Study on the Nodal Composite Bearing Performance of Nontruncated PHC Pipe Pile and Bearing Platform
Abstract
:1. Introduction
2. Experimental Design
2.1. Experimental Design
2.2. Fabrication of Specimens
2.3. Test Loading and Measuring Devices
3. Experimental Results
3.1. Appearance of Test
3.1.1. Experimental Phenomena of CT-200
3.1.2. Experimental Phenomena of CT-300
3.2. Strain in Anchored Reinforcement
3.2.1. Strain in Anchored Reinforcement for CT-200
3.2.2. Strain in Anchored Reinforcement for CT-300
3.3. Skeleton Curve
4. Numerical Simulation
4.1. Numerical Model
4.2. Numerical Simulation Validation
4.2.1. Comparison of Simulated and Experimental Skeleton Curves
- (1)
- Reinforced concrete
- (2)
- Concrete substrate
- (3)
- Numerical simulation validation
4.2.2. Comparative Analysis of Nodal Load Capacity
4.2.3. Nodal Concrete Damage
4.3. Bearing Capacity of Four Types of Nodes
4.3.1. Material Strength
4.3.2. Bearing Capacity of the Terminal Plate Welded Anchor Bar + Core-Filled Longitudinal Bar Unanchored into the Cap Node (Type I Node)
4.3.3. Bearing Capacity of the Terminal Plate Welded Anchor Bar + Core-Filled Longitudinal Bar Anchored into the Cap Node (Type II Node)
4.3.4. Bearing Capacity of the Core-Filled Longitudinal Bar Anchored into the Cap Node (Type III Node)
4.3.5. Bearing Capacity of the Terminal Plate Welded Anchor Bar Node (Type IV Node)
4.3.6. Bearing Capacity under Different Vertical Tensile Forces
5. Conclusions
- (1)
- The test results indicate that when the embedment depth is 200 mm and 300 mm, the cap concrete in the node area experiences buckling damage, the anchoring reinforcement yields, the constraint is weakened, the articulation point is formed, and the node rotational capacity increases. The embedment depth was increased from 200 mm to 300 mm, resulting in an increase in the ultimate bearing capacity of the node in both the forward and reverse directions, by 31.04% and 36.16%, respectively.
- (2)
- The finite element calculation results show that the maximum load-carrying capacity of the terminal plate welded anchor bar + core-filled longitudinal bar unanchored into the cap node (Type I node), the terminal plate welded anchor bar + core-filled longitudinal bar anchored into the cap node (Type II node), and the core-filled longitudinal bar anchored into the cap node (Type III node) are close to each other, with average values of approximately 717.94 kN·m and −719.14 kN·m, respectively. The bearing capacities of the terminal plate welded anchor bar nodes (Type IV nodes) are approximately 565.74 kN·m and −574.25 kN·m, respectively. The positive increase in bearing capacity of the bearing nodes after core filling is about 26.90% and the negative increase is about 25.23% as compared to the nodes without core filling.
- (3)
- It is recommended to use a Type II node, whose embedment depth is 250 mm (0.42D). It should be noted that this numerical simulation does not account for the error generated by the slip between the reinforcement and the concrete structure. As a result, the simulated pile-top displacement is generally smaller than the actual pile-top displacement. Therefore, it is appropriate to increase the embedment depth in the project.
- (4)
- When the optimal embedding depth of Type II nodes is 250 mm and the vertical tension increases from 0 to 1360 kN, the positive and negative bearing capacities of Type II nodes decrease by 26.61% and 28.97%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madan, B.K.; Hideaki, K. Investigations on a new building with pile foundation damaged by the Hyogoken-Nambu (Kobe) earthquake. Struct. Des. Tall Build. 1997, 6, 311–332. [Google Scholar]
- Liu, H.S. Seismic damage of pile foundation and its cause analysis-enlightenment from Hyogoken-Nanbu earthquake in Japan. Earthq. Resist. Eng. 1999, 37–43. (In Chinese) [Google Scholar] [CrossRef]
- Kohji, T.; Shuji, T.; Hiroko, S.; Kota, K. Building damage associated with geotechnical problems in the 2011 Tohoku Pacific Earthquake. Soils Found. 2012, 52, 956–974. [Google Scholar] [CrossRef]
- Osamu, K.; Reiko, M.; Toru, S.; Shoichi, N.; Tomohisa, M. Analyses of damage factors to pile foundations occurred in chiba prefecture during the 2011 off the pacific coast of tohoku earthquake. AIJ J. Technol. Des. 2017, 23, 447–452. (In Japanese) [Google Scholar] [CrossRef]
- Kaneko, O.; Kawamata, S.; Nakai, S.; Sekiguchi, T.; Mukai, T. Analytical study of the main causes of damage to pile foundations during the 2011 off the Pacific coast of Tohoku earthquake. Jpn. Archit. Rev. 2018, 1, 235–244. [Google Scholar] [CrossRef]
- Xu, Y.; Zeng, Z.; Wang, Z.Q.; Wang, Z.G. Review of the state-of-the-art of the configurations and mechanical behaviors of piers with socket connections. China Civ. Eng. J. 2023, 56, 90–108. [Google Scholar] [CrossRef]
- Takuya, N.; Shizuo, H. Earthquake-resistant property of prefabricated high-strength concrete pile. High Perform. Mater. Bridges 2001, 173–182. [Google Scholar]
- Roeder, C.W.; Graff, R.; Soderstrom, J.; Yoo, J.H. Seismic Performance of Pile-Wharf Connections. J. Struct. Eng. 2005, 131, 428–437. [Google Scholar] [CrossRef]
- Cheng, Z.; Sritharan, S. Outdoor Test of a Prefabricated Column-Pile Cap-Pile System under Combined Vertical and Lateral Loads. J. Bridge Eng. 2020, 25, 04020052. [Google Scholar] [CrossRef]
- Richards, P.W.; Rollins, K.M.; Stenlund, T.E. Experimental testing of pile-to-cap connections for embedded pipe piles. J. Bridge Eng. 2011, 16, 286–294. [Google Scholar] [CrossRef]
- Lenci, K.; Michael, B.; Flynn, M.; Jerry, S.; Kent, B. Seismic Performance of Concrete-Filled Steel Tube to Concrete Pile-Cap Connections. J. Bridge Eng. 2016, 21, 04016042. [Google Scholar] [CrossRef]
- Lenci, K.; Michael, B.; Jerry, S.; Kirsten, M. Simple moment-rotation methodology for predicting the capacity of concrete-filled steel pipe piles to concrete cap connections. J. Bridge Eng. 2021, 26, 04021075. [Google Scholar] [CrossRef]
- Zhang, G.; Han, Q.; Xu, K.; Du, X.; He, W. Quasi-static tests of CFST embedded RC column-to-precast cap beam with socket connection. Eng. Struct. 2021, 241, 112443. [Google Scholar] [CrossRef]
- Park, J.B.; Sim, Y.J.; Chun, Y.S.; Park, S.S.; Park, Y.B. Assessment of Optimum Reinforcement of Rebar for Joint of PHC Pile and Foundation Plate. LHI J. Land Hous. Urban Aff. 2010, 1, 67–73. (In Korean) [Google Scholar] [CrossRef]
- Bang, J.W.; Hyun, J.H.; Lee, B.Y.; Kim, Y.Y. Cyclic behavior of connection between footing and concrete-infilled composite PHC pile. Struct. Eng. Mech. 2014, 50, 741–754. [Google Scholar] [CrossRef]
- He, W.B.; Cui, X.D.; Guo, Z.S.; Bai, X.H. Experimental study of flexural capacity of joint between prestressed enhanced pipe pile and pile cap. Ind. Constr. 2014, 44, 71–74+164. (In Chinese) [Google Scholar] [CrossRef]
- Yang, Z.J.; Lei, Y.Q.; Tan, Y.W.; Li, G.C.; Wang, J.M. Mechanical performance of improved PHC pile-to-pile cap connection. Eng. Mech. 2018, 35, 223–229. (In Chinese) [Google Scholar] [CrossRef]
- Yang, Z.J.; Li, G.C.; Nan, B. Study on seismic performance of improved high-strength concrete pipe-pile cap connection. Adv. Mater. Sci. Eng. 2020, 2020, 4326208. [Google Scholar] [CrossRef]
- Guo, Z.S.; He, W.B.; Bai, X.H.; Chen, Y.F. Seismic Performance of Pile-Cap Connections of Prestressed High-Strength Concrete Pile with Different Details. Struct. Eng. Int. 2017, 27, 546–557. [Google Scholar] [CrossRef]
- Guo, Z.S. Study on Seismic Behavior and Design Method of PHC Pile-Cap Connections Subjected to Strong Earthquake; Taiyuan University of Technology: Taiyuan, China, 2018. (In Chinese) [Google Scholar]
- 10G409; Prestressed Concrete Pipe Pile. China Planning Press: Beijing, China, 2010. (In Chinese)
- JGJ/T 101-2015; Specification for Seismic Test of Buildings. China Architecture & Building Press: Beijing, China, 2015. (In Chinese)
- GB 50010-2010; Code for Design of Concrete Structures. China Architecture & Building Press: Beijing, China, 2011. (In Chinese)
- Yang, Z.J.; Lei, Y.Q. Finite Element Analysis of the Shear Behavior of Prestressed High-Strength Concrente Piles. Eng. Mech. 2020, 37 (Suppl. S1), 200–207. (In Chinese) [Google Scholar] [CrossRef]
- JC/T 540-2006; Cold-Drawn Low-Carbon Wire for Concrete Products. China Architecture & Building Press: Beijing, China, 2006. (In Chinese)
Specimen Number | Embedding Depth/mm | Prestressing Longitudinal Tendons | Pipe Pile Hoop | Prestressing of Tubular Piles before Pile Cutting/MPa | Terminal Plate Welded Anchorage Bar (HRB400) | Anchoring Bar Length/mm | Terminal Plate Welded Anchorage Bar Distribution Circle Diameter (mm) | Filling Longitudinal Bar (HRB400) | Filling Longitudinal Bar Distribution Circle Diameter (mm) |
---|---|---|---|---|---|---|---|---|---|
CT-200 | 200 | 16φ12.6 | Φb5 | 8.40 | 6@20 | 600 | 470 | 6@18 | 260 |
CT-300 | 300 |
Designation | Type | Diameter/mm | Yield Strength/MPa | Elastic Modulus/GPa | Yield Point Elongation/% | Tensile Strength/MPa | Maximum Force Plastic Elongation/% | Maximal Load Stretching/% | Maximum Force Elongation/% | Percentage Elongation after Fracture/% |
---|---|---|---|---|---|---|---|---|---|---|
Pile stirrups | — | 5.0 | 523.48 | 200.13 | — | 595.33 | 2.56 | 4.29 | — | 5.30 |
Prestressed steel rod of pile body | — | 12.6 | 1370.61 | 227.65 | — | 1471.94 | 4.05 | 5.40 | — | 7.88 |
Filling core stirrups | HPB300 | 8.0 | 356.42 | 210.22 | 2.95 | 540.34 | 20.80 | 22.74 | 4.31 | 25.85 |
Pile cap reinforcement | HRB335 | 14.0 | 547.88 | 209.60 | 2.49 | 618.68 | 6.60 | 7.75 | 1.47 | 15.33 |
Filling core anchorage steel bar | HRB400 | 18.0 | 456.25 | 206.82 | 3.83 | 619.85 | 15.67 | 16.92 | 6.03 | 24.24 |
Terminal plate welded anchorage bar | HRB400 | 20.0 | 436.17 | 204.15 | 2.57 | 621.56 | 16.70 | 18.01 | 6.33 | 26.12 |
Designation | Model Number | Caliber/mm | Young’s Modulus/MPa | Plastic | |
---|---|---|---|---|---|
Yield Strength/MPa | Plastic Strain | ||||
Pile hoop | — | 5.0 | 200,130 | 523.48 | 0 |
595.33 | 0.026 | ||||
Pile prestressing steel rods | — | 12.6 | 227,650 | 1370.61 | 0 |
1471.94 | 0.041 | ||||
981.30 | 0.078 | ||||
Core-filling hoop | HPB300 | 8.0 | 210,220 | 356.42 | 0 |
356.42 | 0.030 | ||||
540.34 | 0.208 | ||||
540.34 | 0.251 | ||||
Bearing reinforcement | HRB335 | 14.0 | 209,600 | 547.88 | 0 |
547.88 | 0.025 | ||||
618.68 | 0.066 | ||||
618.68 | 0.081 | ||||
Core-filled reinforcement | HRB400 | 18.0 | 206,820 | 456.25 | 0 |
456.25 | 0.038 | ||||
619.85 | 0.157 | ||||
619.85 | 0.217 | ||||
465.00 | 0.241 | ||||
Terminal plate welded anchorage bar | HRB400 | 20.0 | 204,150 | 436.17 | 0 |
436.17 | 0.026 | ||||
621.56 | 0.193 | ||||
621.56 | 0.256 | ||||
466.00 | 0.260 |
Specimen Number | Load Direction | Test Limit Load/kN | Test Ultimate Bending Moment/kN·m | Displacement of the Loaded End Corresponding to the Ultimate Load/mm | Simulated Ultimate Loads/kN | Simulation of Ultimate Bending Moment/kN·m | Simulation of Limit Displacements/mm | Calculated Value of Ultimate Load/Experimental Value | Calculated Value of Ultimate Displacement/Experimental Value |
---|---|---|---|---|---|---|---|---|---|
CT-200 | Positive | 371.1 | 668.0 | 15.84 | 361.21 | 650.18 | 15 | 97.33% | 94.70% |
Negative | −363.1 | −653.6 | −18.68 | −356.54 | −641.77 | −15 | 98.19% | 80.30% | |
CT-300 | Positive | 486.3 | 875.3 | 21.39 | 437.46 | 787.43 | 15 | 89.96% | 70.13% |
Negative | −494.4 | −889.9 | −17.94 | −441.76 | 795.17 | −12 | 89.35% | 66.89% |
Designation | Model Number | Caliber/mm | Young’s Modulus/MPa | Yield Strength/MPa | Tensile Strength/MPa | Plastic Strain |
---|---|---|---|---|---|---|
Pile hoop | — | 5.0 | 200,000 | 515 | 550 | 0.020 |
Pile prestressing steel rods | — | 12.6 | 200,000 | 1280 | 1420 | 0.076 |
Core-filling hoop | HPB300 | 8.0 | 210,000 | 300 | 420 | 0.057 |
bearing reinforcement | HRB335 | 14.0 | 200,000 | 335 | 455 | 0.060 |
Core-filled reinforcement | HRB400 | 18.0 | 200,000 | 400 | 540 | 0.070 |
Terminal plate welded anchorage bar | HRB400 | 20.0 | 200,000 | 400 | 540 | 0.070 |
Terminal plate and connection plates | 210,000 | 225 | 370 | 0.070 |
Specimen Number | Ultimate Shear/kN | Limit Moment/kN·m | Limit Displacement/mm | Ratio to the Ultimate Shear Force (Limit Moment) of Type I Nodes | ||||
---|---|---|---|---|---|---|---|---|
Positive | Negative | Positive | Negative | Positive | Negative | Positive | Negative | |
CT-I-50 | 189.84 | −199.57 | 341.71 | −359.23 | 12 | −9 | 1.00 | 1.00 |
CT-II-50 | 220.48 | −224.15 | 396.86 | −403.47 | 9 | −9 | 1.16 | 1.12 |
CT-III-50 | 95.15 | −92.27 | 171.27 | −166.09 | 15 | −15 | 0.50 | 0.46 |
CT-IV-50 | 168.96 | −167.46 | 304.13 | −301.43 | 9 | −9 | 0.89 | 0.84 |
CT-I-100 | 225.86 | −224.16 | 406.55 | −403.49 | 15 | −15 | 1.00 | 1.00 |
CT-II-100 | 278.99 | −277.79 | 502.18 | −500.02 | 18 | −18 | 1.24 | 1.24 |
CT-III-100 | 146.81 | −144.30 | 264.26 | −259.74 | 24 | −18 | 0.65 | 0.64 |
CT-IV-100 | 220.33 | −214.62 | 396.59 | −386.32 | 15 | −15 | 0.98 | 0.96 |
CT-I-150 | 284.42 | −279.52 | 511.96 | −503.14 | 12 | −12 | 1.00 | 1.00 |
CT-II-150 | 330.98 | −329.51 | 595.76 | −593.12 | 18 | −15 | 1.16 | 1.18 |
CT-III-150 | 207.66 | −194.03 | 373.79 | −349.25 | 15 | −18 | 0.73 | 0.69 |
CT-IV-150 | 263.31 | −261.96 | 473.96 | −471.53 | 15 | −12 | 0.93 | 0.94 |
CT-I-200 | 364.10 | −364.79 | 655.38 | −656.62 | 15 | −15 | 1.00 | 1.00 |
CT-II-200 | 387.02 | −379.63 | 696.64 | −683.33 | 15 | −15 | 1.06 | 1.04 |
CT-III-200 | 268.22 | −263.48 | 482.80 | −474.26 | 18 | −18 | 0.74 | 0.72 |
CT-IV-200 | 314.30 | −319.03 | 565.74 | −574.25 | 15 | −12 | 0.86 | 0.87 |
CT-I-250 | 398.73 | −397.90 | 717.71 | −716.22 | 15 | −12 | 1.00 | 1.00 |
CT-II-250 | 400.77 | −398.47 | 721.39 | −717.25 | 15 | −12 | 1.01 | 1.00 |
CT-III-250 | 310.08 | −306.25 | 558.14 | −551.25 | 18 | −18 | 0.78 | 0.77 |
CT-IV-250 | 317.46 | −324.50 | 571.43 | −584.10 | 12 | −12 | 0.80 | 0.82 |
CT-I-300 | 392.58 | −402.84 | 706.64 | −725.11 | 12 | −12 | 1.00 | 1.00 |
CT-II-300 | 397.01 | −395.39 | 714.62 | −711.70 | 12 | −12 | 1.01 | 0.98 |
CT-III-300 | 380.12 | −372.75 | 684.22 | −670.95 | 15 | −15 | 0.97 | 0.93 |
CT-IV-300 | 320.91 | −321.70 | 577.64 | −579.06 | 12 | −12 | 0.82 | 0.80 |
CT-I-350 | 399.07 | −405.47 | 718.33 | −729.85 | 12 | −12 | 1.00 | 1.00 |
CT-II-350 | 401.06 | −406.42 | 721.91 | −731.56 | 12 | −12 | 1.00 | 1.00 |
CT-III-350 | 397.07 | −402.19 | 714.73 | −723.94 | 12 | −12 | 0.99 | 0.99 |
CT-IV-350 | 306.92 | −310.14 | 552.46 | −558.25 | 12 | −12 | 0.77 | 0.76 |
CT-I-400 | 401.58 | −409.51 | 722.84 | −737.12 | 12 | −12 | 1.00 | 1.00 |
CT-II-400 | 398.08 | −397.74 | 716.54 | −715.93 | 12 | −12 | 0.99 | 0.97 |
CT-III-400 | 396.30 | −405.09 | 713.34 | −729.16 | 12 | −12 | 0.99 | 0.99 |
CT-IV-400 | 321.57 | −323.45 | 578.83 | −582.21 | 12 | −12 | 0.80 | 0.79 |
CT-I-500 | 400.01 | −396.85 | 720.02 | −714.33 | 12 | −12 | 1.00 | 1.00 |
CT-II-500 | 397.99 | −399.98 | 716.38 | −719.96 | 12 | −12 | 0.99 | 1.01 |
CT-III-500 | 401.30 | −402.07 | 722.34 | −723.73 | 12 | −12 | 1.00 | 1.01 |
CT-IV-500 | 325.58 | −321.72 | 586.04 | −579.10 | 12 | −12 | 0.81 | 0.81 |
Designation and Vertical Tension | Ultimate Shear/kN | Limit Moment/kN·m | Limit Displacement/mm | Ratio to the Ultimate Shear Force | |||||
---|---|---|---|---|---|---|---|---|---|
Positive | Negative | Positive | Negative | Positive | Negative | Positive | Negative | ||
CT-II-250 | 0 | 422.03 | −432.16 | 759.65 | −777.89 | 15 | −12 | 1.00 | 1.00 |
340 | 400.77 | −398.47 | 721.39 | −717.25 | 15 | −12 | 0.95 | 0.92 | |
680 | 373.66 | −369.50 | 672.59 | −665.10 | 15 | −12 | 0.89 | 0.86 | |
1020 | 337.59 | −345.26 | 607.66 | −621.47 | 15 | −15 | 0.80 | 0.80 | |
1360 | 309.71 | −306.96 | 557.48 | −552.53 | 15 | −15 | 0.73 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Guo, Z.; He, W.; Ge, X.; Sun, J. Study on the Nodal Composite Bearing Performance of Nontruncated PHC Pipe Pile and Bearing Platform. Materials 2024, 17, 3216. https://doi.org/10.3390/ma17133216
Liu Y, Guo Z, He W, Ge X, Sun J. Study on the Nodal Composite Bearing Performance of Nontruncated PHC Pipe Pile and Bearing Platform. Materials. 2024; 17(13):3216. https://doi.org/10.3390/ma17133216
Chicago/Turabian StyleLiu, Yasheng, Zhaosheng Guo, Wubin He, Xinsheng Ge, and Jingyuan Sun. 2024. "Study on the Nodal Composite Bearing Performance of Nontruncated PHC Pipe Pile and Bearing Platform" Materials 17, no. 13: 3216. https://doi.org/10.3390/ma17133216
APA StyleLiu, Y., Guo, Z., He, W., Ge, X., & Sun, J. (2024). Study on the Nodal Composite Bearing Performance of Nontruncated PHC Pipe Pile and Bearing Platform. Materials, 17(13), 3216. https://doi.org/10.3390/ma17133216