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Abstract: In order to study the energy absorption characteristics of the open-section thin-walled
composite structures with different cross-sections, axial compression tests were carried out at loading
speeds of 0.01 m/s, 0.1 m/s, and 1 m/s. Finite element models were built to predict the crushing
response and energy absorption behaviors of these open-section structures. The effects of the cross-
section’s shape, cross-section aspect ratio, trigger mechanism, and loading speed on the energy
absorption characteristics of the composite structures were analyzed. The results show that the
average crushing loads of the hat-shaped and Ω-shaped open-section structures are 14.1% and 14.6%
higher than those of C-shaped open-section structures, and the specific energy absorption (SEA)
values are 14.3% and 14.8% higher than that of C-shaped open-section structures, respectively. For
the C-shaped open-section structures, a 45◦ chamfer trigger is more effective in reducing the initial
peak load, while a 15◦ steeple trigger is more appropriate for the hat-shaped open-section structures.
The average crushing loads and SEA of C-shaped, hat-shaped, and Ω-shaped open-section structures
are reduced when the loading speed is increased from 0.01 m/s to 1 m/s. The increase in loading
speed leads to the splashing of debris and thus reduces the loading area and material utilization of
open-section structures, leading to a decrease in energy absorption efficiency.

Keywords: composite; failure mode; energy absorption; numerical simulation

1. Introduction

Composite materials have become the overwhelming choice for the structural com-
ponents of aircraft in recent years due to their excellent advantages in strength, weight
reduction, and energy absorption behaviors [1–3]. For example, the number of composite
materials used in Airbus A350 and Boeing 787 has exceeded 50% of their total structural
weights. However, aircraft structures are inevitably subjected to impact loads in the event of
a crash. In order to protect occupants from injury, the structural deformation and material
failure of aircraft components may be involved to absorb the impact’s kinetic energy [4,5].
It is a critical point that aerospace composite materials possess the same crashworthiness
as metal materials during an emergency landing. Thus, the energy absorption design of
aerospace composite structures has always remained a top priority to prevent catastrophic
structural failure and significant casualties.

Composite tubes have been increasingly used in aerospace applications. Existing
studies on crashworthiness have mainly focused on evaluating and improving the crushing
behavior and energy absorption capacity of various composite thin-walled structures, such
as circular carbon fiber-reinforced plastic (CFRP) tubes [6,7], squared CFRP tubes [8,9],
and double-hat-shaped CFRP tubes [10,11]. It was found that circular composite tubes
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exhibit the best specific energy absorption characteristics among all the various composite
tubes with different sectional profiles, but they have the same wall thickness [12]. A large
number of approaches have been proposed to enhance crashworthiness behaviors, such as
filling cellular materials in composite tubes. Lightweight foams are usually used as a core
material of composite tubes to improve buckling strength, stiffness, and impact resistance
while maintaining minimal mass [13,14]. However, the usage of cellular materials may
decrease weight efficiency, leading to undesirable specific energy absorption compared
with hollow composite tubes.

Composite materials also have disadvantages such as high cost and brittle fracture
behaviors. The hybrid material design strategy provides a good solution to meet the
requirements of lightweight property and energy absorption [15–17]. The SEA of the
metal–composite hybrid structure can be improved by 37% compared to pure aluminum
tubes. The external inversion mode of the metal–clad composite hybrid circular tube is the
main mechanism for energy absorption [18]. In addition, it is able to avoid the excessive
loads transferred to the entire structure and improve energy absorption behaviors by using
the trigger mechanism [19]. Traditional composite tubes usually exhibit Euler buckling,
shell buckling, and a brittle fracture mode. However, these composite tubes can collapse
with a progressive crushing mode after introducing a chamfer trigger mechanism [20,21].
The crashworthiness investigation of the double- and triple-coupling triggered composite
tubes reveals that the triple-coupled triggers improve the energy absorption capacity
while double-coupled triggers can weaken the triggered zones to decrease the initial peak
force [22]. In addition, multi-scale impact fracture mechanisms were investigated in hybrid
materials [23].

Open-section energy-absorbing structures are extensively used as the subfloor struc-
ture of modern airplanes. Thus, a number of studies have been conducted to investigate the
crushing behavior and energy absorption of open-section structures [24,25]. Bolukbasi and
Laananen [26] investigated the energy-absorbing characteristics of the composite flat plates,
angles, and channel sections under axial compression loading, and a semi-empirical analy-
sis methodology was developed to predict the energy absorption capability. Riccio et al. [27]
investigated the structural behavior of a channel section composite component subjected
to quasi-static compression and dynamic loads. The interfaces between plies oriented ac-
cording to the impact loading direction have been found more susceptible to inter-laminar
damage. Jackson et al. [28] studied the crushing response of the carbon fiber/epoxy crush
elements. The impact testing results indicate a 6–15% reduction in SEA compared to the
quasi-static crushing case. Waimer et al. [29] investigated the dynamic failure behavior
of the CFRP components assembled using a CFRP half-tube and an L-shaped strut. The
assembly of the half-tube and L-strut provides an Improved section modulus, which leads
to a progressive crushing mode.

The existing studies on open-section energy-absorbing structures have focused on
the crushing response with the impact velocity arranged from 1.8 m/s to 10 m/s, while
it still lacks the crushing data of the composite channel section structures with different
cross-sections when the impact velocity is arranged from 0.01 m/s to 1 m/s. In addition, the
crushing mechanism and energy absorption performance of different composite thin-walled
open-section structures have not been revealed. Accordingly, this paper aims to study the
energy absorption characteristics of different open-section thin-walled composite structures
using a high-speed hydraulic servo testing system. Then, a finite element model was built
to further study the crushing response and energy absorption performance of open-section
thin-walled composite structures. Finally, the influences of the cross-section’s shape, cross-
section aspect ratio, trigger mechanism, and impact velocity on the failure modes and
energy absorption characteristics of thin-walled composite structures were analyzed.
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2. Experimental Testing
2.1. Specimen Description

The testing specimens are fabricated via the hot-press molding process based on
CCF300/8552A high-temperature cured epoxy/carbon fiber prepregs (AVIC Composite
Co., Ltd., Beijing, China). The volume fraction of the carbon fibers is approximately
67% ± 2%, and the 0◦ tensile strength of a single-layer prepreg is 1500 Mpa. The material
density of the testing specimens is 1.6 g/cm3. The testing specimens are laid at angles
of [45◦/0◦/90◦/−45◦/45◦/0◦/90◦/−45◦]s, and the subscript “s” means the symmetric
lay-up method. The axial compression direction aligns with the 0◦ direction of the carbon
fibers, and the specimen’s thickness is 2 mm. To investigate the effect of the cross-sectional
configuration, cross-section aspect ratio, and triggering method on the energy absorption
characteristics of composite thin-walled structures, three cross-sectional configurations are
considered, including the C-type, hat-type, and Ω-type configurations, as shown in Figure 1.
These geometric configurations have three different section aspect ratios, namely 1.65, 1.06,
and 2.31, and the three types of cross-section aspect ratios are denoted as C1, C2, and
C3, respectively. In addition, two different triggering methods, including the 45◦ chamfer
trigger mechanisms and the 15◦ steeple trigger mechanisms, have been adopted to improve
crushing responses. Figure 2 exhibits the testing specimens of the open-section crushing
elements. All specimens have a height of 100 mm and the same cross-sectional area. In
order to guarantee that these specimens are fixed in the material’s testing machine stably, a
composite base along the horizontal plane is added at the bottom of the testing specimens.
The composite base consists of a metal shell and a resin material with dimensions of
80 mm × 60 mm × 20 mm. The testing specimens are partially inserted into the composite
base during crushing experiments.
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2.2. Testing Setup and Procedure

The axial compression tests of composite open-section thin-walled structures were
conducted using an Instron VHS 160/100-20 high-speed hydraulic servo testing machine
(Instron Inc., Norwood, MA, USA), as shown in Figure 3a. This testing machine consists
of a hydraulic system, water cooling system, frame, and control system. The constant
dynamic loading process is realized by the loading energy provided by the combination of
a hydraulic actuator and a gas accumulator. The maximum loading speed of the testing
machine is 20 m/s, and the maximum impact dynamic load is 100 kN. The testing load and
displacement are, respectively, measured by the force sensors and displacement sensors
installed in the testing machine. The impact velocity was set at 0.01 m/s, 0.1 m/s, and 1 m/s,
with a maximum compression stroke of 54 mm. The testing equipment and the specimen
clamping method are illustrated in Figure 3b. The testing specimen is fixed to the base of
the testing machine using two fixed blocks and bolted joints. The support can guarantee the
stability of the loading device and prevent the head of the testing machine from becoming
unstable during the loading process. Table 1 presents all experimental conditions of the
composite open-section thin-walled structures. During the loading process, a Photron SA-X
high-speed camera (Photron Inc., Tokyo, Japan), as shown in Figure 3c, was used to record
the deformation and failure behaviors of the composite open-section thin-walled structures.
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2.3. Crashworthiness Evaluation Criterion

Several crashworthiness evaluation criteria are selected to evaluate and compare the
energy absorption performance of various structures [30]. Figure 4 shows a typical force-
displacement curve of energy-absorbing materials during a progressive crushing process.
The force–displacement curve can be classified into three typical stages: the initial crushing
stage (Stage I), the stable crushing stage (Stage II), and the densification stage (Stage III).
During Stage I, the crushing force shows an approximate linearity increase first and then
a certain degree of decrease after reaching the peak force. During Stage II, the crushing
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force maintains a relatively stable interval and fluctuates around the mean crushing load.
The following evaluation criteria are adopted to evaluate the energy absorption capacity of
open-section crushing elements.

Table 1. Experimental conditions of composite open-section thin-walled structures.

Configuration Triggering Mechanism Impact Velocity (m/s) Mass (g)

C1 45◦ Chamfer trigger 1.00 14.680
Hat 45◦ Chamfer trigger 1.00 14.678
Ω 45◦ Chamfer trigger 1.00 14.677
C2 45◦ Chamfer trigger 1.00 14.680
C3 45◦ Chamfer trigger 1.00 14.680
C1 15◦ steeple trigger 1.00 13.507
Hat 15◦ steeple trigger 1.00 14.029
C1 45◦ Chamfer trigger 0.01 14.680
C1 45◦ Chamfer trigger 0.10 14.680
Hat 45◦ Chamfer trigger 0.01 14.678
Hat 45◦ Chamfer trigger 0.10 14.678
Ω 45◦ Chamfer trigger 0.01 14.677
Ω 45◦ Chamfer trigger 0.10 14.677
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(1) Initial peak force Fp: The maximum force during the crushing process, and Fp
should be controlled within an allowable range to avoid transmitting excessive loads
to passengers.

(2) Average crushing force Facf: The average crushing force during Stage II can be ex-
pressed as

Fmc f =

∫
Fdl
l

(1)

where F is the instantaneous crushing force during the crushing process, and l is the
effective compression stroke when an energy-absorbing material is fully compacted.

(3) Crushing force efficiency CFE: The crushing force efficiency is defined as the ratio of
the averaged load during the plateau stage to the initial peak force, which represents
the load uniformity of an energy-absorbing material. It can be given by

CLE =
Fmc f

Fp
(2)

(4) Specific energy absorption SEA: It is the most significant evaluation criterion to
compare the energy absorption capacity of different energy-absorbing materials,
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which is defined as the energy absorbed per unit mass of a structure, and it can be
given by

SEA =

∫
Fdl
m

(3)

where m is the mass of the energy-absorbing material. In this work, the displacement when
the head of the material testing machine contacts the open-section crushing elements is
taken as the starting point for energy absorption.

3. Numerical Modeling
3.1. Finite Element Modeling

Numerical simulations can provide more detailed insights into failure mechanisms
and deformation evolution, which are not accessible via physical testing methods. This
section focuses on developing a finite element model to simulate the axial crushing response
of composite open-section thin-walled structures. Figure 5 shows the finite element model
of composite open-section thin-walled structures under axial crushing loads. The composite
laminated material is simulated using continuous shell elements (SC8R) with a mesh size
of 1.5 mm. These composite specimens are composed of sixteen layers, and a two-layer
unidirectional strip is set for each layer. In addition, cohesive elements are established
to simulate delamination failure between the adjacent layers. A schematic diagram of
the lay-up configuration and the cohesive elements is shown in Figure 6. The interlayer
adhesive layer is modeled using cohesive elements (C3H8) with a thickness of 0.01 mm. The
indenter is regarded as the rigid body in the finite element model. The clamping portion at
the bottom of the test specimens is neglected in the numerical model. The nodes located at
the bottom of the test specimens remain fixed by restricting all degrees of freedom. In order
to facilitate loading and obtain the reaction forces, a reference point RP-1 is established and
coupled with the indenter. The indenter moves downwards at a prescribed velocity. In
addition, a general automatic contact algorithm is adopted to simulate the contact interface,
the possible friction interactions between the different parts and the self-contact of the
specimen are defined in the tangential contact behavior. The modeling of friction contact is
based on the general contact algorithm, and its friction coefficient is set to 0.5. The hard
contact relationship is adopted to define the normal contact behaviors of the model. The
traction–separation model is adopted to define the cohesive contact behavior between the
adjacent layers.
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3.2. Material Damage Modeling

(1) Intralaminar properties

In this study, the 2D Hashin failure criterion is employed to determine the failure
initiation for open-section crushing elements. The Hashin criterion defines four types
of failure modes, including fiber tension, fiber compression, matrix tension, and matrix
compression. The expressions for these failure modes are as follows:

Fiber tension failure (σ11 ≥ 0):

Ff t =

(
σ11

XT

)2
+ α

(
σ12

S12

)2
= 1 (4)

Fiber compression failure (σ11 < 0):

Ff C =

(
σ11

XC

)2
= 1 (5)

Matrix tension failure (σ22 ≥ 0):

Fmt =

(
σ22

YT

)2
+ β

(
σ12

S12

)2
= 1 (6)

Matrix compression failure (σ22 < 0):

Fmc =

(
σ22

YC

)2
+ γ

(
σ12

S12

)2
= 1 (7)

Here, σij (i, j = 1, 2) denotes the stress components. XT is the axial tension strength, XC
is the axial compression strength, YT is the transverse tension strength, YC is the transverse
compression strength, and S12 is the shear strength. α, β, and γ are scale coefficients.
When Fg (g = f, m, t, c) reaches 1, this indicates the onset of material damage in the
open-section crushing elements. Here, after the initiation of failure, the material stiffness
gradually degrades, and it enters the damage evolution stage, as shown in Figure 7. Point
A represents the failure initiation point that satisfies the Hashin criterion, followed by linear
stiffness degradation until the material failure occurs.

Materials 2024, 17, x FOR PEER REVIEW 8 of 23 
 

 

failure modes, including fiber tension, fiber compression, matrix tension, and matrix com-
pression. The expressions for these failure modes are as follows: 
Fiber tension failure (σ11 ≥ 0): 

2 2

11 12

12

1σ σα
   

= + =   
   

ft
T

F
X S  

(4)

Fiber compression failure (σ11 < 0): 
2

11 1σ 
= = 
 

fC
C

F
X  

(5)

Matrix tension failure (σ22 ≥ 0): 
2 2

22 12

12

1σ σβ
   

= + =   
   

mt
T

F
Y S  

(6)

Matrix compression failure (σ22 < 0): 
2 2

22 12

12

1σ σγ
   

= + =   
  

mc
C

F
Y S  

(7)

Here, σij (i, j = 1, 2) denotes the stress components. XT is the axial tension strength, XC 
is the axial compression strength, YT is the transverse tension strength, YC is the transverse 
compression strength, and S12 is the shear strength. α, β, and γ are scale coefficients. When 
Fg (g = f, m, t, c) reaches 1, this indicates the onset of material damage in the open-section 
crushing elements. Here, after the initiation of failure, the material stiffness gradually de-
grades, and it enters the damage evolution stage, as shown in Figure 7. Point A represents 
the failure initiation point that satisfies the Hashin criterion, followed by linear stiffness 
degradation until the material failure occurs. 

 
Figure 7. Constitutive model and damage evolution model. 

Once the damage initiation criterion is satisfied, a damage evolution method is re-
quired to describe its subsequent development. A linear progressive damage evolution is 
selected to represent the evolution process of intralaminar damage, and the damage vari-
able di can be given by  

0

0

( )
( )

δ δ δ
δ δ δ

−
=

−

t
eq eq eq

i t
eq eq eq

d
 

(8)

where δeq represents the equivalent displacement corresponding to the failure mode, 0δ eq  

denotes the equivalent displacement at the initiation of the failure, while δ t
eq  represents 

σeq

δeq
0

A

C

B
.

.
.

σeq0

δeq δeq0 t

kd (1−di)kd.
Figure 7. Constitutive model and damage evolution model.

Once the damage initiation criterion is satisfied, a damage evolution method is re-
quired to describe its subsequent development. A linear progressive damage evolution
is selected to represent the evolution process of intralaminar damage, and the damage
variable di can be given by

di =
δt

eq(δeq − δ0
eq)

δeq(δt
eq − δ0

eq)
(8)
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where δeq represents the equivalent displacement corresponding to the failure mode, δ0
eq

denotes the equivalent displacement at the initiation of the failure, while δt
eq represents

the equivalent displacement when the material is fully damaged. δ0
eq and δt

eq can be
expressed as

δ0
eq =

δeq√
φ

(9)

δt
eq =

2GC

σeq/
√

φ
(10)

where φ is the variable related to the failure mode, GC is the fracture energy density, and
σeq is the equivalent stress corresponding to the failure mode. In addition, the calculation
methods of the equivalent displacement and stress for every failure mode are shown
in Table 2.

Table 2. Equivalent displacement and stress for every failure mode.

Failure Mode Equivalent Stress Equivalent Displacement

Fiber
tension σf t,eq =

Lc(⟨σ11⟩⟨ε11⟩+σ12ε12)
δ f t,eq

δ f t,eq = Lc

√
⟨ε11⟩2 + (ε12)

2

Fiber
compression σf c,eq = Lc⟨−σ11⟩⟨−ε11⟩

δ f c,eq
δ f c,eq = Lc⟨−ε11⟩

Matrix
tension σmt,eq =

Lc(⟨σ22⟩⟨ε22⟩+σ12ε12)
δmt,eq

δmt,eq = Lc

√
⟨ε22⟩2 + (ε12)

2

Matrix
compression σmc,eq =

Lc(⟨−σ22⟩⟨−ε22⟩+σ12ε12)
δmc,eq

δmc,eq = Lc

√
⟨−ε22⟩2 + (ε12)

2

In Table 2, Lc represents the element’s characteristic length; the symbol “< >” is the
Macaulay operator, and it can be expressed as

< x >=

{
x, x > 0
0, x ≤ 0

(11)

The elasticity constants and damage initiation coefficients of the composite materials
are exhibited in Table 3.

Table 3. Elasticity constants and damage initiation coefficients for the intra-laminar model [31].

Description Variable Value

Longitudinal Young modulus E1 171,420 MPa
Transversal Young modulus E2 9080 MPa

Principal Poisson’s ratio v12 0.32
Shear modulus G12 5290 MPa

Longitudinal tensile strength XT 1773 MPa
Longitudinal compressive strength XC 1264 MPa

Transversal tensile strength YT 62.3 MPa
Transversal compressive strength YC 199.8 MPa

In-plane shear strength S12 92.3 MPa
Longitudinal tensile fracture energy G c

f t 120 N/mm
Longitudinal compressive fracture energy G c

f c 100 N/mm
Transverse tension fracture energy G c

mt 2 N/mm
Transverse compression fracture energy G c

mc 5 N/mm

(2) Interlaminar properties

To simulate the delamination failure of the composite open-section thin-walled struc-
tures during the crushing process, the cohesive elements based on the traction–separation
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law are used between the layers that are prone to failure. The elastic constitutive relation-
ships are described as follows:σn

σs
σt

 =

Kn 0 0
0 Ks 0
0 0 Kt

δn
δs
δt

 (12)

where σk (k = n, s, t) and Kk (k = n, s, t) denote the traction stress and stiffness in the normal
direction and two shear directions, and δk is the separation displacement. The quadratic
nominal stress criterion is adopted to determine the initiation of the delamination failure,
and it can be given by (

⟨σn⟩
σc

n

)2
+

(
σs

σc
s

)2
+

(
σt

σc
t

)2
= 1 (13)

where σc
n, σc

s , and σc
t are the corresponding interface strengths of the interlaminar layer.

A power law fracture criterion is employed to predict the damage evolution of the
interlaminar properties. It indicates that the delamination failure under mixed-mode
conditions is governed by the power law interaction of the energies required to cause
failure in the individual modes:(

GI
GIC

)2
+

(
GI I

GI IC

)2
+

(
GI I I

GI I IC

)2
= 1 (14)

where GI, GII, and GIII are the interface energies; and GIC, GIIC, and GIIIC are the critical
fracture energy values required to cause failure in the different modes. In addition, the
material parameters of the cohesive element are given in Table 4.

Table 4. Material parameters of the cohesive elements [32].

Description Variable Value

The stiffness in the normal direction Kn 1 × 106 N/mm3

The stiffness in the first shear direction Ks 5 × 105 N/mm3

The stiffness in the second shear direction Kt 5 × 105 N/mm3

The interface strength in the normal direction σc
n 60 MPa

The interface strength in the first shear direction σc
s 110 MPa

The interface strength in the second shear direction σc
t 110 MPa

Mode-I fracture toughness GIC 0.2 N/mm
Mode-II fracture toughness GIIC, GIIIC 5 N/mm

4. Results

To validate the crushing response of the testing specimens, the C1-shaped and hat-
shaped specimens were selected to establish the finite element models at a loading velocity
of 1 m/s. The load–displacement curves obtained from the experimental and simulation
results are shown in Figure 8. The comparisons between the peak load and the average
crushing load of the testing specimens are presented in Table 5. It can be concluded that
the finite element models can effectively capture the crushing response of the open-section
crushing elements during the compression process. Furthermore, convergence analysis
is conducted with mesh sizes of 1 mm, 1.5 mm, 2mm, and 3 mm. The simulation results
shown in Figure 8c prove that 1.5 mm is an appropriate mesh size with acceptable accuracy
and computational costs. In addition, the oscillatory processes are noticeable for the force–
displacement curves of the specimens during the crushing process. The crushing force
decreases when composite thin-walled open-section structure fractures appear. Different
failure mechanisms, such as matrix cracking, fiber failure, and delamination, may be
involved during the impact process. In addition, local buckling may occur, which leads
to a folding sequence for composite thin-walled open-section structures; this folding
phenomenon can also result in the oscillatory process.
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Figure 8. Comparison of simulation and experimental results for the crushing process.

Table 5. Initial peak forces and mean crushing forces of different testing specimens.

Description FP (Kn) FMCF (Kn)

C1-Test 20.14 14.36
C1-Simulation 19.53 11.90

Error 3.01% 17.10%
Hat-Test 23.38 16.13

Hat-Simulation 22.57 14.65
Error 3.46% 9.18%

Figure 9 exhibits the failure modes of C1-shaped and hat-shaped testing specimens
with a crushing displacement of 10 mm. It is evident that both C1-shaped and hat-shaped
specimens primarily experience in-plane shear deformation and interlaminar delamination
during the compression failure process. For C1-shaped open-section specimens, the stress
concentration at the corners leads to the formation of a relatively long axial matrix tensile
failure zone. However, no significant axial matrix tensile failure zone is observed at the
corners of the hat-shaped open-section specimens.
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5. Discussions
5.1. The Effect of the Cross-Section Configuration

To investigate the effect of the cross-section configuration on the energy absorption
characteristics of composite thin-walled structures, three geometric configurations, includ-
ing the C1-shape, hat-shape, and Ω-shape, were selected. The triggering mode for all the
configurations was a 45◦ chamfer triggering mechanism, and the loading speed was 1 m/s.
Figure 10 shows the typical load–displacement curves of the open-section elements with
three different cross-section configurations during the crushing process. It can be found that
all three specimens exhibit a progressive crushing failure mode. The C1-shaped specimen
presents a more pronounced load decrease after reaching the peak force compared with
the hat-shaped and Ω-shaped specimens. In addition, the crushing force of the C1-shaped
specimen at the stable crushing stage is lower than that of the other two configurations.
The initial peak force, the average crushing force, and specific energy absorption of the
hat-shaped and Ω-shaped specimens are almost the same with respect to the triggering
mode and loading speed. The average crushing forces of the hat-shaped and Ω-shaped
specimens are 14.1% and 14.6% higher than that of the C1-shaped specimen. The specific
energy absorption increases by 14.3% and 14.8% for the hat-shaped and Ω-shaped speci-
mens compared with the C1-shaped specimen, as shown in Figure 11. The relatively higher
initial peak load of the hat-shaped and Ω-shaped open-section specimens can be attributed
to the combined influence of the cross-section configuration and triggering mode.
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Figure 10. Typical force–displacement curves of the testing specimens with different cross-section shapes.
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Figure 11. Comparison of the energy absorption characteristics of the testing specimens with different
cross-section shapes.

During the crushing process of the testing specimens, material deformation primarily
occurs through bending, delamination failure, and shear failure. The top of the testing
specimen experiences bending due to interlaminar cracking, causing the inner carbon fiber
fabric to bend inward and the outer carbon fiber fabric to bend outward. Simultaneously,
numerous short intralaminar cracks form during the crushing process, and shear failure
occurs at the root of these short intralaminar cracks, leading to the formation of numerous
fragments, as shown in Figure 12.

Figure 13 exhibits the failure modes of the testing specimens with different cross-
section configurations. The C1-shaped testing specimen has the largest fragment size,
while the Ω-shaped testing specimen has the smallest fragment size. For the C1-shaped
and hat-shaped specimens, a portion of the outer carbon fiber fabric forms a longer axial
tearing region due to stress concentration at the corners. Furthermore, a portion of the
inner carbon fiber fabric bends inward, and some relatively intact carbon fiber fabric
remains after these specimens are fully crushed. The larger size of the remaining fragments
and the presence of large intact carbon fiber fabrics in the C1-shaped specimen indicate
insufficient damage during the crushing process, which is averse to energy absorption.
Consequently, the C1-shaped specimen exhibits a lower average crushing force and specific
energy absorption. However, no evident stress concentration zone occurs for the Ω-shaped
open-section specimen during the crushing process, resulting in more complete material
failure. Accordingly, the Ω-shaped specimen shows a higher average crushing force and
better specific energy absorption. In addition, the stress concentration is relieved in the
hat-shaped specimen due to the smoother corners; thus, these materials are fully damaged,
leading to a considerable average crushing load and specific energy absorption compared
to the Ω-shaped specimen.
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5.2. The Effect of the Cross-Section Aspect Ratio

To investigate the effect of the cross-section aspect ratio on the energy absorption
characteristics of thin-walled composite material structures, the crushing responses of the
C1, C2, and C3 specimens were analyzed. The triggering mode of all specimens was a 45◦

chamfer trigger. Figure 14 shows the typical load–displacement curves for the C-shaped
open-section elements with three different cross-section aspect ratios. It can be observed
that the load–displacement curves for the three C-shaped open-section elements are quite
similar. Figure 15 shows a comparison of the energy absorption characteristics of the testing
specimens with different cross-section aspect ratios. The average crushing load of the C1
specimen is simply 6.4% higher than that of the C2 specimen and 5.1% higher than that of
the C3 specimen. In addition, the SEA of the C1 specimen is 6.4% and 5.0% higher than
that of the C2 and C3 specimens. The C1, C2, and C3 specimens almost have the same
failure mode in that axial tearing occurs at the corners of the carbon fiber fabric. The width
of the residual fragments is comparable to the specimen’s thickness, as shown in Figure 16.
However, the length of the residual fragments during the crushing process is related to the
specimen’s dimensions, resulting in slight differences in energy absorption characteristics
for the specimens with three aspect ratios.
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Figure 14. Typical force–displacement curves of the testing specimens with different cross-section
aspect ratios.
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Figure 15. Comparison of the energy absorption characteristics of the testing specimens with different
cross-section aspect ratios.
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Figure 16. Failure modes of the testing specimens with different cross-section aspect ratios.

5.3. Trigger Mechanism

To investigate the influence of trigger mechanisms on the energy absorption charac-
teristics of composite thin-walled open-section structures, the crushing responses of the
C1-shaped and hat-shaped open-section specimens with the 45◦ chamfer trigger and the 15◦

steeple trigger are analyzed. Figure 16 shows the typical load–displacement curves of the
C1-shaped and hat-shaped specimens with different triggering modes under axial crushing
loading. Figure 17 presents a comparison of the energy absorption characteristics of the
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testing specimens with different trigger methods. It can be observed that the time needed
to reach the peak force significantly increases for testing specimens with the 15◦ steeple
trigger at the initial stage of the crushing process. However, no evident differences can be
found for the load–displacement curves of the testing specimens with the two triggering
mechanisms during the stable crushing stage. For the C1-shaped open-section specimens,
the 45◦ chamfer trigger is more effective in reducing the peak force during the crushing
process. For the testing specimens with the 15◦ steeple trigger, the load–displacement
curve exhibits a small plateau when crushing displacement reaches approximately 4 mm.
Subsequently, the crushing force continues to rise, and the slope of the load–displacement
curve also increases. This behavior is attributed to the excessive weakening of the testing
specimen above the corner by the 15◦ steeple trigger, while the weakening below the corner
is insufficient, resulting in the inadequate induction of the progressive failure.
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Figure 16. Typical force–displacement curves of the testing specimens with different trigger mechanisms.

For the hat-shaped open-section specimens, the initial peak force can be eliminated
by using the 15◦ steeple trigger, and the load efficiency can reach 89.50%, indicating that
the hat-shaped open-section specimen is well matched with the corresponding steeple
trigger. Figure 18 exhibits the failure modes of the testing specimens with the steeple trigger
method. It can be found that numerous material fragments occur during the crushing
process of the hat-shaped specimen with the 15◦ steeple trigger, which indicates that more
thorough material damage appears at the top of the testing specimen. In Section 5.1, the
initial peak forces of the hat-shaped and Ω-shaped open-section specimens are relatively
high. The main reason is that the optimal triggering mechanism may be different compared
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to composite thin-walled open-section structures with different cross-section configura-
tions. The 45◦ chamfer trigger does not sufficiently weaken the hat-shaped and Ω-shaped
specimens, which is not the optimal triggering mode for this loading condition.
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Figure 17. Comparison of the energy absorption characteristics of the testing specimens with different
trigger mechanisms.
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5.4. Impact Velocity

To study the effect of the loading rate on the energy absorption performance, the
crushing responses of C1-shaped, hat-shaped, and Ω-shaped open-section specimens at the
impact velocities of 0.01 m/s, 0.1 m/s, and 1 m/s are investigated in this section. Figure 19
shows the typical load–displacement curves for the three types of testing specimens with
different impact velocities. Figure 20 presents a comparison of the energy absorption
characteristics of testing specimens with different impact velocities. The initial peak force,
average crushing force, and specific energy absorption of three types of the testing speci-
men decrease as the impact velocity increases. When the loading speed is increased from
0.01 m/s to 1 m/s, the average crushing force of C1-shaped, hat-shaped, and Ω-shaped
open-section specimens decreases by 6.1%, 10.9%, and 6.1%, respectively. However, the
specific energy absorption of these testing specimens decreases by 6.2%, 11.0%, and 6.2%,
respectively. Figure 21 shows the variation in the specific energy absorption of these testing
specimens with different impact velocities. It can be concluded that the hat-shaped speci-
men experiences a more pronounced decline in specific energy absorption with an increase
in impact velocity compared with the C1-shaped and Ω-shaped open-section specimens.

Figure 22 shows the failure modes of the testing specimens with a loading speed of
0.01 m/s, which were observed by comparing the failure behaviors of the testing specimens
at loading speeds of 0.01 m/s and 1 m/s. A few material fragments from the testing speci-
mens with a loading rate of 0.01 m/s appear during the crushing process, indicating that a
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thorough material failure occurs for this loading condition. The fracture morphology of the
testing specimens reveals that the end section of the crushed zone retains more material
fragments and exhibits more chaotic and twisted morphology, as shown in Figure 23. The
crushed zone experiences adequate friction and compaction with the indenter, which can
contribute to an increased structural load-bearing area. However, the testing specimens
with the loading rates of 1 m/s ejected a large number of material fragments during the
crushing process, reducing the load-bearing area and material utilization. Furthermore,
frictional energy absorption was observed between the indenter and the crushed zone, as
well as between the layers and fragments. Thus, the initial peak load, the average crushing
load, and the specific energy absorption of the specimens also decrease with an increase in
impact velocity.
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Figure 19. Typical force–displacement curves of the testing specimens with different loading rates.
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Figure 20. Comparison of the energy absorption characteristics of testing specimens with different
loading rates.
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Figure 21. Variation in the SEA of testing specimens with different loading rates.
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Figure 22. Failure modes of the testing specimens with a loading speed of 0.01 m/s.
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6. Conclusions 
This work mainly studies the crushing response and energy absorption characteris-

tics of composite open-section thin-walled structures with different geometric configura-
tions and loading conditions. The main conclusions obtained are as follows: 
(1) For the composite thin-walled open-section structures with different geometric con-
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shear failure, and friction between the crushing zone during the crushing. 
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tion efficiency of C1-shaped specimens compared to the hat-shaped and Ω-shaped 
specimens.  

(3) Different triggering mechanisms primarily affect the initial crushing stage of the com-
posite structures, while it has little influence on the stable crushing stage. For C-
shaped specimens, a 45° chamfer trigger yields better energy absorption. However, 
the 15° steeple trigger is the optimal triggering mode for the hat-shaped structures. 

(4) The average crushing force and specific energy absorption of composite thin-walled 
structures decrease with an increasing in loading rates. More material fragments can 
be ejected under higher loading rates, which reduces the structural load-bearing area, 
material utilization, and frictional energy absorption in the crushing zone. 
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Figure 23. Failure modes of the testing specimens with a loading speed of 0.01 m/s.

6. Conclusions

This work mainly studies the crushing response and energy absorption characteristics
of composite open-section thin-walled structures with different geometric configurations
and loading conditions. The main conclusions obtained are as follows:

(1) For the composite thin-walled open-section structures with different geometric con-
figurations, a brittle failure mode can be observed under different loading rates. The
impact kinetic energy is mainly absorbed via material bending, delamination failure,
shear failure, and friction between the crushing zone during the crushing.

(2) The cross-section configuration significantly influences the energy absorption char-
acteristics of composite thin-walled open-section structures. The insufficient mate-
rial damage caused by stress concentration is the main reason for the low energy
absorption efficiency of C1-shaped specimens compared to the hat-shaped and Ω-
shaped specimens.

(3) Different triggering mechanisms primarily affect the initial crushing stage of the
composite structures, while it has little influence on the stable crushing stage. For
C-shaped specimens, a 45◦ chamfer trigger yields better energy absorption. However,
the 15◦ steeple trigger is the optimal triggering mode for the hat-shaped structures.

(4) The average crushing force and specific energy absorption of composite thin-walled
structures decrease with an increasing in loading rates. More material fragments can
be ejected under higher loading rates, which reduces the structural load-bearing area,
material utilization, and frictional energy absorption in the crushing zone.
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