The moderate
replacement of sand with ISF slag limited to 25% effectively inhibits corrosion processes in
these concretes [13,14]. However, their effect on cement binding is challenging to use on
a larger scale [9,13,15]. It can be concluded that ISF slag is a safe replacement for 50% of
fine aggregate in producing durable concrete with sufficient mechanical properties. This
type of concrete is resistant to corrosion and acids when the slag content is up to 50%.
Based on a comparison of research results presented by the publication [16], ISF slag can
also replace around 50% of conventionally used fine aggregate in concrete production.
Such concrete is also resistant to corrosion and acid. However, the durability parameters
of the concrete mixes are reduced with 60% utilisation of ISF. The abrasion resistance
of the slag-concrete mixtures decreases slightly when ISF slag is used in amounts up to
50%. The water absorption of the slag-concrete mixtures decreases as sand is replaced
with slag. However, the porosity of the concrete mixtures remains mostly the same after
sand is replaced with ISF slag. With 60% use of ISF, the strength parameters of concrete
mixtures with Portland cement are reduced. However, properties like flexural strength and
pull-off strength remain within acceptable limits. Due to the rough texture of ISF particles,
the interfacial transitional zone (ITZ) formed between ISF slag and cement particles is
denser, reducing water absorption by 20–25% in mixes with 60% ISF slag. Moreover, heavy
metals in ISF slag are effectively bound in the cement matrix, preventing heavy metal
contamination of the environment [15]. Nonetheless, mixes showed reduced resistance to
abrasion when ISF slag is used as fine aggregate, even at 10% utilisation.

Unfortunately, as was proved in the cited above research, the addition of waste slag,
like ISF slag, which contains heavy metals [17–20], significantly delays the setting of mortars
and concretes with Portland cement [13,15], which can be avoided if the slag particles are
coarser than 0.3 mm. This is the most critical, unsolved problem in producing mortar or
concrete with a large volume of ISF slag. The authors propose a new proposition for using
ISF slag as an aggregate. Instead of Portland cement, the quick-setting cement, aluminium
sulphate cement (CSA), is proposed. The use of CSA cement in producing mortar or
concrete allows for short setting time (<30 min with natural aggregate) and very high early
strength, with up to 25 MPa achieved after just 6.5 h of solidification. Composites made
using CSA cement are highly durable, with frost resistance comparable to those made with
Portland cement. They also exhibit low chloride permeability and limited carbonation.
CSA concrete also offers high freeze resistance, exceeding 200 cycles, due to its tightness,
preventing permeability under a pressure of 30 kg/cm2. This makes CSA concrete resistant
to contact with magnesium and sodium chloride salts. CSA concrete is not resistant to
acids and high temperatures exceeding 150 ◦C.

The mortars were designed to be self-compacting, so they did not need mechanical
compaction to reduce production costs and CO2 emissions associated with SCC. The authors
designed the cement and geopolymer mortars up to the content of 100% replacement of
sand by ISF slag, but before use, the slag was adequately prepared. The mortars were
compared due to flowability, the waste aggregate test’s radioactivity, the cement’s porosity
and a geopolymer self-compacting mortars, and mechanical properties were investigated.

Nevertheless, the key objective of the research program was to estimate the impact of
the cement or geopolymer mortars with ISF slag on the natural environment. The research
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analysis focuses on the effect of slag on the strength of self-compacting cement mortars
with CSA cement and geopolymer self-compacting mortars with increased stability and
their impact on the natural environment. The research results [17,21–24] also suggest that
geopolymerization is beneficial for utilizing ISF slag. The authors critically verified the
possibility of using ISF slag in the geopolymer matrix.

2. Materials and Methods
2.1. Properties of ISF Slag

ISF slag has various potential applications as concrete aggregate, but unfortunately,
the effects depend on its chemical composition and physical properties. Analyzed ISF
slag comes from Polish Zinc Smelter (Świętochłowice, Poland), which annually produces
around 30 thousand tons of ISF slag. However, introducing ISF slag into concrete can be a
valuable way to recycle and reduce waste, but this must be conducted with care to prevent
the introduction of any harmful ingredients that could potentially harm the quality of the
mortar or concrete, as well as the environment [3,12,25].

ISF slag is waste material with code 10 05 01—waste from zinc metallurgy. 10 05 01.
Slags from primary production and secondary (except 10 05 80) 17 01 06 are considered
heterogeneous substances [11,26,27]. Imperial smelting furnace (ISF) slag is one among
many other materials that, when dumped as such, can cause severe environmental damage
due to the presence of heavy metals in it [9,15–28].

In the first stage of the research, the chemical composition of the slag and its natural
radioactivity acc. the ITB Instruction guidelines [29] were investigated. Raw materials used
for feeding, such as Zn-Pb concentrates, contain several accompanying elements besides
the main ones, such as Fe, Cu, Cd, Hg, As, Sb, Bi, and Tl [26,30–33]. These concentrates are
produced from recast furnaces, fluxes, and returnable materials. Zinc is separated from
lead and slag by melting the charge at temperatures between 1300 ◦C and 1350 ◦C, known
as the reduction and distillation process. The hot slag is then immediately water granulated.
However, the speciation of zinc, lead, copper, and arsenic in the slag controls its recovery
or fate in the environment, and this has not been thoroughly investigated in the literature.
X-ray Absorption Spectroscopy (XAS) was used for the first time on this complex, poorly
crystalline material to better understand the speciation of elements at low concentrations.
Zn, Cu, As K-edge and Pb L3-edge XAS were carried out for a Pb/Zn slag from a closed
ISF facility in England, supported by Fe, S, and P K-edge XAS. The results are presented in
the context of a complete literature review. X-ray fluorescence showed that concentrations
of Zn, Pb, Cu, and As were 8.4%, 1.6%, 0.48%, and 0.45%, respectively. XAS provided a
complete understanding of the matrix, although Wüstite (FeO) was the only crystalline
phase identified by X-ray diffraction. Zn was found to be mainly present in glass, ZnS,
and possibly solid solutions with Fe oxides; Pb was primarily present in glass and apatite
minerals (e.g., Pb5(PO4)3OH); Cu was mainly speciated as Cu2S, with some metallic Cu
and a weathering product, Cu(OH)2; As speciation was likely dominated by arsenic (III)
and (V) oxides and sulphides.

Fortunately, the granulated ISF slag contains various chemical and mineral compo-
nents that are melted and consolidated to form a glaze (Figure 2). This glaze binds and
scatters heavy metals, primarily zinc and lead, in the slag (as depicted in Figure 3). On the
other hand, iron is chemically bound to calcium in the form of amorphous iron-calcium
silicates. Due to its chemical composition, the ISF slag granulate has a bulk density of
3.8 kg/dm3. Based on the analyses performed, the chemical composition of the slag and
the share of individual compounds were determined (Table 1). Table 2 contains the results
of determining the pH of the slag.

As research results in Table 3 indicated, the aluminium content percentage of Al2O3,
MgO, and SO3 does not meet the guidelines set at 12% or less. Based on the calculated
value of the modulus M = 4.50, the tested slag can be classified as an aggregate of the
silicon-aluminium-ferrous variety. Table 3 lists the compounds’ content leached from the
EC Zabrze and ISF slag.
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Table 1. Chemical composition of ISF slag.

No. Component Amount, [%]

1. SiO2 24.4
2. Al2O3 15.3
3. CaO 17.6
4. MgO 6.4
5. Fe2O3 27.9
6. Zn 5.8
7. Pb 4.7 ± 1.3
8. Weight gain from 430 to 1000 ◦C 4.2%

Table 2. Results of pH slag ISF measurements.

No. Component
Value of pH

T [◦C]
pH Meter Test Paper

1. ISF slag 9.7 9.0 19.9
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Table 3. The results of the tests on the leachability of harmful substances and heavy metals from slag
ISF are expressed in mg/L.

Parameter Symbol ISF Slag Highest Permissible Value [34]

pH pH 7.9 6.0–9.0
Hexavalent
chromium Cr6+ blq * 0.1

Chromates Cr3+ blq * 0.1
Cobalt Co blq * 1
Lead Pb 0.28 0.5

Nickel Ni 0.27 0.5
Zinc Zn 0.27 2

Copper Cu 0.07 0.5
Cadmium Cd 0.02 nr **
Sulphate SO4

2− 68.91 500
Chloride Cl− 69.12 1000
Fluoride F 0.29 25

Phosphorus P 0.07 2
Potassium K 3.72 80

Sodium Na 23.8 800
Barium Ba 0.39 2

Iron Fe 0.14 10
Manganese Mn 0.005 nr **

* blq—values below the limit of quantification, ** nr—no requirements.

The granulometric composition of the slag using the PN-EN 933-1:2012 method [35].
The ISF slag was used as a 100% substitute for natural sand in self-compacting cement mor-
tar and a geopolymer, but before use, the slag was thoroughly rinsed and then dried. The
minor gains (smaller than 0.125 mm) of the ISF slag were eliminated to obtain high-strength
mortar. Figure 3 provides a view of the slag grains and the granulometric composition acc.
to EN 933-1:2012 [36].

That is important also, as per construction standards, all aggregates utilized for
concrete and earthworks must conform to the guidelines specified in ITB Instruction №
234 [29] regarding the concentration of radioactive elements. The presence of natural
radioactive isotopes, such as potassium K-40, radium Ra-226, and thorium Th-228, in the
raw materials and building materials intended for human or animal habitation, as well as
in industrial waste used for construction, are assessed using two activity indexes. These
indexes are (a) activity index f1, which measures the content of natural radioactive isotopes,
and (b) activity index f2, which measures the content of radium Ra-226. According to Polish
legal regulations [30], which comply with the rules of the European Union (Regulation of
the Council of Ministers of 2 January 2007) [35,36], the activity indicators are subject to two
limitations: the values of activity indicators f1 and f2 cannot exceed the value more than
20% [30,35].

The following information pertains to the levels of radioactivity in various types of
materials used in construction for human or livestock habitation, as well as levelling of
areas for development [37]:

• For raw and construction materials, f1 = 1.0 and f2 = 200 Bq/kg.
• For industrial waste used in above-ground construction facilities in urban areas or for

development in the local plan, f1 = 2.0 and f2 = 400 Bq/kg.
• For industrial waste used in above-ground parts of construction facilities outside of

urban areas or for levelling undeveloped areas, f1 = 3.5 and f2 = 1000 Bq/kg.
• For industrial waste used in underground construction facilities and structures, in-

cluding tunnels, but not mine workings, f1 = 7.0 and f2 = 2000 Bq/kg.

When industrial waste is used for levelling or construction of roads, sports and
recreational facilities by the above values, the dose rate absorbed at a height of 1.00 m must
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be reduced to a value not exceeding 0.3 micrograms per hour (µGy/h) above the surface of
the land, road, or object by adding layer of alternate material [35].

The formula for determining the radioactive concentration index of radioactive isotopes
of potassium K-40, radium Ra-226 and thorium Th-232 (index I) is given by Formula (1):

I =
CK−40

3000[Bq/kg]
+

CRa−226

300[Bq/kg]
+

CTh−232
200[Bq/kg]

≤ 1 (1)

where:
CK-40, CRa-226 and CTh-232—mean the radioactive concentrations of potassium iso-

topes K-40, radium Ra-226 and thorium Th-232, respectively, expressed in becquerels per
kilogram (Bq/kg).

The results of the natural radioactivity test presented in Tables 4 and 5 prove that
the slag meets the requirements mentioned above. A higher specific weight characterizes
concrete produced based on ISF slag than concrete containing only sand. This makes it
suitable for producing acoustic screens and heavy concrete. Concretes containing slag
have higher gamma absorption than regular concrete. The results [38–40] proved that ISF
slag can improve the durability and radiological properties of mortar and concrete mixes
even for higher replacements and durability properties of SCC mixes for replacements
up to 25%.

Table 4. Natural radioactivity of ISF slag.

Material
Radioisotope Concentrations [Bq/kg] Radioactive Concentration

Index of Radioisotopes

CK-40 CRa-226 CTh-232 I [-]

ISF slag 266 ± 51 69 ± 12 31 ± 5 0.47 ± 0.08

Table 5. Natural radioactivity slag ISF.

Material Maximum Radionuclide Concentrations [Bq/kg] Activity Indicators

Parameter K-40 Ra-226 Th-232 f1 max [-] f2 max [Bq/kg]
ISF slag 225.81 147.99 27.29 0.705 147.99

2.2. Materials and Methodology Preparation of Cement Mortar

In Table 6, the chemical composition of CSA cement is shown. CSA cement is a
mineral hydraulic binder known for its low shrinkage, early strength, and sulphate resis-
tance. The primary components of CSA cement are calcium sulfate aluminate anhydride
(4CaO·3Al2O3·SO4), which is responsible for the early increase in strength, dicalcium sili-
cate (delete) (2CaO·SiO2), which provides significant strength to the concrete after 28 days,
and gISF (CaSO4·2H2O). CSA cements are fired at a temperature of 1250 ◦C, which signifi-
cantly reduces energy consumption during production. The obtained CSA clinker is softer
than Portland cement clinker and requires less grinding energy. Ettringite formation takes
place during the hardening process according to simplified Formula (2):

(4CaO·3Al2O3·SO4) + 8(CaSO4·2H2O) + 6Ca(OH)2 + 74H2O = 3(3CaO·Al2O3·3CaSO4·32H2O) (2)

The reaction between calcium sulphate aluminate (4CaO·3Al2O3·SO4) and water
can cause expansion of the initial raw materials. This reaction produces ettringite
(3CaO·Al2O3·3CaSO4·32H2O), which can cause a final expansion of the volume of the
initial raw materials. However, if sulphate saturation is low, the reaction produces calcium
aluminate monosulfate (3CaO·Al2O3·CaSO4·12H2O) with much smaller expansion. The
structures of both compounds are similar, making it difficult to distinguish them. Research
has been conducted with different proportions in the triangle of materials: calcium sul-
phate aluminate, gISF (CaSO4·2H2O), and dicalcium silicate (2CaO·SiO2), to determine
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the proportions of mixtures for fast-hardening, expansive and weakly expansive cement.
The CSA cement series includes various products that can be used as a primary binder or
accelerator for Portland Cement and are suitable for multiple applications. When used as
the primary binder, they can set from a few minutes to hours, gain strength rapidly, and
achieve compressive strengths ranging from 50 to 100 MPa [41].

Table 6. Chemical composition of CSA cement.

Component Contents %

CaO 45
SiO 8

Al2O3 20
Fe2O3 3
SO3 20

MgO 2.5

Cement mortars (Table 7) were prepared according to EN 196-1:2016-07 [42]. EN
196-1 states that mortar preparation involves following a specific methodology to meet
the required standards and specifications. After one day of hardening, the specimens of
cement mortars were carried in water for 27 days.

Table 7. Composition of self-compacting cement mortar.

Component Unit Cement Mortar

CSA, sulphide alumina cement, 52.5R grams 450.0
Water grams 193.50

ISF slag grams 675.00
Water or alkali/binder - 0.43

Powdered naphthalene fluidising admixture grams 9.0

2.3. Materials and Methodology Preparation of a Geopolymer Mortar

In the late 1970s, Joseph Davidovits, the inventor and developer of a geopolymeri-
sation, coined the term “a geopolymer” to classify the newly discovered synthesis that
produces inorganic geopolymeric materials now used for several industrial applications.
He also set a logical scientific terminology based on different chemical units, essentially for
silicate and aluminosilicate materials, classified according to the Si:Al atomic ratio:

• Si:Al = 0, siloxo,
• Si:Al = 1, sialate (acronym for silicon-oxo-aluminate of Na, K, Ca, Li),
• Si:Al = 2, sialate-siloxo,
• Si:Al = 3, sialate-disiloxo,
• Si:Al > 3, sialate link.

This terminology was presented to the scientific community at an IUPAC conference
in 1976. For details, see the Library Milestone Paper IUPAC-76 [43].

The analysed research used metakaolin to create a geopolymer mortar binder, as
described in Table 8. According to [43], it is sialate, a geopolymer (-Si-O-Al-O-sialate,
poly(sialate)).

Table 8. Chemical composition of metakaolin.

Component SiO2 TiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O P2O3 SO3 Σ

[% by weight.] 53.3 0.5 42.5 0.4 0.1 0.1 2.0 0.6 0.2 0.1 99.8

An appropriate alkaline activator must be chosen to activate aluminosilicate materials
with a low amount of calcium compounds in their composition. Previous research on
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copper slag alkaline activation has shown that the reaction between ground copper slag
and the alkaline activator (either NaOH or sodium water glass) results in the formation of
low-base hydro silicates of the calcium silicate hydrate (C-S-H) type, hydrated low-base
aluminate and aluminosilicate of the hydro garnet type, calcite, magnesium hydro silicates,
mixed sodium-potassium compounds, and alkaline hydrated aluminosilicates of the hydro
nepheline, analcime, and natrolite type. These resulting products in the form of hydrates
differ significantly from those from the hydration of traditional common-use cement rich
in CaO. As the CaO content decreases, the content of the C-S-H and calcium aluminate
hydrate (C-A-H) phases formed because of hydration decreases and the zeolite-like phases
increase. Choosing the appropriate type and amount of activator is complex and depends
mainly on the slag’s chemical composition and specific surface area. The dissolution of
aluminium and silica is faster, and the higher the system’s pH is, the more it depends on
the quality and content of the activator. Therefore, a higher molar concentration of the
alkaline solution with the scale given in Table 9 was used.

Table 9. Composition of self-compacting geopolymer or cement mortar.

Component Unit A Geopolymer Mortar

Metakaolin grams 450.00
Water grams 60.33

NaOH (M6.9) grams 16.65
Soda water glass, solid parts 47% grams 130.51

ISF slag grams 670.00
Powdered naphthalene superplasticizing admixture grams 9.0

Geopolymer samples (Table 9) were prepared as follows: first, an alkaline solution
cooled to 20 degrees Celsius was mixed for 5 min using a sonicator, and then it was added
to the previously mixed ISF slag with metakaolin. Everything was mixed in an automatic
mortar mixer for cement mortar acc. to EN 196-1:2016-07 [42]. The geopolymer samples
were activated at a temperature of 80 ◦C for 72 h and tightly wrapped in foil to protect
against drying and shrinkage. Geopolymer mortars, after thermal activation, were matured
in air-dry conditions.

2.4. Methodology of Research of Fresh and Hardened Mortar

The consistency of the cement and a geopolymer mortar was determined per EN
1015-3 [44].

Mechanical properties of mortars were investigated acc. to EN 196-1:2016-07 [42], and
porosity tests were conducted on three cement and three geopolymer samples.

The porosity tests of geopolymer and cement mortar were conducted using the follow-
ing test equipment:

• helium density—AccuPyc II 1340 device from Micromeritics Instruments (Norcross,
GA, USA),

• pore size distribution—Poremaster 60 by Quantachrome Instruments (Boynton Beach,
FL, USA).

Finally, the immobilisation efficacy of ISF slag in a geopolymer and cement binders
was assessed through leachability tests based on the EN 12457-2 standard [45]. An aque-
ous extract was prepared from the collected waste at a liquid-to-solid phase ratio of
L/S = 10 L/kg and then subjected to leaching tests using demineralized water. The sample

was shaken for 24 h, allowed to settle for 15 min, and filtered through a filter [45]. The
extract was then subjected to several determinations, including pH [46], chloride con-
tent [47], sulphate content [48], and the content of sodium, calcium, potassium, lithium,
barium [49], phosphorus [50], and fluorides [51]. The AVANTA PM atomic absorption
spectrometer from GBC evaluated the heavy metal content in water extracts. The results
were compared with the maximum limit values specified in the Regulation on substances
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particularly harmful to the aquatic environment and conditions to be met when discharging
sewage into waters or the ground, as well as when discharging rainwater or snowmelt into
water or water facilities (Journal of Laws 2019, item 1311) [34]. This study’s results will be
valuable to industries that produce ISF slag and researchers and policymakers working on
environmental protection and the responsible handling of industrial waste.

3. The Results and Discussion
3.1. Test Results of Fresh Mortars Testing

The results for mortar consistency are presented in Table 10 and Figure 4 respectively.
As proved, the ISF slag, without 0.125 mm in diameter grains, allows the achievement
of high-flow diameter mortars. Moreover, a geopolymer mortar was more stable than
cement mortar because geopolymers’ plastic viscosity and adhesion force are very high.
Due to its high cohesion, the geopolymer in its liquid state is less susceptible to segregation
than cement mortar. On the other hand, this feature does not facilitate increasing the
fluidity of the geopolymer; therefore, instead of increasing the share of alkaline solution,
it is necessary, as the authors did, to use superplasticizing admixtures resistant to high
alkaline pH, preferably other than naphthalene, due to the research results published in the
publication [52].

Table 10. The flow of self-compacting cement and a geopolymer mortar.

Type of Mortar Flow Diameter, cm

Cement mortar 28
A geopolymer mortar 27

Materials 2024, 17, 3163 10 of 17 
 

 

Finally, the immobilisation efficacy of ISF slag in a geopolymer and cement binders 

was assessed through leachability tests based on the EN 12457-2 standard [45]. An 

aqueous extract was prepared from the collected waste at a liquid-to-solid phase ratio of 

L/S = 10 L/kg and then subjected to leaching tests using demineralized water. The sample 

was shaken for 24 h, allowed to settle for 15 min, and filtered through a filter [45]. The 

extract was then subjected to several determinations, including pH [46], chloride content 

[47], sulphate content [48], and the content of sodium, calcium, potassium, lithium, 

barium [49], phosphorus [50], and fluorides [51]. The AVANTA PM atomic absorption 

spectrometer from GBC evaluated the heavy metal content in water extracts. The results 

were compared with the maximum limit values specified in the Regulation on substances 

particularly harmful to the aquatic environment and conditions to be met when 

discharging sewage into waters or the ground, as well as when discharging rainwater or 

snowmelt into water or water facilities (Journal of Laws 2019, item 1311) [34]. This study’s 

results will be valuable to industries that produce ISF slag and researchers and 

policymakers working on environmental protection and the responsible handling of 

industrial waste. 

3. The Results and Discussion 

3.1. Test Results of Fresh Mortars Testing 

The results for mortar consistency are presented in Table 10 and Figure 4 respectively. 

As proved, the ISF slag, without 0.125 mm in diameter grains, allows the achievement of 

high-flow diameter mortars. Moreover, a geopolymer mortar was more stable than 

cement mortar because geopolymers’ plastic viscosity and adhesion force are very high. 

Due to its high cohesion, the geopolymer in its liquid state is less susceptible to 

segregation than cement mortar. On the other hand, this feature does not facilitate 

increasing the fluidity of the geopolymer; therefore, instead of increasing the share of 

alkaline solution, it is necessary, as the authors did, to use superplasticizing admixtures 

resistant to high alkaline pH, preferably other than naphthalene, due to the research 

results published in the publication [52]. 

Table 10. The flow of self-compacting cement and a geopolymer mortar. 

Type of Mortar Flow Diameter, cm 

Cement mortar 28 

A geopolymer mortar 27 

 

  
(a) (b) 

Figure 4. View of the mortar flow diameter, (a) a geopolymer, (b) cement. Figure 4. View of the mortar flow diameter, (a) a geopolymer, (b) cement.

3.2. The Results of Hardened Mortar Testing

According to the authors’ research findings, they use ISF slag with grain sizes between
0.125 mm and 2 mm, resulting in high-strength self-compacting geopolymer and cement
mortars. The results presented in Table 11 and Figure 5 demonstrate that IPS slag is an
excellent alternative to natural sand. For instance, 100% substitution of sand with slag
resulted in a compressive strength of about 110 MPa for the CSA mortar and over 140 MPa
for the geopolymer. Such compressive strength corresponds to ultra-high-strength mortars,
thanks to the properties of the slag [19], strong adhesion between the cement pastes and
slag grain, and appropriate consistency of the mortars (Table 10).
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Table 11. Compressive and flexural strength results of 28 days of mortar.

Type of Mortar 28 Days Compressive
Strength, MPa

28 Days Tensile
Strength, MPa

Cement mortar with ISF slag

113.1 12.4
110.4 13.1
110.0 12.6
111.3
114.6
112.6

A geopolymer mortar with ISF slag

139.9 31.4
140.2 32.2
142.4 32.6
143.5
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An important finding is the significantly higher tensile strength of the geopolymer,
which exceeds that of cement mortar by a factor of two (as shown in Table 11). As a polymer
matrix, the geopolymer exhibits an exceptional capacity to withstand tensile forces, which
reduces the risk of surface scratches. It has excellent mechanical properties and better
adhesion to the cement slurry than natural aggregate. Due to the rough texture of the ISF
particles, the ITZ formed between the ISF slag and cement particles is denser, thus reducing
water absorption by 20–25% in mixtures with 60% ISF slag. The flexural and peel strengths
of most concrete containing ISF slag amounts up to 70% were the same or higher than those
of the control mixtures. These factors contributed to low air content in the mortars, which
is responsible for the high strength. Previous works [38,53] have shown that slag from a
zinc smelter is characterised by favourable grain composition, good compatibility, and high
strength parameters such as internal friction angle and cohesion.

The above conclusions also confirm the porosity characteristics of investigated mortars.
Research results from three test samples in Figure 6 demonstrate that the geopolymer has a
denser structure. The porosity calculations, based on helium density measurements, are
as follows:

• cement mortar—6.13%,
• a geopolymer mortar—12.48%.



Materials 2024, 17, 3163 12 of 17

Materials 2024, 17, 3163 12 of 17 
 

 

The above conclusions also confirm the porosity characteristics of investigated 

mortars. Research results from three test samples in Figure 6 demonstrate that the 

geopolymer has a denser structure. The porosity calculations, based on helium density 

measurements, are as follows: 

• cement mortar—6.13%, 

• a geopolymer mortar—12.48%. 

The results of determining the helium density (dHe) values (mean value of 20 

measurements and standard deviation) confirm the correlation between porosity and 

mechanical parameters of mortar: 

• cement mortar—3.0527 g/cm3 ± 0.0020 g/cm3, 

• a geopolymer mortar—2.4706 g/cm3 ± 0.0020 g/cm3. 

 

Figure 6. Comparison of pore size distribution (µm) for a geopolymer and cement samples (g/cm3) 

from ISF slag. 

3.3. Comparison of the Leachability of Slag and Geopolymers and Cement Mortars—Assessment 

of the Environmental Impact of Mortars 

The SEM analysis of the microstructure of the cement paste showed that the 

interfacial transition zone (ITZ) between the ISF particles and the cement paste was denser 

and more compact than the ITZ between the cement-sand paste with good bond strength. 

FESEM-EDS analysis performed on alkali-activated materials confirmed the physical 

confinement of heavy metals: Zn, Cr, Pb and Cu [3,53]. 

High density and low porosity of the microstructure of mortar or concrete are 

essential, and not the most important, conditions for achieving low leachability of heavy 

metals. 

The publications [17,21–24] suggested the possibility of a geopolymerisation of ISF 

slag. The study is part of our activities towards the complete utilisation of slag for building 

material applications using a geopolymerization process, which involves the formation of 

a new rock-like species from various aluminosilicate minerals under a strongly alkaline 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.001 0.01 0.1 1 10 100

Su
m

m
ar

iz
e 

vo
lu

m
e 

o
f 

p
o

re
s,

 c
m

3
/g

Pore diamater, µm

Cement mortar Gepolymer mortar

Figure 6. Comparison of pore size distribution (µm) for a geopolymer and cement samples (g/cm3)
from ISF slag.

The results of determining the helium density (dHe) values (mean value of 20 measure-
ments and standard deviation) confirm the correlation between porosity and mechanical
parameters of mortar:

• cement mortar—3.0527 g/cm3 ± 0.0020 g/cm3,
• a geopolymer mortar—2.4706 g/cm3 ± 0.0020 g/cm3.

3.3. Comparison of the Leachability of Slag and Geopolymers and Cement Mortars—Assessment of
the Environmental Impact of Mortars

The SEM analysis of the microstructure of the cement paste showed that the interfacial
transition zone (ITZ) between the ISF particles and the cement paste was denser and more
compact than the ITZ between the cement-sand paste with good bond strength. FESEM-
EDS analysis performed on alkali-activated materials confirmed the physical confinement
of heavy metals: Zn, Cr, Pb and Cu [3,53].

High density and low porosity of the microstructure of mortar or concrete are essential,
and not the most important, conditions for achieving low leachability of heavy metals.

The publications [17,21–24] suggested the possibility of a geopolymerisation of ISF
slag. The study is part of our activities towards the complete utilisation of slag for building
material applications using a geopolymerization process, which involves the formation of
a new rock-like species from various aluminosilicate minerals under a strongly alkaline
environment. Additionally, the geopolymer prepared from ISF slag demonstrated higher
compressive strength values than those prepared from other types of slag, indicating its
enhanced reactivity. The prepared samples were subjected to TCLP tests, which confirmed
that the release of toxic metals was within the limits set by the USEPA. Therefore, this
process is considered environmentally friendly when utilised for zinc slag.

That is very important, as the cement binder and a geopolymer binder characterise
different pH values: CSA pH = 11 and a geopolymer pH = 14, critical parameters for
heavy metals’ leachability results. The pH value of a solution significantly influences
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the leachability of heavy metals from cement-based building materials. When the pH
of a solution is acidic, heavy metals are more likely to be leached out of the cement
matrix and into the surrounding environment. This is because the acidic conditions can
dissolve the cement matrix and release the heavy metals trapped within it. On the other
hand, when the pH of a solution is alkaline, the leachability of heavy metals from cement-
based building materials is reduced. Alkaline conditions can help stabilise the heavy
metals within the cement matrix, preventing them from leaching out into the environment.
Overall, a solution’s pH value significantly impacts the leachability of heavy metals from
cement-based building materials. It is essential to consider the pH value of the surrounding
environment when designing and constructing cement-based structures to minimise the
leaching of heavy metals.

We proved that the geopopolrysation of ISF slag is not an environmentally friendly
solution. Table 12 summarises the results of tests conducted on the ability of cement and
geopolymer materials to contain ISF waste. The geopolymer mortar exceeded the barium
content limit. As a result, it is recommended to use cement mortar with CSA cement, which
has a lower pH and a higher portlandite content than CEM. This solution is more effective
at immobilising ISF waste. The leachability of barium increases with the pH of the matrix.
When testing the leachability of IPS slag with water (as shown in Table 9), the leachability
of this compound is found to be low. However, the leachability increases significantly in
the case of a geopolymer mortar with a solution pH of 14 (as indicated in Table 12). Barium
leachability is within acceptable limits at pH 12 (cement mortar with CSA).

Table 12. Results of leachability of harmful substances and heavy metals from mortars, expressed in
mg/L, except pH.

Parameter Symbol Geopolymer
Mortar

Cement
Mortar

Highest Permissible
Value [34]

pH pH 10.7 9.5 6.0–9.0
Chloride Cl− 69.12 69.12 1000
Sulphate SO4

2− 171.55 200.76 500
Phosphorus P 0.16 0.07 2
Potassium K 1.50 6.79 80

Sodium Na 186.00 9.82 800
Barium Ba 29.20 0.65 2

Zinc Zn 0.06 blq * 2
Copper Cu blq * blq * 0.5

Lead Pb 0.06 blq * 0.5
Cadmium Cd 0.001 0.004 nr **
Chrome Cr 0.07 0.07 0.1
Cobalt Co blq * blq * 1

Iron Fe blq * blq * 10
Manganese Mn 0.007 0.005 nr **

Nickel Ni 0.30 0.37 0.5
* blq—values below the limit of quantification, ** nr—no requirements.

Based on the analysis of the results, it has been found that a cement matrix is a
better option than a geopolymer mortar for immobilising ISF waste due to the leaching of
barium. However, the geopolymer mortar has a very alkaline reaction to the washed liquid
and does not meet environmental guidelines. Considering the results obtained, further
research should be focused on using ISF slag as a substitute for sand or fine aggregate and
incorporating it into traditional cement mortars and concrete rather than geopolymer ones.

4. Conclusions

In the scope of used materials and obtained results, the following conclusions were achieved:

• ISF slag meets the requirements for leachability of hazardous compounds and ra-
dioactivity. We proved that. geopolymerisation is not an adequate way to create an
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environmentally friendly solution. Due to the leachability of barium, the cement ma-
trix is a better option than a geopolymer mortar for immobilising ISF waste. The results
of porosity characteristics demonstrated that the geopolymer has a denser structure.

• The results of the natural radioactivity test proved that the ISF slag meets the require-
ments for building materials.

• The use of CSA cement helps reduce the time needed for mortar. The flowability of
self-compacting cement or a geopolymer mortar with 100% replacement sand with ISF
slag is very favourable, which allows for the elimination of mechanical compaction of
payment to achieve low porosity and a very dense microstructure.

• The research results have shown that by removing grains smaller than 0.125 mm
and more significant than 2 mm, ISF slag can produce high-strength self-compacting
geopolymer and cement mortars. Geopolymers have better mechanical properties,
particularly tensile strength, and are twice as big as cement specimens. This mechanical
parameter is caused by the stronger adhesion of slag grains to the binder and the higher
bending strength of a geopolymer binder, just like polymer concrete. A geopolymer
mortar achieved up to 140 MPa, while cement mortar achieved an average of 100 MPa.

The authors graphically summarized the obtained conclusion in Figure 7.
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Finally, it should be noted that CSA cement should not be used in reinforced concrete.
Unfortunately, the lime in CSA is firmly bound, resulting in alkalinity ranging from 10.5
to 11 pH; it is not adequate for the passivity of reinforced concrete and is exposed to
carbonation. The publication’s authors [16] found that reinforcement corrosion was not
expected in concrete containing Portland cement and 100% replacement sand with ISF
slag. They also observed that ettringite, a mineral that strengthens the concrete, was more
frequently found in elements subjected to extraction in concrete with 100% content ISF slag.
This mineral helped to tighten larger pores in the concrete but could cause the filling out of
tiny pores in the longer process. However, the authors also noticed that the concentration
of chloride ions in concrete significantly slowed the corrosion processes, particularly in the
reference concrete and concrete containing up to 25% ISF slag.

Due to the concrete’s shrinkage, at least 10% of the CSA cement content should be
supplemented with Portland cement. This will not significantly affect the setting time and
tightness [54–56].
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“Miasteczko Śląskie”. Miner. Resour. Manag. 2006, 22, 21–34.

27. de Andrade Lima, L.R.P.; Bernardez, L.A. Characterisation of the lead smelter slag in Santo Amaro, Bahia, Brazil. J. Hazard. Mater.
2011, 189, 692–699. [CrossRef] [PubMed]

28. Chen, D.T.; Roy, A.; Li, Y.Q.; Bogush, A.; Au, W.Y.; Stegemann, J.A. Speciation of toxic pollutants in Pb/Zn smelter slags by X-ray
Absorption Spectroscopy in the context of the literature. J. Hazard. Mater. 2023, 460, 132373. [CrossRef]

29. Instruction № 234/2003, Testing of Natural Radioactivity of Raw Materials and Building Materials; ITB: Warsaw, Poland, 2003.
30. IBDiM Technical Approval № AT99-04-0538: ISF Slag Granules; Zinc Smelter “Miasteczko Śląskie”: Miasteczko Śląskie, Poland,
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