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Abstract: Material anisotropy caused by crystal orientation is an essential factor affecting the me-
chanical and fracture properties of crystal materials. This paper proposes an improved ordinary
state-based peridynamic (OSB-PD) model to study the effect of arbitrary crystal orientation on the
granular fracture in cubic crystals. Based on the periodicity of the equivalent elastic modulus of a
cubic crystal, a periodic function regarding the crystal orientation is introduced into peridynamic
material parameters, and a complete derivation process and expressions of correction factors are
given. In addition, the derived parameters do not require additional coordinate transformation,
simplifying the simulation process. Through convergence analysis, a regulating strategy to obtain
the converged and accurate results of crack propagation paths is proposed. The effects of crystal
orientations on crack initiation and propagation paths of single-crystal materials with different
notch shapes (square, equilateral triangle, semi-circle) and sizes were studied. The results show that
variations in crystal orientation can change the bifurcation, the number, and the propagation path
direction of cracks. Under biaxial tensile loading, single crystals with semi-circular notches have the
slowest crack initiation time and average propagation speed in most cases and are more resistant
to fracture. Finally, the effects of grain anisotropy on dynamic fractures in polycrystalline materials
under different grain boundary coefficients were studied. The decrease in grain anisotropy degree
can reduce the microcracks in intergranular fracture and the crack propagation speed in transgranular
fracture, respectively.

Keywords: peridynamics; cubic crystal; crystal orientation; granular fracture; crack propagation

1. Introduction

Cubic crystalline structures have been widely found in engineering materials. Their
macroscopic mechanical and fracture characteristics are significantly influenced by mi-
croscopic properties such as grain orientation, size, and grain boundary strength [1]. For
example, because of the symmetry of the cubic crystal, its equivalent elastic modulus
changes periodically with the crystal orientation [2]. The crack propagation path of single-
crystal silicon is significantly affected by the angle between the low-index crystal plane and
the direction of the notch front [3,4].

Polycrystalline materials are composed of many grains with different orientations
and grain boundaries between adjacent grains. The grain orientation distribution can
elucidate the physical mechanisms of microstructure formation [5]. A grain boundary is a
two-dimensional planar defect where various atomic reactions and processes are promoted
or accelerated [6]. As a result, according to the difference in grain boundary strength, the
main fracture modes observed in polycrystalline materials are intergranular fracture and
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transgranular fracture [7]. In general, as the grain boundaries become weaker and more
misorientated, the transition from transgranular to intergranular fracture is likely to occur,
i.e., intergranular-type cracks are more likely to occur at the grain boundaries where there
is a large difference between the orientations of two grains [8]. Therefore, it is vital to study
the effects of crystal orientation and grain boundary characteristics on the mechanical and
fracture properties of crystal materials.

The development of experimental techniques has led to a more in-depth understanding
of the microstructure and properties of crystalline materials. However, in addition to the
high cost caused by a large number of sample manufacturing and complex post-processing,
many parameters during dynamic fracture are challenging to measure [9]. In order to
provide a more effective method, many scholars have used different numerical methods
to solve the fracture problems in crystalline materials. These include the cohesive zone
model [10–12], extended finite element method [13–15], boundary element method [16–18],
and phase field [1,19,20]. However, these methods are based on continuum mechanics
theory and fundamentally have limitations in solving discontinuity problems [21].

Silling et al. [22] proposed a non-local theory, peridynamics (PD), which uses integral
equations instead of partial differential equations in classical continuum mechanics (CCM)
so it is not limited by material continuity and can spontaneously predict crack initiation
and propagation. Recently, PD has been successfully applied to fracture analysis of poly-
crystalline materials. De Meo et al. [23] proposed a bond-state peridynamic (BB-PD) model
for polycrystalline materials based on the cubic crystal. Similar to the definitions of matrix
bonds and fibre bonds in the PD model of fibre-reinforced composite lamina [24], two types
of bonds are defined in the direction of the relative position vector of a pair of material
points in the BB-PD model for cubic crystals. One holds for all pairs of material points
(Type-1), and the other is present only for the direction of some particular angles (Type-2),
which is when the difference between the relative position vector direction of a pair of
material points and the crystal orientation satisfies π/4 ± kπ/2 (k = 0,1,2,3). Subsequently,
Li et al. [25] extended the application of the BB-PD model to the temperature field and
studied the effects of grain size, grain boundary strength, and composite of materials. Lu
et al. [21] investigated an application to the granular fracture behaviours of polycrystalline
ice under dynamic loading conditions. However, the BB-PD model has limitations such
as invariable Poisson’s ratios and does not support the constitutive model of plastic and
incompressible materials [26]. Zhu et al. [27] developed an ordinary state-based peridynam-
ics (OSB-PD) model to address the limitations of the BB-PD model and studied the effect of
grain boundary strength, grain orientation, and grain size. Because of the arbitrariness of
the orientation of polycrystalline materials, the direction of the relative position vector of
all material point pairs easily mismatches the direction of the Type-2 bond in this type of
model, making the model degenerate a model for isotropic materials.

Anisotropy due to crystal orientation can be introduced into other ways in the PD
model. Based on the OSB-PD model for isotropic materials, Li et al. [28] used a non-spherical
influence function to characterise grain anisotropy, but this model requires additional
calibration of the auxiliary parameters. Zhang et al. [29] added a periodic function with a
period of π/2 to the PD strain energy density. Liu et al. [30] introduced a period of π/3 into
the force density function to develop a chiral-dependent PD model for graphene sheets.
In the BB-PD model, micro-modulus (or bond constant) is one of the critical parameters
regarding the elastic properties of materials, the PD material parameters in the OSB-PD
model have the same nature [26].

Therefore, this work aims to improve the OSB-PD model based on cubic crystals and
introduce a periodic function containing crystal orientation into the PD material parameters.
In addition, the material stiffness matrix after the coordinate transformation based on the
crystal orientation is used, which allows the derived PD material parameters to contain
the orientation angle, so no additional coordinate transformation is required during the
simulation process.
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The structure of this paper is arranged as follows. Section 2 outlines the fundamentals
of OSB-PD theory for isotropic elastic materials. Section 3 establishes the improved OSB-PD
theory for cubic crystals with arbitrary orientations and gives the derivations of PD material
parameters, surface and volume correction factors, and the damage model. Section 4 uses
the finite element method to verify the proposed PD model at first and then carries out the m-
convergence and δ-convergence analysis on the static tensile and dynamic fracture problems.
Section 5 presents the applications of the proposed PD model to the fracture behaviours of
single crystals and polycrystalline materials, involving the effects of notch shape, size, and
anisotropy degree. Section 6 summarises the main contributions of this work.

2. Fundamentals of the OSB-PD Theory

Peridynamics is a non-local theory of continuum mechanics, in which the mechanical
responses of one material point x(k) in an object are related to other material points x(j)
inside its neighbouring region Hx, called the horizon. In the two-dimensional plane
problem, the horizon domain is a disk, and the horizon size is defined by a radius δ, as
shown in Figure 1. The equation of motion at x(k) in the PD model is expressed by:

ρ
..
u(x(k), t) =

∫
Hx(k)

(
t
(

u(j) − u(k), x(j) − x(k), t
)
− t(u(k) − u(j), x(k) − x(j), t)

)
dHx(k) + b(x(k), t), (1)

where b is the external force density; ρ is the material density; and u is the displacement
vector. The connection between x(k) and x(j) is called the PD bond, so the vector x(j) − x(k)
is the bond vector. t

(
u(j) − u(k), x(j) − x(k), t

)
, or t, is the PD force density vector from x(j)

to x(k) in the horizon domain of x(k), and t(u(k) − u(j), x(k) − x(j), t), or t′, is the one from
x(k) to x(j) in the horizon domain of x(j).
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In the OSB-PD model, the two pairwise force density vectors t and t′ are parallel and
opposite in direction but different in magnitude. Additionally, the force density vector is
parallel to the deformed bond vector y(j) − y(k), where y(k) and y(j) are the positions of x(k)
and x(j) in the deformed configuration, and y = x + u. Thus, the two pairwise force density
vectors can be calculated by

t(u(j) − u(k), x(j) − x(k), t) =
1
2

A
y(j) − y(k)∣∣∣y(j) − y(k)

∣∣∣ (2)

t(u(k) − u(j), x(k) − x(j), t) = −1
2

B
y(j) − y(k)∣∣∣y(j) − y(k)

∣∣∣ (3)

where the symbol ‘|. . .|’ is the magnitude or norm of the vector,

A = 4ad
δ∣∣∣x(j) − x(k)

∣∣∣Λ(k)(j)θ(k) + 4bδs(k)(j) (4)
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B = 4ad
δ∣∣∣x(k) − x(j)

∣∣∣Λ(j)(k)θ(j) + 4bδs(j)(k) (5)

where θ(k) is the volume dilation. Normally, θ(k) and θ(j) are not equal.

θ(k) = d
∫

H

δ∣∣∣x(j) − x(k)
∣∣∣ (
∣∣∣y(j) − y(k)

∣∣∣− ∣∣∣x(j) − x(k)
∣∣∣)dH (6)

where Λ(k)(j) is the cosine of the angle between the relative position vectors of the initial
configuration and the deformed configuration. Λ(k)(j) and Λ(j)(k) are equal in magnitude.

Λ(k)(j) =
x(j) − x(k)∣∣∣x(j) − x(k)

∣∣∣ ·
y(j) − y(k)∣∣∣y(j) − y(k)

∣∣∣ (7)

where s(k)(j) is the stretch ratio, which is similar to the elastic strain in CCM theory.

s(k)(j) =

∣∣∣y(j) − y(k)

∣∣∣− ∣∣∣x(j) − x(k)
∣∣∣∣∣∣x(j) − x(k)

∣∣∣ (8)

For isotropic materials, if the temperature is neglected, the strain energy density at
point x(k) is described by

W(k) = aθ2
(k) + b

∫
H

ω(k)(j)(
∣∣∣y(j) − y(k)

∣∣∣− ∣∣∣x(j) − x(k)
∣∣∣)2dH (9)

where ω(k)(j) is the influence function

ω(k)(j) =
δ∣∣∣x(j) − x(k)

∣∣∣ (10)

The variables a, b, and d are the PD material parameters to be solved, which can be
obtained by comparing the strain energy densities under the simple loadings in PD to those
in CCM.

3. OSB-PD Theory for Cubic Crystals and PD Material
3.1. Coordinate Transformation

Because of the crystal orientation, the material stiffness matrix of the cubic crystals in
the global coordinate system changes with the orientation angle. In CCM theory, the Voigt
notations of the material stiffness matrix for cubic crystals are described below.

C =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 (11)

In the assumption of plane stress, the material stiffness matrix C can be simplified by

Q =

Q11 Q12 0
Q12 Q11 0

0 0 Q44

 (12)

where Q11 =
C2

11−C2
12

C11
, Q12 =

C11C12−C2
12

C11
, and Q44 = C44.
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When considering a crystal orientation angle γ, there is a transformation between the
crystal coordinate system and the global coordinate system, as shown in Equation (13) and
Figure 2, [

X
Y

]global

=

[
cosγ −sinγ
sinγ cosγ

][
x
y

]crystal

(13)

so that in the global coordinate system, the reduced material stiffness matrix with an
orientation angle γ after the coordinate transformation is calculated as

R =

R11 R12 R14
R12 R11 R24
R14 R24 R44

 =


C11D11−C2

12
C11

C11D12−C2
12

C11
D14

C11D12−C2
12

C11

C11D11−C2
12

C11
D24

D14 D24 D44

 (14)

where 

D11 = C11 − 2µsin2γcos2γ

D12 = C12 + 2µsin2γcos2γ

D14 = µ(sin3γcosγ − sinγcos3γ)

D24 = µ(sinγcos3γ − sin3γcosγ)

D44 = C44 + 2µsin2γcos2γ
µ = C11 − C12 − 2C44

(15)
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Similarly, in the condition of plane strain, the reduced matrix with a crystal orientation
γ is

T =

T11 T12 T14
T12 T11 T24
T14 T24 T44

 =

D11 D12 D14
D12 D11 D24
D14 D24 D44

 (16)

The matrices R and T are used to derive the PD material parameters under the as-
sumptions of plane stress and plane strain, respectively.

3.2. PD Material Parameters and Force Density Vectors

In BB-PD, the micro-modulus is an intrinsic parameter of the material that represents
the stiffness of the bond between a pair of material points and is directly related to elastic
constants in CCM theory [31]. In the OSB-PD model for isotropic materials, d is independent
of the material type. a and b are proportional to the elastic constants of materials, but a is
relevant to the volume dilatation. Thus, b is the critical PD parameter of the associated
intrinsic material properties, similar to the micro-modulus.
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For cubic crystals, the elastic properties are different depending on the axial angle φ in
the crystal coordinate system, as shown in Figure 2b. In the two-dimensional cases, the
equivalent elastic modulus Eφ at any direction of the crystal axis is calculated by

1/Eφ = s11 + (2s12 − 2s11 + s44)(sin2 φcos2 φ) (17)

where s11 = C11+C12
C2

11+C11C12−2C2
12

, s12 = −C12
C2

11+C11C12−2C2
12

, and s44 = 1
C44

are the components of the

compliance matrix of cubic crystals [2].
It is evident in Equation (17) that the equivalent elastic modulus for cubic crystals has

a period of π/2. In order to make the PD material parameters match the corresponding
anisotropic material parameters at an arbitrary crystal orientation and axial angle of the
crystal, the idea is to correlate the PD material parameter b with the axial angle of the crystal
φ. Assume that b depends on φ and has a period of π/2, by comparison with Equation (17),
it is constructed by

b = b1 + b2sin2 φcos2 φ (18)

By substituting it into the equation of the strain energy density at x(k) (Equation (9)),
the following is obtained

W(k) = aθ2
(k) +

(
b1 + b2sin2 φcos2 φ

)∫
H

ω(k)(j)(
∣∣∣y(j) − y(k)

∣∣∣− ∣∣∣x(j) − x(k)
∣∣∣)2dH (19)

Similar to isotropic materials, the PD material parameters a, b1, b2, and d for cubic
crystals can be solved by comparing the strain energy density under simple loading in PD
and CCM theory. The derivation process is shown in Appendix A for the sake of brevity.
Then, the solutions of the four PD material parameters are

a = 1
2 (R12 − R44)

b1 = 3
2πhδ4k [(10πk1 + 3πk3)(R11 − R12)− 2(14πk1 + πk3)R44]

b2 = 24[2R44−(R11−R12)]
hδ4k

d = 2
πhδ3

(20)

where k = πk3 − 2πk1, k1 = sin2γcos2γ, and k3 = cos4γ + sin4γ − 4sin2γcos2γ.
For polycrystals, if two material points x(k) and x(j) belong to different grains, the

equivalent bond constant bα are calculated by the weighting method.

2
bα

=
1

bα(k)
+

1
bα(j)

(α = 1, 2) (21)

Thus, the PD force density vectors of the interaction between a pair of material points
x(k) and x(j) in the equation of motion (Equation (1)) can be summed as follows.

f = t(k)(j) − t(j)(k) =
y(j) − y(k)∣∣∣y(j) − y(k)

∣∣∣
2ad

δ∣∣∣x(j) − x(k)
∣∣∣Λ(k)(j)

(
θ(k) + θ(j)

)
+ 4δs(k)(j)

(
b1 + b2sin2 φcos2 φ

) (22)

3.3. Surface Correction and Volume Correction

For uniform discretisation, since the horizon domain is a circle for the two-dimensional
plane problem, the material points located at the horizon boundary will have a part of its
volume beyond the boundary. The volume correction coefficient ν(j) should be introduced
to reduce the error [26].

ν(j) =


1

∣∣∣x(j) − x(k)
∣∣∣ ≤ (δ − ϖ)

(δ + ϖ −
∣∣∣x(j) − x(k)

∣∣∣)/2ϖ (δ − ϖ) <
∣∣∣x(j) − x(k)

∣∣∣ ≤ δ

0 otherwise

(23)
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where ϖ is half of the discrete spacing of material points, ϖ = ∆x/2.
The same issue arises with the material points near the surface/boundary of the

computational domain. The integration of the strain energy density in Equation (19) is
performed for material points within a complete horizon domain. For a material point
x(k) close to the boundary, it lacks part of its family points because the horizon domain is
incomplete, causing the inaccuracy of the simulation results near the boundary. Therefore,
the surface correction factors are introduced to deal with this problem when calculating the
volume dilatation and the force density vector. The detailed derivation process is shown in
Appendix B for the sake of brevity.

The modified volume dilatation and force density vector at point x(k) are expressed below.

θ(k) = d
N

∑
j=1

G(d)(k)(j)
δ∣∣∣x(j) − x(k)

∣∣∣
[∣∣∣y(j) − y(k)

∣∣∣− ∣∣∣x(j) − x(k)
∣∣∣]Λ(k)(j)ν(j)V(j) (24)

t(k)(j) =

[
2ad δ

|x(j)−x(k)|
Λ(k)(j)θ(k) + 2b′δs(k)(j)

]
y(j)−y(k)∣∣∣y(j)−y(k)

∣∣∣
with b′ = G(b)1(k)(j)b1 + G(b)2(k)(j)b2sin2 φcos2 φ

y(j)−y(k)∣∣∣y(j)−y(k)
∣∣∣

(25)

where G(d)(k)(j) is the surface correction factor for volume dilatation; G(b)1(k)(j) and G(b)2(k)(j)
are the surface correction factors for the PD material parameters b1 and b2, respectively.

3.4. Damage Model

In the PD damage model for isotropic materials, the damage of the bond between
two material points can be determined by either the critical stretch ratio [27] or the critical
energy release rate [32]. The critical stretch ratio s0 is used in this work, and its expression
in the OSB-PD model for two-dimensional problems is:

s0 =

√
Gc(

bhδ5 + 8
9 ad2h2δ7

) (26)

where the parameters a, b, and d can be obtained by Equations (18) and (20) to import the
influence of orientation angle; Gc is the critical energy release rate, which can be estimated
by the fracture toughness KIc and the equivalent elastic modulus Eφ.

Gc =


K2

Ic
Eφ

plane stress
K2

Ic
Eφ

(
1 − ν2) plane strain

(27)

The break of the bond is described by a scalar function µ(x, x′, t) correlated with the
time t. When the stretch ratio between a pair of material points satisfies s ≤ s0, the bond
breaks, that is, µ(x, x′, t) = 0; otherwise, µ(x, x′, t) = 1. In this way, a material point is
determined to fail when the bonds between all the family points in its horizon domain
and itself are broken. This accumulative damage process can be calculated by the failure
function ψ(x, t) below.

ψ(x, t) = 1 −
∫

Hx
µ(x, x′, t)dV′∫

Hx
dV′ (28)

In addition, the grain boundary strength has an important effect on the fracture
behaviours of polycrystalline materials. De Meo et al. [23] defined a grain boundary
strength coefficient β to study different fracture modes.

β =
s0GB
s0GI

(29)
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where s0GI and s0GB are the critical stretch ratios for the transgranular and intergranular
fractures, respectively. When the intergranular fracture is dominated, then β < 1, while
when the transgranular fracture is dominated, then β > 1.

In the following sections, the displacements in static and dynamic problems are
solved by the adaptive dynamic relaxation (ADR) and the explicit time integration in
Ref. [26], respectively.

4. Model Validation and Convergence Analysis

In this section, the finite element method (FEM) is used to verify the PD model.
Through m-convergence and δ-convergence, the displacements under uniaxial tension
and dynamic fracture under biaxial tension are analysed. δ is the horizon size, and m can
present the density of material points in one horizon region with a relationship of m = δ/∆x
(∆x is the spacing of material points). For all the cases in this section, the material is set as
α-Fe, which is a body-centred cubic lattice, and its elastic stiffness constants are C11 = 231.4
GPa, C12 = 134.7 GPa, and C44 = 116.4 GPa [2]. The fracture toughness is 58.4 MPa·

√
m [33].

4.1. Static Analysis for the Fe Single Crystal with Different Orientations

Figure 3 shows a thin rectangular plate under uniaxial tensile loading. It has a length
L of 20 µm and a width W of 10 µm. The thickness H is 0.1 µm. On both sides of the
plate, three groups of material points are added along the x-direction to impose boundary
conditions, where the left boundary is completely fixed, and the pressure P applied to the
right boundary is 150 MPa.

Materials 2024, 17, x FOR PEER REVIEW 8 of 23 
 

 

𝜓(𝒙, 𝑡) = 1 −  𝜇൫𝒙, 𝒙′, 𝑡൯𝑑𝑉′ு𝒙  𝑑𝑉′ு𝒙  (28) 

In addition, the grain boundary strength has an important effect on the fracture 
behaviours of polycrystalline materials. De Meo et al. [23] defined a grain boundary 
strength coefficient β to study different fracture modes. 𝛽 = 𝑠ீ𝑠ீூ  (29) 

where 𝑠ீூ and 𝑠ீ are the critical stretch ratios for the transgranular and intergranular 
fractures, respectively. When the intergranular fracture is dominated, then 𝛽 < 1, while 
when the transgranular fracture is dominated, then 𝛽  1. 

In the following sections, the displacements in static and dynamic problems are 
solved by the adaptive dynamic relaxation (ADR) and the explicit time integration in Ref. 
[26], respectively. 

4. Model Validation and Convergence Analysis  
In this section, the finite element method (FEM) is used to verify the PD model. 

Through m-convergence and δ-convergence, the displacements under uniaxial tension 
and dynamic fracture under biaxial tension are analysed. δ is the horizon size, and m can 
present the density of material points in one horizon region with a relationship of m= δ/∆x 
(∆x is the spacing of material points). For all the cases in this section, the material is set as 
α-Fe, which is a body-centred cubic lattice, and its elastic stiffness constants are C11 = 231.4 
GPa, C12 = 134.7 GPa, and C44 = 116.4 GPa [2]. The fracture toughness is 58.4 MPa∙√𝑚 [33].  

4.1. Static Analysis for the Fe Single Crystal with Different Orientations 
Figure 3 shows a thin rectangular plate under uniaxial tensile loading. It has a length 

L of 20 µm and a width W of 10 µm. The thickness H is 0.1 µm. On both sides of the plate, 
three groups of material points are added along the x-direction to impose boundary 
conditions, where the left boundary is completely fixed, and the pressure P applied to the 
right boundary is 150 MPa.  

 
Figure 3. Schematic diagram of a thin rectangular plate under uniaxial tensile loading. 

In order to analyse the effects of the m value and δ value on the static problem, the 
displacements UX and UY, respectively, along the centre lines at y = 0 and x = 0 are studied 
when the orientation angle γ = 0° and compared with FEM results, as shown in Figure 
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Figure 3. Schematic diagram of a thin rectangular plate under uniaxial tensile loading.

In order to analyse the effects of the m value and δ value on the static problem, the
displacements UX and UY, respectively, along the centre lines at y = 0 and x = 0 are
studied when the orientation angle γ = 0◦ and compared with FEM results, as shown in
Figure 4a,b,d,e. The convergence criterion is 1 × 10−8. By comparing the slopes of the
curves, it can be seen in Figure 4c,f that the increase in the m value makes the PD results
closer to the FEM results when δ is constant. When m is constant, decreasing δ has little
effect on the results.

Comprehensively considering the computational time and accuracy, δ = 6∆x and
medium mesh size (200 × 100) are taken to compute the uniaxial tensile results at different
orientation angles. The displacements at different orientation angles γ ∈ [0, 90◦] are
simulated at an interval of 15◦. As shown in Figure 5, the PD results are consistent with
the corresponding FEM results at each orientation angle, indicating the effectiveness of the
proposed PD model in simulating the static problem of a single cubic crystal with a given
orientation angle.
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Figure 5. Comparisons of FEM and PD results of displacements (a) UX and (b) UY at different
orientation angles (γ = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦).

4.2. Static Analysis for Polycrystalline Materials

The polycrystalline microstructure is generated by the Voronoi tessellation method.
Voronoi seeds are calculated by the pseudo-random Sobel sequence to obtain the microstruc-
ture with relatively uniform grain size and distribution. Figure 6 shows a polycrystalline
rectangular thin plate with 20 randomly oriented grains. The range of the orientation
angles γ is [0, 90◦]. The computational domain has a length L of 5 mm and a width W of
2.5 mm. The plate thickness H is 0.01 mm. The numbers of material points in the x- and
y-directions are 240 and 120, respectively. The horizon size δ is 6∆x. The loading condition
is the same as the one for single crystals in Section 4.1. Figure 7 illustrates the displacement
contours in the x- and y-directions from PD and FEM simulations, respectively. The conver-
gence criterion is 1 × 10−8. The results of the two methods are almost consistent, which
validates the effectiveness of the proposed PD method in calculating the static behaviours
of polycrystalline materials.
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4.3. Convergence Analysis of Dynamic Fracture of Polycrystalline Materials

Many studies have shown that mesh size and horizon size can significantly influence
the crack propagation path in polycrystalline materials [23,27], but most size-independent
convergence analyses are focused on static problems. It is important to obtain the con-
vergence results of a crack propagation path for predicting and controlling the dynamic
fracture of polycrystalline materials. Like static analysis, m-convergence and δ-convergence
are also good methods to study the influence of meshing and horizon size on the crack
propagation path. Three GBC values of 0.5, 2, and 1 are selected to represent intergranular,
transgranular, and mixed fracture modes.

Figure 8 shows a 5 mm × 5 mm rectangular plate with preset cracks at the top and
the bottom. It contains 100 grains with random orientation angles within [−45◦, 45◦]. The
length of each crack Lc is 0.4 mm. The left and right sides of the plate are subjected to a
rapid tensile velocity V of 15 m/s in opposite directions.

Figures 9–11 illustrate the m-convergence results of different GBC values (fracture
modes) at the time steps of 3000 (3 µs). It can be seen that when m is higher than 6, the
changes in the crack propagation path in the three fracture modes decrease with the increase
in the m value and tend to be converged.

In comparison, the δ-convergence results show more uncertainties. The change in
the δ value affects the crack propagation path in the intergranular fracture more than in
the transgranular fracture, as shown in Figures 12 and 13. The decrease in δ indicates a
reduction in the integral area when calculating the stretch ratio, resulting in the difference
in damage determination. This difference will have a more prominent influence on the
boundary of adjacent grains with large differences in the orientation angle, which may lead
to different crack propagation paths.
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Figure 9. The m-convergence analysis of crack propagation paths in polycrystalline materials con-
taining 100 grains at time step 3000 when GBC = 0.5. From left to right, when δ remains constant
and m increases, (a–d) the distributions of failed material points in the polycrystalline structure and
(e–h) the corresponding damage coefficient contours are shown, respectively.
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Figure 10. The m-convergence analysis of crack propagation paths in polycrystalline materials
containing 100 grains at time step 3000 when GBC = 1. From left to right, when δ remains constant
and m increases, (a–d) the distributions of failed material points in the polycrystalline structure and
(e–h) the corresponding damage coefficient contours are shown, respectively.
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Figure 11. The m-convergence analysis of crack propagation paths in polycrystalline materials
containing 100 grains at time step 3000 when GBC = 2. From left to right, when δ remains constant
and m increases, (a–d) the distributions of failed material points in the polycrystalline structure and
(e–h) the corresponding damage coefficient contours are shown, respectively.
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Figure 12. The δ-convergence analysis of crack propagation paths in polycrystalline materials
containing 100 grains at time step 3000 when GBC = 0.5. From left to right, when m remains constant
and δ decreases, (a–d) the distributions of failed material points in the polycrystalline structure and
(e–h) the corresponding damage coefficient contours are shown, respectively.

Materials 2024, 17, x FOR PEER REVIEW 13 of 23 
 

 

 
Figure 13. The δ-convergence analysis of crack propagation paths in polycrystalline materials 
containing 100 grains at time step 3000 when GBC = 1. From left to right, when m remains constant 
and δ decreases, (a–d) the distributions of failed material points in the polycrystalline structure and 
(e–h) the corresponding damage coefficient contours are shown, respectively. 

 
Figure 14. The δ-convergence analysis of crack propagation paths in polycrystalline materials 
containing 100 grains at time step 3000 when GBC = 2. From left to right, when m remains constant 
and δ decreases, (a–d) the distributions of failed material points in the polycrystalline structure and 
(e–h) the corresponding damage coefficient contours are shown, respectively. 

Overall, the horizon size (δ) has a greater impact on crack propagation paths than the 
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Figure 13. The δ-convergence analysis of crack propagation paths in polycrystalline materials
containing 100 grains at time step 3000 when GBC = 1. From left to right, when m remains constant
and δ decreases, (a–d) the distributions of failed material points in the polycrystalline structure and
(e–h) the corresponding damage coefficient contours are shown, respectively.
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In addition, when the horizon size is higher than the size of a single grain, the results
will also be different. For a meshing size of 100 × 100, when m = 6, there are 112 material
points in a complete horizon domain, while the average number of material points in one
grain is about 100. For an intergranular fracture, the number of local microcracks will be
significantly reduced (Figure 12e), while for a transgranular fracture, local damage may
increase (Figure 14e).
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Overall, the horizon size (δ) has a greater impact on crack propagation paths than the
density of material points in one horizon region (m). When conducting dynamic fracture
analysis of polycrystalline materials by the PD method, it is suggested to determine a
proper δ value first and then increase the m value to achieve a faster convergence result
of the crack propagation path. It is also necessary to ensure that the number of material
points in a single grain is larger than that in a horizon region.

5. Applications on Dynamic Fractures

This section mainly studies and discusses the applications of the proposed model in
two aspects. One is the effect of crystal orientations on the crack initiation and propagation
of single-crystal materials with different notch shapes and sizes. The other is the effect of
the degree of anisotropy in polycrystalline materials on propagation growth paths under
different fracture modes.

5.1. Single-Crystal Materials with Different Notch Shapes and Sizes

Notches of various kinds exist in part/component design, such as chamfer, fillet, and
thread. However, several studies have indicated that the stress concentration around the
notch tip would significantly reduce the load capacity of parts/components [34]. For a
single crystal, it has been found that the orientation difference between the notch front
and crystal also makes the crack propagation direction change [3]. In order to study the
effects of notch shape and size on the crack propagation path, three notch shapes including
square, equilateral triangle, and semi-circle are designed on a rectangular plate, as shown
in Figure 15. Dimension b is the side length, height, and radius of the square, triangle, and
semi-circle, respectively.

The plate’s length, width, and thickness are 5 mm, 15 mm, and 0.1 mm, respectively.
The single cubic crystal is silicon (C11 = 165.6 GPa, C12 = 63.9 GPa, C44 = 79.5 GPa). The
fracture toughness is 2 MPa ·

√
m for all orientation angles because it has little dependence

on the tensile direction in the same crystal plane [3]. The velocity imposed on the top and
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the bottom side of the plate is ±0.5 m/s. The orientation angles are 0◦, 30◦, 45◦, and 60◦.
The value of dimension b is 0.5, 1, and 1.5 mm.
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Figure 15. Schematic diagram of a single-crystal rectangular plate with different notch shapes
including (a) square, (b) equilateral triangle, and (c) semi-circle.

Figures 16–18 show the crack propagation paths of equilateral triangular, square,
and semi-circular notches at different orientation angles when b is 1 mm. Under the
same working conditions, the equilateral triangular notch is less likely to bifurcate than
the others. At the orientation angles of 30◦ and 60◦, the crack propagation paths of the
three notch shapes are obviously shifted relative to the horizontal line and are basically
symmetrical, which reflects the force shift caused by the orientation angle. For the square
notch, when the orientation angles are 0◦ and 45◦, the two right angles induce two crack
routes (Figure 17a,c), while at the crystal orientation of 30◦ and 60◦, the crack only occurs
from one right angle (Figure 17b,d). As for the semi-circular notch, bifurcation is more
likely to occur at a crystal orientation of 0◦ than at other angles, as shown in Figure 18.
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Additionally, the notch dimension has a greater effect on the crack propagation path
of the square notch, as shown in Figure 19. At the crystal orientation of 0◦, when the
notch dimension gradually decreases, the number of crack routes reduces from two to one.
However, it has smaller changes in the pattern and number of crack routes in the triangular
and semi-circular cases, so it is not shown for simplicity.
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The crack initiation time and the average propagation speed are also studied. As
shown in Figure 20a, when the crystal orientation is 0◦, that is, the loading direction is
parallel or vertical to the crystal orientation, the crack initiation is the slowest compared
with the other angles for all notch shapes. As the notch size increases, crack initiation
occurs faster. Among the three shapes, the semi-circular notch takes the longest time to
initiate cracks.
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However, the later occurrence of the crack does not mean that the crack propagation
speed will be slow, as shown in Figure 20b. When γ = 0◦, the propagation speeds of the
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semi-circular and square notches are the slowest, while the speed of the triangular notch is
the fastest at the size of 1.5 mm and 0.5 mm. For different notch shapes, the semi-circular
notch with a larger size has the lowest speed at γ = 0◦.

In short, the numerical results showed that the crack propagation path of single
crystals is sensitive to crystal orientation, notch shape, and size. To be more specific, semi-
circular notches are the most resistant to fracture in most cases, which is why rounded
corners are often used in structural design to reduce the stress concentration at edges and
corners. Rectangular and triangular notches are more likely to crack because of stress
concentration caused by sharp corners, which can be improved by modifying the tip to a
rounded corner [35].

In addition, the change in crystal orientation results in a change in the crack bifurca-
tion, the number of crack propagation paths, and the direction deviation. It needs to be
analysed in combination with the material property and structure. For single-crystal silicon,
experimental results showed that cracks occur along several specific cleavage planes. For
example, the fracture plane of Si(100) sheets after biaxial tensile loading is mainly along
the plane {110} [3]. The results in Figure 18a,c may be closer to this experimental trend.
However, further improvements in the theoretical part are required for the fracture with
specific cleavage planes.

5.2. Effects of Anisotropy Degree in Polycrystalline Materials

The anisotropy degree caused by grain orientations has a significant influence on the
fracture properties of polycrystalline materials. Based on the results in Section 4.3, the
plate with a crystal orientation range of [−10◦,10◦] and a grain number of 200 is further
simulated for comparison. The crack distribution results under different fracture modes
are shown in Figures 21–23.
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Figure 21. Crack distributions in the polycrystalline plate at time step 2000 when GBC = 0.5:
(a,b) 100 grains with high anisotropy degree, (c,d) 100 grains with low anisotropy degree,
(e,f) 200 grains with high anisotropy degree, and (g,h) 200 grains with low anisotropy degree.

Figure 21 shows that when intergranular fracture is dominant, the reduction in the
anisotropy degree will make the microcrack around the main propagation routes disappear
to a large extent. When the two fracture modes are not distinguished, the decrease in the
anisotropy degree reduces the bifurcation in the crack propagation path, even approaching
a straight line, as shown in Figure 22. When transgranular fracture dominates, the crack
propagation with a low degree of anisotropy is significantly slower than that with a high
degree of anisotropy (see Figure 23). These simulation results indicate that cracks in
polycrystalline materials tend to occur at locations with larger differences in orientation
angles, which has also been found in experimental studies [8].
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Practically, the grain orientation and size of a polycrystalline material may be random
or regular, depending on the manufacturing method. In the application of the model, its
fracture toughness and crack propagation path can be calibrated through small amounts
of experiments. Then, a more fracture-resistant grain structure and orientation can be
obtained through optimisation design in simulations to guide the structural design and
manufacturing of polycrystalline materials.

6. Conclusions

In view of the shortcomings of existing PD models in simulating crystal orientation,
this work developed an improved OSB-PD model to simulate the granular fractures of
cubic crystals involving arbitrary crystal orientations and delivered a complete derivation
process and expressions of correction factors. Two numerical experiments are used to study
and discuss the effect of crystal orientation on crack propagation. The main findings and
innovations of this work are summarised as follows.

(1) The periodic characteristics of the equivalent elastic modulus of cubic crystals are intro-
duced into the PD parameters to achieve the simulation of arbitrary crystal orientations.

(2) Convergence analysis is carried out in static and dynamic problems to obtain a proper
density of material points in one horizon region (m value) and horizon size (δ value)
to ensure computational effectiveness and accuracy. For a static problem, the m value
has a greater effect on convergence than the δ value, while for a dynamic fracture
problem, the δ value influences the crack propagation path more than the m value,
especially in the intergranular fracture mode.

(3) For convergence analysis on dynamic problems, a regulating strategy to obtain the
converged and accurate results of crack propagation paths is proposed as follows:



Materials 2024, 17, 3196 18 of 23

select an appropriate horizon size first and then increase the m value until the accuracy
is satisfied.

(4) In the numerical examples, the influence of crystal orientation on single-crystal mate-
rials with different notch shapes and sizes is mainly reflected in bifurcations, numbers,
and propagation path directions of cracks. Under biaxial tensile loading, the single
crystal with a semi-circular notch is more resistant to fracture than the crystal with
square or triangular notches in most cases.

(5) For polycrystalline materials, the decrease in the degree of grain anisotropy reduces micro-
cracks in intergranular fracture and the crack propagation rate in transgranular fracture.

Therefore, the OSB-PD model proposed in this work can simulate the granular fracture
behaviours of cubic crystals with arbitrary orientation angles and evaluate the fracture
properties of single crystals and polycrystalline materials. The size parameters obtained by
convergence analysis can ensure the accuracy of the crack propagation path and provide
a reference for the microstructure design and manufacturing of polycrystalline materials.
However, improvements are still needed for materials with specific fracture cleavage planes
and three-dimensional problems.
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Appendix A. Derivation of the PD Material Parameters for Cubic Crystals

The PD material parameters for cubic crystals are derived in the same way as those for
isotropic materials and composite laminates by comparing the volume dilatation and strain
energy density in CCM theory under simple loading conditions. Here, uniaxial tension
along the crystal orientation, simple shear, and biaxial tension are considered on a cubic
crystal rectangular plate.

• First Loading—Uniaxial tensile in the direction of crystal orientation: ε11 = ζ, ε22 = 0.

The magnitude of the relative position vector in the deformed configuration is:∣∣∣y(j) − y(k)

∣∣∣ = [
1 +

(
cos2ϕ

)
ζ
]∣∣∣x(j) − x(k)

∣∣∣. (A1)

(1) Volume dilatation.
CCM theory : θCCM

(k) = ζ (A2)

PD theory : θPD
(k) = d

∫
H

δ

ξ
(
[
1 + (cos2ϕ)ζ

]
ξ − ξ)dH =

πdhδ3ζ

2
(A3)

Let θPD
(k) = θCCM

(k) , so that

d =
2

πhδ3 . (A4)

(2) Strain energy density.

CCM theory : WCCM
(k) =

1
2

R11ζ2 (A5)
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PD theory :
WPD

(k) = aζ2 + b1
∫

H
δ
ξ (
[
1 +

(
cos2ϕ

)
ζ
]
ξ − ξ)2dH + b2

∫
H

δ
ξ

(
sin2 φcos2 φ

)
([1 + (cosϕsinϕ)ζ]ξ − ξ)2dH

= aζ2 + b1h
∫ δ

0

∫ 2π
0

δ
ξ (
[
1 +

(
cos2ϕ

)
ζ
]
ξ − ξ)2ξdϕdξ

+b2h
∫ δ

0

∫ 2π
0

δ
ξ sin2(ϕ − γ)cos2(ϕ − γ)(

[
1 + (cos2ϕ)ζ

]
ξ − ξ)2ξdϕdξ

= aζ2 +
(

πhδ4ζ2

4

)
b1 +

(
(38πk1+5πk3)hδ4ζ2

192

)
b2

(A6)

• Second Loading—Simple shear: γ12 = ζ.

The magnitude of the relative position vector in the deformed configuration is:∣∣∣y(j) − y(k)

∣∣∣ = [1 + (sinϕcosϕ)ζ]
∣∣∣x(j) − x(k)

∣∣∣. (A7)

(1) Volume dilatation.
θCCM
(k) = 0 (A8)

(2) Strain energy density.

CCM theory : WCCM
(k) =

1
2

R44ζ2 (A9)

PD theory :
WPD

(k) = a(0) +b1
∫

H
δ
ξ ([1 + (cosϕsinϕ)ζ]ξ − ξ)2dH + b2

∫
H

δ
ξ

(
sin2 φcos2 φ

)
([1 + (cosϕsinϕ)ζ]ξ − ξ)2dH

= a(0) + b1h
∫ δ

0

∫ 2π
0

δ
ξ ([1 + (cosϕsinϕ)ζ]ξ − ξ)2ξdϕdξ

+b2h
∫ δ

0

∫ 2π
0

δ
ξ sin2(ϕ − γ)cos2(ϕ − γ)([1 + (cosϕsinϕ)ζ]ξ − ξ)2ξdϕdξ

=
(

πhδ4ζ2

12

)
b1 +

(
(10πk1+3πk3)hδ4ζ2

192

)
b2

(A10)

• Third loading—biaxial tensile: ε11 = ζ, ε22 = ζ.

The magnitude of the relative position vector in the deformed configuration is:∣∣∣y(j) − y(k)

∣∣∣ = [1 + ζ]
∣∣∣x(j) − x(k)

∣∣∣. (A11)

(1) Volume dilatation.
θCCM
(k) = 2ζ (A12)

(2) Strain energy density.

CCM theory : WCCM
(k) = (R11 + R12)ζ

2 (A13)

PD theory :
WPD

(k) = 4aζ2 + b1
∫

H
δ
ξ ([1 + ζ]ξ − ξ)2dH + b2

∫
H

δ
ξ

(
sin2 φcos2 φ

)
([1 + ζ]ξ − ξ)2dH

= 4aζ2 + b1h
∫ δ

0

∫ 2π
0

δ
ξ ([1 + ζ]ξ − ξ)2ξdϕdξ

+b2h
∫ δ

0

∫ 2π
0

δ
ξ sin2(ϕ − γ)cos2(ϕ − γ)([1 + ζ]ξ − ξ)2ξdϕdξ

= 4aζ2 +
(

2πhδ4ζ2

3

)
b1 +

(
(6πk1+πk3)hδ4ζ2

12

)
b2

(A14)

Let WPD
(k) = WCCM

(k) in the three loading conditions, then the equation sets can be
obtained as follows.

(
πhδ4

12

)
b1 +

(10πk1+3πk3)hδ4

192 b2 = 1
2 R44

a +
(

πhδ4

4

)
b1 +

(38πk1+5πk3)hδ4

192 b2 = 1
2 R11

4a +
(

2πhδ4

3

)
b1 +

(6πk1+πk3)hδ4

12 b2 = (R11 + R12)

(A15)
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The other three PD material parameters are solved:

a = 1
2 (R12 − R44),

b1 = 3
2πhδ4k [(10πk1 + 3πk3)(R11 − R12)− 2(14πk1 + πk3)R44] and

b2 = 24[2R44−(R11−R12)]
hδ4k .

(A16)

where k = πk3 − 2πk1, k1 = sin2γcos2γ, and k3 = cos4γ + sin4γ − 4sin2γcos2γ.

Appendix B. Surface Correction Factors

By imposing a constant displacement gradient, the uniaxial tensile loadings in x- and
y-directions are conducted on a rectangular plate: ∂u∗

x/∂xα = ζ(α = 1, 2).
The volume dilatations in PD and CCM theory are

θPD
(k) = d

N

∑
j=1

δ∣∣∣x(j) − x(k)
∣∣∣ (
∣∣∣y(j) − y(k)

∣∣∣− ∣∣∣x(j) − x(k)
∣∣∣)Λ(k)(j)V(j) (A17)

θCCM
(k) = ζ (A18)

The surface correction factor for the volume dilatation is

Dα(i) =
ζ

dδ∑N
j=1 s(k)(j)Λ(k)(j)V(j)

(A19)

The strain energy density in PD theory is

WPD
α

[
x(k)

]
= WPD

αθ

[
x(k)

]
+ WPD

α1

[
x(k)

]
+ WPD

α2

[
x(k)

]
(A20)

where WPD
αθ

[
x(k)

]
, WPD

α1

[
x(k)

]
, and WPD

α2

[
x(k)

]
are the contributions from volume strain

(θPD
(k) ), the isotropic base (b1), and the anisotropic part (b2sin2 φcos2 φ).

In Appendix A, the strain energy density under the uniaxial tensile loading is

WPD
α

[
x(i)

]
= a

[
θPD
(k)

]2
+ b1

M
∑

j=1

δ∣∣∣x(j) − x(k)
∣∣∣ (
∣∣∣y(j) − y(k)

∣∣∣− ∣∣∣x(j) − x(k)
∣∣∣)2V(j)

+b2
J

∑
j=1

sin2 φcos2 φ
δ∣∣∣x(j) − x(k)

∣∣∣ (
∣∣∣y(j) − y(k)

∣∣∣− ∣∣∣x(j) − x(k)
∣∣∣)2V(j)

(A21)

Thus, the three components can be separated as

WPD
αθ

[
x(k)

]
= a

[
θPD
(k)

]2

WPD
α1

[
x(k)

]
= b1δ

M
∑

j=1

(
∣∣∣y(j) − y(k)

∣∣∣− ∣∣∣x(j) − x(k)
∣∣∣)2∣∣∣x(j) − x(k)

∣∣∣ V(j)

WPD
α2

[
x(k)

]
= b2δ

J
∑

j=1
sin2 φcos2 φ

(
∣∣∣y(j) − y(k)

∣∣∣− ∣∣∣x(j) − x(k)
∣∣∣)2∣∣∣x(j) − x(k)

∣∣∣ V(j)

(A22)

At the same time, the strain energy density in CCM theory can also be divided into
three parts.

WCCM
α

[
x(k)

]
=

1
2

Qααζ2 = WCCM
αθ

[
x(k)

]
+ WCCM

α1

[
x(k)

]
+ WCCM

α2

[
x(k)

]
(A23)
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By substituting the PD material parameters into it, the components can be expressed
as follows.

WCCM
αθ

[
x(k)

]
= aζ2

WCCM
α1

[
x(k)

]
= πhδ4ζ2

4 b1

WCCM
α2

[
x(k)

]
= (38πk1+5πk3)hδ4ζ2

192 b2

(A24)

The surface correction factors for the isotropic base (b1) and anisotropic part (b2sin2φcos2φ)
are calculated by

S1(k) =
WCCM

α1

[
x(k)

]
WPD

α1

[
x(k)

] =
πhδ4

4 b1

b1∑M
j=1

δ

|x(j)−x(k)|
(
∣∣∣y(j) − y(k)

∣∣∣− ∣∣∣x(j) − x(k)
∣∣∣)2V(j)

× ζ2 (A25)

S2(k) =
WCCM

α2

[
x(k)

]
WPD

α2

[
x(k)

] =
(38πk1+5πk3)hδ4

192 b2

b2∑J
j=1 sin2 φcos2 φ δ

|x(j)−x(k)|
(
∣∣∣y(j) − y(k)

∣∣∣− ∣∣∣x(j) − x(k)
∣∣∣)2V(j)

(A26)

According to these factors, the vectors of the surface correction factor for the volume
dilatation and the integration of the strain energy density at the material point x(k) are

g(d)(k)
[
x(k)

]
=

{
g1(d)

[
x(k)

]
, g2(d)

[
x(k)

]}T
=

{
D1(k), D2(k)

}T
(A27)

g(b)l(k)
[
x(k)

]
=

{
g1(b)l

[
x(k)

]
, g2(b)l

[
x(k)

]}T
=

{
S1l(k), S2l(k)

}T
(A28)

where l = 1 and 2 for b1 and b2, respectively.
Typically, the surface correction factors at x(k) and x(j) are different. Thus, the average

value of them is used.

ḡ(d)(k)(j) =
g(d)(k) + g(d)(j)

2
(A29)

ḡ(b)l(k)(j) =
g(b)l(k) + g(b)l(j)

2
(A30)

Then, by taking the surface correction factors at the points x(k) and x(j) as the semi-axes
of an ellipse, the value of the surface correction factor in any direction under simple loading
conditions can be calculated as follows.

G(d)(k)(j) =

{[
n1/ḡ(d)(k)(j)1

]2
+

[
n2/ḡ(d)(k)(j)2

]2
}−1/2

(A31)

G(b)l(k)(j) =

{[
n1/ḡ(b)l(k)(j)1

]2
+

[
n2/ḡ(b)l(k)(j)2

]2
}−1/2

(A32)

in which n1 and n2 are obtained by the unit vector of the relative position vectors of x(k)
and x(j).

n =
[
x(k) − x(j)

]
/
∣∣∣x(k) − x(j)

∣∣∣ = {n1, n2}T (A33)
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