Silver-Assisted Chemical Etching for the Fabrication of Porous Silicon N-Doped Nanohollow Carbon Spheres Composite Anodes to Enhance Electrochemical Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Material Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rong, J.; Masarapu, C.; Ni, J.; Zhang, Z.; Wei, B. Tandem Structure of Porous Silicon Film on Single-Walled Carbon Nanotube Macrofilms for Lithium-Ion Battery Applications. ACS Nano 2010, 4, 4683–4690. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M.T.; Bao, Z.; Cui, Y. Stable Li-ion battery anodes by In-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943. [Google Scholar] [CrossRef] [PubMed]
- Zuo, X.; Wang, X.; Xia, Y.; Yin, S.; Ji, Q.; Yang, Z.; Wang, M.; Zheng, X.; Qiu, B.; Liu, Z.; et al. Silicon/carbon lithium-ion battery anode with 3D hierarchical macro-/mesoporous silicon network: Self-templating synthesis via magnesiothermic reduction of silica/carbon composite. J. Power Sources 2019, 412, 93–104. [Google Scholar] [CrossRef]
- Wang, F.; Lin, S.; Lu, X.; Hong, R.; Liu, H. Poly-dopamine carbon-coated stable silicon/graphene/CNT composite as anode for lithium ion batteries. Electrochim. Acta 2022, 404, 139708. [Google Scholar] [CrossRef]
- Kawaura, H.; Suzuki, R.; Kondo, Y.; Mahara, Y. Scalable Synthesis of Porous Silicon by Acid Etching of Atomized Al-Si Alloy Powder for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2023, 15, 34909–34921. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Gao, C.; Yin, G.; Chen, M.; Wang, L. Facile fabrication of a nanoporous silicon electrode with superior stability for lithium ion batteries. Energy Environ. Sci. 2011, 4, 1037–1042. [Google Scholar] [CrossRef]
- Lin, C.C.; Yen, Y.C.; Wu, H.C.; Wu, N.L. Synthesis of Porous Si Particles by Metal-assisted Chemical Etching for Li-ion Battery Application. J. Chin. Chem. Soc. 2012, 59, 1226–1232. [Google Scholar] [CrossRef]
- Zhang, G.; Zhou, Y.; Wang, L.; Li, Y.; Xu, H. High-performance lithium-ion full-cell batteries based on transition metal oxides: Towards energy density of ~1300 Wh kg−1. Chem. Eng. J. 2024, 494, 153236. [Google Scholar] [CrossRef]
- Chan, C.K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.F.; Huggins, R.A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35. [Google Scholar] [CrossRef]
- Zuo, X.; Wen, Y.; Qiu, Y.; Cheng, Y.J.; Yin, S.; Ji, Q.; You, Z.; Zhu, J.; Muller-Buschbaum, P.; Ma, L.; et al. Rational Design and Mechanical Understanding of Three-Dimensional Macro-/Mesoporous Silicon Lithium-Ion Battery Anodes with a Tunable Pore Size and Wall Thickness. ACS Appl. Mater. Interfaces 2020, 12, 43785–43797. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Z.; Wang, Q.; Bai, J.; Wang, H.; Liu, X. Fluorine-ion-regulated yolk–shell carbon-silicon anode material for high performance lithium ion batteries. J. Colloid Interface Sci. 2024, 668, 666–677. [Google Scholar] [CrossRef]
- Kasavajjula, U.; Wang, C.; Appleby, A.J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003–1039. [Google Scholar] [CrossRef]
- Liu, N.; Wu, H.; McDowell, M.T.; Yao, Y.; Wang, C.; Cui, Y. A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes. Nano Lett. 2012, 12, 3315–3321. [Google Scholar] [CrossRef]
- Ng, S.H.; Wang, J.; Wexler, D.; Konstantinov, K.; Guo, Z.P.; Liu, H.K. Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2006, 45, 6896–6899. [Google Scholar] [CrossRef]
- Martin, C.; Alias, M.; Christien, F.; Crosnier, O.; Bélanger, D.; Brousse, T. Graphite-Grafted Silicon Nanocomposite as a Negative Electrode for Lithium-Ion Batteries. Adv. Mater. 2009, 21, 4735–4741. [Google Scholar] [CrossRef]
- Li, X.L.; Gu, M.; Hu, S.Y.; Kennard, R.; Yan, P.F.; Chen, X.L.; Wang, C.M.; Sailor, M.J.; Zhang, J.G.; Liu, J. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 2014, 5, 4105. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Wang, J.; Guo, X.; Yang, H. Three-dimensional nitrogen-doped carbon coated hierarchically porous silicon composite as lithium-ion battery anode. J. Alloys Compd. 2021, 874, 159921. [Google Scholar] [CrossRef]
- Huang, J.Y.; Liu, X.; Zhong, L.; Shan, H.; Mao, S.X.; Ting, Z. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 2012, 6, 1522–1531. [Google Scholar] [CrossRef]
- Liu, N.; Lu, Z.; Zhao, J.; McDowell, M.T.; Lee, H.W.; Zhao, W.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192. [Google Scholar] [CrossRef]
- An, W.; Xiang, B.; Fu, J.; Mei, S.; Guo, S.; Huo, K.; Zhang, X.; Gao, B.; Chu, P.K. Three-dimensional carbon-coating silicon nanoparticles welded on carbon nanotubes composites for high-stability lithium-ion battery anodes. Appl. Surf. Sci. 2019, 479, 896–902. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Xiong, J.; Yang, T.; Qin, Y.; Yan, C. Porous Si Nanowires from Cheap Metallurgical Silicon Stabilized by a Surface Oxide Layer for Lithium Ion Batteries. Adv. Funct. Mater. 2015, 25, 6701–6709. [Google Scholar] [CrossRef]
- Schmerling, M.; Fenske, D.; Peters, F.; Schwenzel, J.; Busse, M. Lithiation Behavior of Silicon Nanowire Anodes for Lithium-Ion Batteries: Impact of Functionalization and Porosity. Chemphyschem 2018, 19, 123–129. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, X.; Chen, L.; Yue, J.; Xu, H.; Yang, J.; Qian, Y. Novel mesoporous silicon nanorod as an anode material for lithium ion batteries. Electrochimi. Acta 2014, 127, 252–258. [Google Scholar] [CrossRef]
- Yan, C.; Liu, Q.; Gao, J.; Yang, Z.; He, D. Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries. Beilstein J. Nanotechnol. 2017, 8, 222–228. [Google Scholar] [CrossRef]
- Xiao, W.; Zhou, J.; Yu, L.; Wang, D.; Lou, X.W. Electrolytic Formation of Crystalline Silicon/Germanium Alloy Nanotubes and Hollow Particles with Enhanced Lithium-Storage Properties. Angew. Chem. Int. Ed. 2016, 55, 7427–7431. [Google Scholar] [CrossRef]
- Chen, Y.; Du, N.; Zhang, H.; Yang, D. Porous Si@C coaxial nanotubes: Layer-by-layer assembly on ZnO nanorod templates and application to lithium-ion batteries. CrystEngComm 2017, 19, 1220–1229. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, J.; Lin, S.; Khan, S.; Huang, J.; Liu, S.; Chen, Z.; Wu, D.; Fu, R. Synthesis of SiOx/C Composite Nanosheets As High-Rate and Stable Anode Materials for Lithium-Ion Batteries. ACS Appl. Energy Mater. 2020, 3, 3562–3568. [Google Scholar] [CrossRef]
- Hou, L.; Xing, B.; Kang, W.; Zeng, H.; Guo, H.; Cheng, S.; Huang, G.; Cao, Y.; Chen, Z.; Zhang, C. Aluminothermic reduction synthesis of porous silicon nanosheets from vermiculite as high-performance anode materials for lithium-ion batteries. Appl. Clay Sci. 2022, 218, 106418. [Google Scholar] [CrossRef]
- Keshavarz, M.; Tan, B.; Venkatakrishnan, K. Multiplex Photoluminescent Silicon Nanoprobe for Diagnostic Bioimaging and Intracellular Analysis. Adv. Sci. 2017, 5, 1700548. [Google Scholar] [CrossRef]
- Wu, Q.; Tran, T.; Lu, W.; Wu, J. Electrospun silicon/carbon/titanium oxide composite nanofibers for lithium ion batteries. J. Power Sources 2014, 258, 39–45. [Google Scholar] [CrossRef]
- Fang, R.; Miao, C.; Mou, H.; Xiao, W. Facile synthesis of Si@TiO2@rGO composite with sandwich-like nanostructure as superior performance anodes for lithium ion batteries. J. Alloys Compd. 2020, 818, 152884. [Google Scholar] [CrossRef]
- Li, W.; Ma, Q.; Shen, P.; Zhou, Y.; Soule, L.; Li, Y.; Wu, Y.; Zhang, H.; Liu, M. Yolk-shell structured CuSi2P3@Graphene nanocomposite anode for long-life and high-rate lithium-ion batteries. Nano Energy 2021, 80, 105506. [Google Scholar] [CrossRef]
- An, W.; He, P.; Che, Z.; Xiao, C.; Guo, E.; Pang, C.; He, X.; Ren, J.; Yuan, G.; Du, N.; et al. Scalable Synthesis of Pore-Rich Si/C@C Core–Shell-Structured Microspheres for Practical Long-Life Lithium-Ion Battery Anodes. ACS Appl. Mater. Interfaces 2022, 14, 10308–10318. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.T.; Zhu, D.L.; Li, W.R.; Li, A.J.; Zhang, J.J. Novel design and synthesis of carbon-coated porous silicon particles as high-performance lithium-ion battery anodes. J. Power Sources 2019, 439, 227027. [Google Scholar] [CrossRef]
- Li, Y.J.; Tian, Y.R.; Duan, J.J.; Xiao, P.; Zhou, P.; Pang, L.; Li, Y. Multi-functional double carbon shells coated boron-doped porous Si as anode materials for high-performance lithium-ion batteries. Electrochim. Acta 2023, 462, 142712. [Google Scholar] [CrossRef]
- Cao, J.; Gao, J.; Wang, K.; Wu, Z.; Zhu, X.; Li, H.; Ling, M.; Liang, C.; Chen, J. Constructing globally consecutive 3D conductive network using P-doped biochar cotton fiber for superior performance of silicon-based anodes. J. Mater. Sci. Technol. 2024, 173, 181–191. [Google Scholar] [CrossRef]
- Xu, R.F.; Shi, Y.Y.; Wang, W.H.; Xu, Y.; Wang, Z.G. Dealloying of modified Al-Si alloy to prepare porous silicon as Lithium-ion battery anode material. Int. J. Green. Energy 2022, 19, 1658–1664. [Google Scholar] [CrossRef]
- Wang, B.; Guo, Y.; Du, J.; Li, Q.; Zhang, X.; Bao, Y.; Liu, J.; Wang, D.; Ma, J.; Zhou, Y. Green utilization of silicon slime: Recovery of Si and synergetic preparation of porous silicon as lithium-ion battery anode materials. Ionics 2023, 29, 5099–5110. [Google Scholar] [CrossRef]
- Huang, Z.; Geyer, N.; Werner, P.; De Boor, J.; Gosele, U. Metal-assisted chemical etching of silicon: A review. Adv. Mater. 2011, 23, 285–308. [Google Scholar] [CrossRef]
- Han, H.; Huang, Z.; Lee, W. Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today 2014, 9, 271–304. [Google Scholar] [CrossRef]
- Bang, B.M.; Kim, H.; Song, H.K.; Cho, J.; Park, S. Scalable approach to multi-dimensional bulk Si anodes metal-assisted chemical etching. Energy Environ. Sci. 2011, 4, 5013–5019. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Chen, S.; Zhou, H.C.; Tang, J.J.; Ren, Y.P.; Bai, T.; Zhang, J.M.; Yang, J. Enhanced lithium ion battery performance of nano/micro-size Si via combination of metal-assisted chemical etching method and ball-milling. Microporous Mesoporous Mater. 2018, 268, 9–15. [Google Scholar] [CrossRef]
- Hu, Z.G.; Tan, Z.Y.; Sun, F.; Lin, Z.; Chen, J.; Tang, X.Y.; Luo, J.; Sun, L.; Zheng, R.T.; Chen, Y.C.; et al. The high cycling performance of ultra-thin Si nanowires fabricated by metal-assisted chemical etching method as lithium-ion batteries anode. J. Electroanal. Chem. 2020, 878, 114567. [Google Scholar] [CrossRef]
- Xi, F.S.; Zhang, Z.; Hu, Y.X.; Li, S.Y.; Ma, W.H.; Chen, X.H.; Wan, X.H.; Chong, C.; Luo, B.; Wang, L.Z. PSi@SiOx/Nano-Ag composite derived from silicon cutting waste as high-performance anode material for Li-ion batteries. J. Hazard. Mater. 2021, 414, 125480. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, W.; Geaney, H.; O’Dwyer, C. Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Res. 2015, 8, 1395–1442. [Google Scholar] [CrossRef]
- Chartier, C.; Bastide, S.; Lévy-Clément, C. Metal-assisted chemical etching of silicon in HF–H2O2. Electrochim. Acta 2008, 53, 5509–5516. [Google Scholar] [CrossRef]
- Tang, X.F.; Wen, G.W.; Song, Y. Novel scalable synthesis of porous silicon/carbon composite as anode material for superior lithium-ion batteries. J. Alloys Compd. 2018, 739, 510–517. [Google Scholar] [CrossRef]
- Wang, K.; Li, N.; Xie, J.; Lei, G.; Song, C.; Wang, S.; Dai, P.; Liu, X.; Zhang, J.; Guo, X. Dual confinement of carbon/TiO2 hollow shells enables improved lithium storage of Si nanoparticles. Electrochim. Acta 2021, 372, 137863. [Google Scholar] [CrossRef]
- Yi, Y.; Lee, G.H.; Kim, J.C.; Shim, H.W.; Kim, D.W. Tailored silicon hollow spheres with Micrococcus for Li ion battery electrodes. Chem. Eng. J. 2017, 327, 297–306. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Y.X.; Wang, M.S.; Yang, Z.L.; Bai, Y.S.; Yin, X.; Luo, C.; Huang, Y.; Li, X. Synergetic Protection Hollow Silicon by Nitrogen-Doped Carbon/Reduced Graphene Oxide to Improve the Electrochemical Stability as Lithium-Ion Battery Anode. Int. J. Electrochem. Sci. 2019, 14, 5831–5845. [Google Scholar] [CrossRef]
- Sun, L.; Ma, T.; Zhang, J.; Guo, X.; Yan, C.; Liu, X. Double-shelled hollow carbon spheres confining tin as high-performance electrodes for lithium ion batteries. Electrochim. Acta 2019, 321, 134672. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.W.; Vasagar, V.; Ha, H.; Nazarenko, S.; Ellison, C.J. Polydopamine-Graphene Oxide Flame Retardant Nanocoatings Applied via an Aqueous Liquid Crystalline Scaffold. Adv. Funct. Mater. 2018, 28, 1803172. [Google Scholar] [CrossRef]
- Ma, T.; Liu, X.; Sun, L.; Xu, Y.; Zheng, L.; Zhang, J. Strongly coupled N-doped carbon/Fe3O4/N-doped carbon hierarchical micro/nanostructures for enhanced lithium storage performance. J. Energy Chem. 2019, 34, 43–51. [Google Scholar] [CrossRef]
- Luo, J.; Ma, B.; Peng, J.; Wu, Z.; Luo, Z.; Wang, X. Modified Chestnut-Like Structure Silicon Carbon Composite as Anode Material for Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2019, 7, 10415–10424. [Google Scholar] [CrossRef]
- Chen, S.Q.; Shen, L.F.; Van Aken, P.A.; Maier, J.; Yu, Y. Dual-Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance Lithium-Ion Batteries. Adv. Mater. 2017, 29, 1605650. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.P.; Wang, Y.X.; Li, W.; Wang, L.J.; Fan, Y.C.; Jiang, W.; Luo, W.; Wang, Y.; Kong, B.; Selomulya, C.; et al. Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage. Adv. Mater. 2017, 29, 1700523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Gui, S.W.; Zhang, Z.H.; Li, W.M.; Wang, X.X.; Wei, J.H.; Tu, S.B.; Zhong, L.X.; Yang, W.; Ye, H.J.; et al. Tight Binding and Dual Encapsulation Enabled Stable Thick Silicon/Carbon Anode with Ultrahigh Volumetric Capacity for Lithium Storage. Small 2023, 19, 2303864. [Google Scholar] [CrossRef]
- Wu, J.; Tu, W.M.; Zhang, Y.; Guo, B.L.; Li, S.S.; Zhang, Y.; Wang, Y.D.; Pan, M. Poly-dopamine coated graphite oxide/silicon composite as anode of lithium ion batteries. Powder Technol. 2017, 311, 200–205. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhang, Y.; Chen, W.; Zhang, X.; Yu, L.; Guan, Z. Silver-Assisted Chemical Etching for the Fabrication of Porous Silicon N-Doped Nanohollow Carbon Spheres Composite Anodes to Enhance Electrochemical Performance. Materials 2024, 17, 3189. https://doi.org/10.3390/ma17133189
Zhang Z, Zhang Y, Chen W, Zhang X, Yu L, Guan Z. Silver-Assisted Chemical Etching for the Fabrication of Porous Silicon N-Doped Nanohollow Carbon Spheres Composite Anodes to Enhance Electrochemical Performance. Materials. 2024; 17(13):3189. https://doi.org/10.3390/ma17133189
Chicago/Turabian StyleZhang, Zimu, Yuqi Zhang, Weixuan Chen, Xiang Zhang, Le Yu, and Zisheng Guan. 2024. "Silver-Assisted Chemical Etching for the Fabrication of Porous Silicon N-Doped Nanohollow Carbon Spheres Composite Anodes to Enhance Electrochemical Performance" Materials 17, no. 13: 3189. https://doi.org/10.3390/ma17133189
APA StyleZhang, Z., Zhang, Y., Chen, W., Zhang, X., Yu, L., & Guan, Z. (2024). Silver-Assisted Chemical Etching for the Fabrication of Porous Silicon N-Doped Nanohollow Carbon Spheres Composite Anodes to Enhance Electrochemical Performance. Materials, 17(13), 3189. https://doi.org/10.3390/ma17133189