CVD Grown CNTs-Modified Electrodes for Vanadium Redox Flow Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acid Heat Treatment
2.2. CNTs Processing (CNTs Composite Electrode Manufacturing Process)
2.3. Electrolyte, Cell Preparation and Experimental Conditions
2.4. Physical Characterization
2.5. Electrochemical Measurement
3. Results and Discussions
3.1. Morphological Study
3.2. Electrochemical Measurements
3.3. Battery Test
3.3.1. Effect of Electrolyte Flow Rates
3.3.2. Effect of CNTs-Modified Electrode
3.3.3. Performance at Various Current Densities
3.3.4. Effect of Removing Current Collector Plates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baz, K.; Cheng, J.; Xu, D.; Abbas, K.; Ali, I.; Ali, H.; Fang, C. Asymmetric impact of fossil fuel and renewable energy consumption on economic growth: A nonlinear technique. Energy 2021, 226, 120357. [Google Scholar] [CrossRef]
- Sayed, E.T.; Olabi, A.G.; Alami, A.H.; Radwan, A.; Mdallal, A.; Rezk, A.; Abdelkareem, M.A. Renewable energy and energy storage systems. Energies 2023, 16, 1415. [Google Scholar] [CrossRef]
- Wei, P.; Abid, M.; Adun, H.; Kemena Awoh, D.; Cai, D.; Zaini, J.H.; Bamisile, O. Progress in energy storage technologies and methods for renewable energy systems application. Appl. Sci. 2023, 13, 5626. [Google Scholar] [CrossRef]
- Iwakiri, I.; Antunes, T.; Almeida, H.; Sousa, J.P.; Figueira, R.B.; Mendes, A. Redox flow batteries: Materials, design and prospects. Energies 2021, 14, 5643. [Google Scholar] [CrossRef]
- Alotto, P.; Guarnieri, M.; Moro, F. Redox flow batteries for the storage of renewable energy: A review. Renew. Sustain. Energy Rev. 2014, 29, 325–335. [Google Scholar] [CrossRef]
- Wang, H.; Pourmousavi, S.A.; Soong, W.L.; Zhang, X.; Ertugrul, N. Battery and energy management system for vanadium redox flow battery: A critical review and recommendations. J. Energy Storage 2023, 58, 106384. [Google Scholar] [CrossRef]
- Cunha, Á.; Martins, J.; Rodrigues, N.; Brito, F.P. Vanadium redox flow batteries: A technology review. Int. J. Energy Res. 2015, 39, 889–918. [Google Scholar] [CrossRef]
- Chakrabarti, M.H.; Brandon, N.P.; Hajimolana, S.A.; Tariq, F.; Yufit, V.; Hashim, M.A.; Hussain, M.A.; Low, C.T.J.; Aravind, P.V. Application of carbon materials in redox flow batteries. J. Power Sources 2014, 253, 150–166. [Google Scholar] [CrossRef]
- Jialin, Z.; Yiyang, L.; Shanfu, L.; Yan, X. Nitrogen, phosphorus co-doped graphite felt as highly efficient electrode for VO2+/VO2+ reaction. Batteries 2023, 9, 40. [Google Scholar] [CrossRef]
- Liu, X.; Hu, J.; Liu, J.; Liu, H.; Fu, S.; Wu, X.; Wu, Y. Graphite felt electrode modified by quaternary ammonium for vanadium redox flow battery with an ultra-long cycle life. Inorganics 2022, 10, 208. [Google Scholar] [CrossRef]
- Lin, C.-H.; Zhuang, Y.-D.; Tsai, D.-G.; Wei, H.-J.; Liu, T.-Y. Performance enhancement of vanadium redox flow battery by treated carbon felt electrodes of polyacrylonitrile using atmospheric pressure plasma. Polymers 2020, 12, 1372. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Shen, Z.; Zhu, Y.; Cheng, Y. Insights into the modification of carbonous felt as an electrode for vanadium redox flow batteries. Materials 2023, 16, 3811. [Google Scholar] [CrossRef] [PubMed]
- Devi, N.; Singh, P.; Chen, Y.-S. Binder-free CNT-modified excellent electrodes for all-vanadium redox flow batteries. Nanomaterials 2024, 14, 767. [Google Scholar] [CrossRef] [PubMed]
- Munaiah, Y.; Suresh, S.; Dheenadayalan, S.; Pillai, V.K.; Ragupathy, P. Comparative electrocatalytic performance of single-walled and multiwalled carbon nanotubes for zinc bromine redox flow batteries. J. Phys. Chem. C 2014, 118, 14795–14804. [Google Scholar] [CrossRef]
- Tai, Z.; Ju, D.; Sato, S.; Hanawa, K. Discrete coating of CNT on carbon fiber surfaces and the effect on improving the electrochemical performance of VRFB systems. Coatings 2021, 11, 736. [Google Scholar] [CrossRef]
- González, Z.; Flox, C.; Blanco, C.; Granda, M.; Morante, J.R.; Menéndez, R.; Santamaría, R. Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application. J. Power Sources 2017, 338, 155–162. [Google Scholar] [CrossRef]
- Etienne, M.; Vivo-Vilches, J.F.; Vakulko, I.; Genois, C.; Liu, L.; Perdicakis, M.; Hempelmann, R.; Walcarius, A. Layer-by-Layer modification of graphite felt with MWCNT for vanadium redox flow battery. Electrochim. Acta 2019, 313, 131–140. [Google Scholar] [CrossRef]
- Hsieh, C.-L.; Tsai, P.-H.; Hsu, N.-Y.; Chen, Y.-S. Effect of compression ratio of graphite felts on the performance of an all-vanadium redox flow battery. Energies 2019, 12, 313. [Google Scholar] [CrossRef]
- Chang, C.-H.; Chou, H.-W.; Hsu, N.-Y.; Chen, Y.-S. Development of integrally molded bipolar plates for all-vanadium redox flow batteries. Energies 2016, 9, 350. [Google Scholar] [CrossRef]
- Shi, X.; Esan, O.C.; Huo, X.; Ma, Y.; Pan, Z.; An, L.; Zhao, T.S. Polymer electrolyte membranes for vanadium redox flow batteries: Fundamentals and applications. Prog. Energy Combust. Sci. 2021, 85, 100926. [Google Scholar] [CrossRef]
- Jiang, B.; Wu, L.; Yu, L.; Qiu, X.; Xi, J. A comparative study of Nafion series membranes for vanadium redox flow batteries. J. Membr. Sci. 2016, 510, 18–26. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, L.-H.; Kwon, Y.; Kim, S. Effect of nafion membrane thickness on performance of vanadium redox flow battery. Korean J. Chem. Eng. 2014, 31, 2081–2087. [Google Scholar] [CrossRef]
- Li, W.; Liu, J.; Yan, C. Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO2+/VO2+ for a vanadium redox flow battery. Carbon 2011, 49, 3463–3470. [Google Scholar] [CrossRef]
- González, Z.; Álvarez, P.; Blanco, C.; Vega-Díaz, S.; Tristán-López, F.; Rajukumar, L.P.; Cruz-Silva, R.; Elías, A.L.; Terrones, M.; Menéndez, R. The influence of carbon nanotubes characteristics in their performance as positive electrodes in vanadium redox flow batteries. Sustain. Energy Technol. Assess. 2015, 9, 105–110. [Google Scholar] [CrossRef]
- Monteiro, R.; Leirós, J.; Boaventura, M.; Mendes, A. Insights into all-vanadium redox flow battery: A case study on components and operational conditions. Electrochim. Acta 2018, 267, 80–93. [Google Scholar] [CrossRef]
- Sangwon, K. Vanadium redox flow batteries: Electrochemical engineering. In Energy Storage Devices; Demirkan, M.T., Adel, A., Eds.; IntechOpen: Rijeka, Croatia, 2019; p. 7. [Google Scholar]
- Wu, H.-W.; Zeng, Y.-K. Effect of baffles in flow channel on the performance of vanadium redox flow battery. Processes 2023, 11, 523. [Google Scholar] [CrossRef]
- Ejigu, A.; Edwards, M.; Walsh, D.A. Synergistic catalyst–support interactions in a graphene–Mn3O4 electrocatalyst for vanadium redox flow batteries. ACS Catal. 2015, 5, 7122–7130. [Google Scholar] [CrossRef]
- Jelyani, M.Z.; Rashid-Nadimi, S.; Asghari, S. Treated carbon felt as electrode material in vanadium redox flow batteries: A study of the use of carbon nanotubes as electrocatalyst. J. Solid State Electrochem. 2017, 21, 69–79. [Google Scholar] [CrossRef]
- Barton, J.L.; Brushett, F.R. A one-dimensional stack model for redox flow battery analysis and operation. Batteries 2019, 5, 25. [Google Scholar] [CrossRef]
- Ghimire, P.C.; Bhattarai, A.; Lim, T.M.; Wai, N.; Skyllas-Kazacos, M.; Yan, Q. In-situ tools used in vanadium redox flow battery research—Review. Batteries 2021, 7, 53. [Google Scholar] [CrossRef]
- Choi, H.S.; Hwang, G.J.; Kim, J.C.; Ryu, C.H. Study on current collector for all vanadium redox flow battery. Trans. Korean Hydrog. New Energy Soc. 2011, 22, 240–248. [Google Scholar]
- Wang, Q.; Qu, Z.; Jiang, Z.; Xuan, J.; Wang, H. A pluggable current collector for in-operando current measurements in all-vanadium redox flow batteries with flow field. Electrochim. Acta 2021, 389, 138725. [Google Scholar] [CrossRef]
- Taheri, P.; Mansouri, A.; Schweitzer, B.; Yazdanpour, M.; Bahrami, M. Electrical constriction resistance in current collectors of large-scale lithium-ion batteries. J. Electrochem. Soc. 2013, 160, A1731. [Google Scholar] [CrossRef]
Electrode Type | −Ipc(A cm−2) | Ipa (A) | −Ipc(A)/Ipa(A) | Epa (V) | Epc(V) | E (ΔV) |
---|---|---|---|---|---|---|
Acid-heat treatment | −0.065 | 0.021 | 0.323 | −0.393 | −0.652 | 0.259 |
CNTs-modified | −0.132 | 0.068 | 0.515 | −0.361 | −0.615 | 0.254 |
Electrode Type | −Ipc(A) | Ipa(A) | −Ipc(A)/Ipa(A) | Epa(V) | Epc(V) | E (ΔV) |
---|---|---|---|---|---|---|
Acid-heat treatment | −0.032 | 0.052 | 1.625 | 1.097 | 0.756 | 0.341 |
CNTs-modified | −0.078 | 0.132 | 1.692 | 1.088 | 0.768 | 0.320 |
Flow Rate (mL min−1) | Charge Capacity (Ah) | Discharge Capacity (Ah) | Charge Energy (Wh) | Discharge Energy (Wh) | Coulombic Efficiency (%) | Voltage Efficiency (%) | Energy Efficiency (%) |
---|---|---|---|---|---|---|---|
6 | 0.18 | 0.17 | 0.29 | 0.19 | 97.88 | 67.61 | 66.18 |
12 | 0.72 | 0.69 | 1.14 | 0.76 | 96.40 | 68.50 | 66.03 |
18 | 1.33 | 1.22 | 2.11 | 1.41 | 92.05 | 72.31 | 66.56 |
24 | 1.63 | 1.57 | 2.51 | 1.81 | 96.17 | 74.90 | 72.04 |
State | Charge Capacity (Ah) | Discharge Capacity (Ah) | Charge Energy (Wh) | Discharge Energy (Wh) | Coulombic Efficiency (%) | Voltage Efficiency (%) | Energy Efficiency (%) |
---|---|---|---|---|---|---|---|
pristine | 1.95 | 1.85 | 3.20 | 1.97 | 94.47 | 65.08 | 61.48 |
CNTs-modified | 2.01 | 1.95 | 3.98 | 3.06 | 96.30 | 79.33 | 76.39 |
Current Density (mA cm−2) | Charge Capacity (Ah) | Discharge Capacity (Ah) | Charge Energy (Wh) | Discharge Energy (Wh) | Coulombic Efficiency (%) | Voltage Efficiency (%) | Energy Efficiency (%) |
---|---|---|---|---|---|---|---|
20 | 1.94 | 1.75 | 2.96 | 2.24 | 90.10 | 84.11 | 75.79 |
40 | 2.19 | 1.80 | 3.44 | 2.17 | 83.20 | 76.63 | 63.07 |
60 | 1.69 | 1.46 | 2.76 | 1.60 | 86.27 | 67.27 | 58.04 |
65 | 1.69 | 1.43 | 2.43 | 1.54 | 96.36 | 65.47 | 63.08 |
State | Charge Capacity (Ah) | Discharge Capacity (Ah) | Charge Energy (Wh) | Discharge Energy (Wh) | Coulombic Efficiency (%) | Voltage Efficiency (%) | Energy Efficiency (%) |
---|---|---|---|---|---|---|---|
With current collector plates | 1.64 | 1.56 | 2.71 | 1.65 | 94.03 | 64.08 | 60.25 |
without current collector plates | 1.93 | 1.80 | 4.17 | 2.62 | 93.43 | 67.36 | 62.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, Y.-S.; Devi, N.; Lin, Y.-T.; Arpornwichanop, A.; Chen, Y.-S. CVD Grown CNTs-Modified Electrodes for Vanadium Redox Flow Batteries. Materials 2024, 17, 3232. https://doi.org/10.3390/ma17133232
Chou Y-S, Devi N, Lin Y-T, Arpornwichanop A, Chen Y-S. CVD Grown CNTs-Modified Electrodes for Vanadium Redox Flow Batteries. Materials. 2024; 17(13):3232. https://doi.org/10.3390/ma17133232
Chicago/Turabian StyleChou, Yi-Sin, Nitika Devi, Yan-Ting Lin, Amornchai Arpornwichanop, and Yong-Song Chen. 2024. "CVD Grown CNTs-Modified Electrodes for Vanadium Redox Flow Batteries" Materials 17, no. 13: 3232. https://doi.org/10.3390/ma17133232
APA StyleChou, Y. -S., Devi, N., Lin, Y. -T., Arpornwichanop, A., & Chen, Y. -S. (2024). CVD Grown CNTs-Modified Electrodes for Vanadium Redox Flow Batteries. Materials, 17(13), 3232. https://doi.org/10.3390/ma17133232