Structural and Electrochemical Evolution of Water Hyacinth-Derived Activated Carbon with Gamma Pretreatment for Supercapacitor Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis of Activated Carbon
2.3. Electrochemical Measurement
3. Results and Discussion
3.1. Materials Characterization
3.2. Electrochemical Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, K.; Li, Y.; Zhu, M.; Yu, X.; Zhang, M.; Shi, L.; Cheng, J. The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors. J. Power Sources 2017, 366, 270–277. [Google Scholar] [CrossRef]
- Libich, J.; Máca, J.; Vondrák, J.; Čech, O.; Sedlaříková, M. Supercapacitors: Properties and applications. J. Energy Storage 2018, 17, 224–227. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abbas, Q.; Al Makky, A.; Abdelkareem, M.A. Supercapacitors as next generation energy storage devices: Properties and applications. Energy 2022, 248, 123617. [Google Scholar] [CrossRef]
- Adhamash, E.; Pathak, R.; Qiao, Q.; Zhou, Y.; McTaggart, R. Gamma-radiated biochar carbon for improved supercapacitor performance. RSC Adv. 2020, 10, 29910–29917. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Sun, P.; Shen, L.; Wang, K.; Song, S.; Yu, X.; Tan, S.; Zhao, C.; Mai, W. WO3 nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis. J. Mater. Chem. A 2016, 4, 7266–7273. [Google Scholar] [CrossRef]
- Leng, C.; Sun, K. The preparation of 3D network pore structure activated carbon as an electrode material for supercapacitors with long-term cycle stability. RSC Adv. 2016, 6, 57075–57083. [Google Scholar] [CrossRef]
- Bae, J.; Song, M.K.; Park, Y.J.; Kim, J.M.; Liu, M.; Wang, Z.L. Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage. Angew. Chem. Int. Ed. 2011, 50, 1683–1687. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-H.; Yin, Y.-X.; Zuo, T.-T.; Dong, W.; Li, J.-Y.; Shi, J.-L.; Zhang, C.-H.; Li, N.-W.; Li, C.-J.; Guo, Y.-G. Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels. Adv. Mater. 2017, 29, 1703729. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; He, P.; Lyu, Z.; Chen, T.; Huang, B.; Chen, L.; Fisher, T.S. Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nat. Commun. 2018, 9, 790. [Google Scholar] [CrossRef]
- Jung, K.-H.; Deng, W.; Smith, D.W.; Ferraris, J.P. Carbon nanofiber electrodes for supercapacitors derived from new precursor polymer: Poly(acrylonitrile-co-vinylimidazole). Electrochem. Commun. 2012, 23, 149–152. [Google Scholar] [CrossRef]
- Li, C.; Yang, X.; Zhang, G. Mesopore-dominant activated carbon aerogels with high surface area for electric double-layer capacitor application. Mater. Lett. 2015, 161, 538–541. [Google Scholar] [CrossRef]
- Choi, H.-J.; Jung, S.-M.; Seo, J.-M.; Chang, D.W.; Dai, L.; Baek, J.-B. Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 2012, 1, 534–551. [Google Scholar] [CrossRef]
- Shen, H.; Liu, E.; Xiang, X.; Huang, Z.; Tian, Y.; Wu, Y.; Wu, Z.; Xie, H. A novel activated carbon for supercapacitors. Mater. Res. Bull. 2012, 47, 662–666. [Google Scholar] [CrossRef]
- Pant, B.; Ojha, G.P.; Acharya, J.; Park, M. Preparation, characterization, and electrochemical performances of activated carbon derived from the flower of Bauhinia variegata L for supercapacitor applications. Diam. Relat. Mater. 2023, 136, 110040. [Google Scholar] [CrossRef]
- Raza, W.; Ali, F.; Raza, N.; Luo, Y.; Kim, K.-H.; Yang, J.; Kumar, S.; Mehmood, A.; Kwon, E.E. Recent advancements in supercapacitor technology. Nano Energy 2018, 52, 441–473. [Google Scholar] [CrossRef]
- Poonam; Sharma, K.; Arora, A.; Tripathi, S.K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar] [CrossRef]
- He, Y.; Han, X.; Du, Y.; Song, B.; Xu, P.; Zhang, B. Bifunctional Nitrogen-Doped Microporous Carbon Microspheres Derived from Poly(o-methylaniline) for Oxygen Reduction and Supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 3601–3608. [Google Scholar] [CrossRef] [PubMed]
- You, B.; Kang, F.; Yin, P.; Zhang, Q. Hydrogel-derived heteroatom-doped porous carbon networks for supercapacitor and electrocatalytic oxygen reduction. Carbon 2016, 103, 9–15. [Google Scholar] [CrossRef]
- Cho, S.Y.; Yoon, H.J.; Kim, N.R.; Yun, Y.S.; Jin, H.-J. Sodium-ion supercapacitors based on nanoporous pyroproteins containing redox-active heteroatoms. J. Power Sources 2016, 329, 536–545. [Google Scholar] [CrossRef]
- Peng, C.; Yan, X.-B.; Wang, R.-T.; Lang, J.-W.; Ou, Y.-J.; Xue, Q.-J. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochim. Acta 2013, 87, 401–408. [Google Scholar] [CrossRef]
- Ruan, T.; Zeng, R.; Yin, X.-Y.; Zhang, S.-X.; Yang, Z.-H. Water hyacinth (Eichhornia crassipes) biomass as a biofuel feedstock by enzymatic hydrolysis. BioResources 2016, 11, 2372–2380. [Google Scholar] [CrossRef]
- Malik, A. Environmental challenge vis a vis opportunity: The case of water hyacinth. Environ. Int. 2007, 33, 122–138. [Google Scholar] [CrossRef] [PubMed]
- Butcha, S.; Rajrujithong, C.; Sattayarut, V.; Youngjan, S.; Nakajima, H.; Supruangnet, R.; Wittayakun, J.; Prayoonpokarach, S.; Faungnawakij, K.; Chanthad, C.; et al. Sustainable production of multifunctional hierarchical carbon from weed water hyacinth: Assessment for lithium-ion battery and supercapacitor. J. Energy Storage 2023, 72, 108578. [Google Scholar] [CrossRef]
- Sindhu, R.; Binod, P.; Pandey, A.; Madhavan, A.; Alphonsa, J.A.; Vivek, N.; Gnansounou, E.; Castro, E.; Faraco, V. Water hyacinth a potential source for value addition: An overview. Bioresour. Technol. 2017, 230, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Morales, S.L.; Baas-López, J.M.; Barbosa, R.; Pacheco, D.; Escobar, B. Activated carbon from Water Hyacinth as electrocatalyst for oxygen reduction reaction in an alkaline fuel cell. Int. J. Hydrogen Energy 2021, 46, 25995–26004. [Google Scholar] [CrossRef]
- Kurniawan, F.; Wongso, M.; Ayucitra, A.; Soetaredjo, F.E.; Angkawijaya, A.E.; Ju, Y.-H.; Ismadji, S. Carbon microsphere from water hyacinth for supercapacitor electrode. J. Taiwan Inst. Chem. Eng. 2015, 47, 197–201. [Google Scholar] [CrossRef]
- Saning, A.; Herou, S.; Dechtrirat, D.; Ieosakulrat, C.; Pakawatpanurut, P.; Kaowphong, S.; Thanachayanont, C.; Titirici, M.-M.; Chuenchom, L. Green and sustainable zero-waste conversion of water hyacinth (Eichhornia crassipes) into superior magnetic carbon composite adsorbents and supercapacitor electrodes. RSC Adv. 2019, 9, 24248–24258. [Google Scholar] [CrossRef] [PubMed]
- Numee, P.; Sangtawesin, T.; Yilmaz, M.; Kanjana, K. Activated carbon derived from radiation-processed durian shell for energy storage application. Carbon Resour. Convers. 2023, 2, 100192. [Google Scholar] [CrossRef]
- Abad, L.V.; Al-Assaf, S.; Coqueret, X.; Duarte, C.; Kume, T.; Lacroix, M.; Zaman, K.; Sáfrány, Á.; Sen, M.; Tahtat, D.; et al. The Radiation Chemistry of Polysaccharides; International Atomic Energy Agency: Vienna, Austria, 2016. [Google Scholar]
- Sánchez Orozco, R.; Balderas Hernández, P.; Flores Ramírez, N.; Roa Morales, G.; Saucedo Luna, J.; Castro Montoya, A.J. Gamma Irradiation Induced Degradation of Orange Peels. Energies 2012, 5, 3051–3063. [Google Scholar] [CrossRef]
- Kasprzyk, H.; Wichlacz, K.; Borysiak, S. The effect of gamma radiation on the supramolecular structure of pine wood cellulose in situ revealed by x-ray diffraction. Electron. J. Pol. Agric. Univ. 2004, 7, 6. [Google Scholar]
- Takács, E.; Wojnárovits, L.; Borsa, J.; Földváry, C.; Hargittai, P.; Zöld, O. Effect of γ-irradiation on cotton-cellulose. Radiat. Phys. Chem. 1999, 55, 663–666. [Google Scholar] [CrossRef]
- Vatankhah, A.R.; Hosseini, M.A.; Malekie, S. The characterization of gamma-irradiated carbon-nanostructured materials carried out using a multi-analytical approach including Raman spectroscopy. Appl. Surf. Sci. 2019, 488, 671–680. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, L.; Zhou, B.; Li, Y.; Li, B.; Niu, J.; Shan, M.; Guo, Q.; Wang, Z.; Qian, X. Nano-structure and property transformations of carbon systems under γ-ray irradiation: A review. RSC Adv. 2013, 3, 10579–10597. [Google Scholar] [CrossRef]
- Mohd Nor, N.S.; Deraman, M.; Omar, R.; Awitdrus; Farma, R.; Basri, N.H.; Mohd Dolah, B.N.; Mamat, N.F.; Yatim, B.; Md Daud, M.N. Influence of gamma irradiation exposure on the performance of supercapacitor electrodes made from oil palm empty fruit bunches. Energy 2015, 79, 183–194. [Google Scholar] [CrossRef]
- Benwannamas, N.; Sangtawesin, T.; Yilmaz, M.; Kanjana, K. Gamma-induced interconnected networks in microporous activated carbons from palm petiole under NaNO3 oxidizing environment towards high-performance electric double layer capacitors (EDLCs). Sci. Rep. 2023, 13, 12887. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Ahmad, S.R.; Kronfli, E. γ-Radiation Induced Changes in the Physical and Chemical Properties of Lignocellulose. Biomacromolecules 2006, 7, 2303–2309. [Google Scholar] [CrossRef]
- Ma, D.; Wu, G.; Wan, J.; Ma, F.; Geng, W.; Song, S. Oxygen-enriched hierarchical porous carbon derived from biowaste sunflower heads for high-performance supercapacitors. RSC Adv. 2015, 5, 107785–107792. [Google Scholar] [CrossRef]
- Sych, N.V.; Trofymenko, S.I.; Poddubnaya, O.I.; Tsyba, M.M.; Sapsay, V.I.; Klymchuk, D.O.; Puziy, A.M. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob. Appl. Surf. Sci. 2012, 261, 75–82. [Google Scholar] [CrossRef]
- Vanavanichkul, T.; Le, G.T.T.; Lawagon, C.P.; Sano, N.; Viriya-empikul, N.; Faungnawakij, K.; Charinpanitkul, T. Step-by-step conversion of water hyacinth waste to carbon nanohorns by a combination of hydrothermal treatment, carbonization and arc in water processes. Diam. Relat. Mater. 2021, 111, 108222. [Google Scholar] [CrossRef]
- Phonlam, T.; Weerasuk, B.; Sataman, P.; Duangmanee, T.; Thongphanit, S.; Nilgumhang, K.; Anantachaisilp, S.; Chutimasakul, T.; Kwamman, T.; Chobpattana, V. Ammonia modification of activated carbon derived from biomass via gamma irradiation vs. hydrothermal method for methylene blue removal. South Afr. J. Chem. Eng. 2023, 43, 67–78. [Google Scholar] [CrossRef]
- Bhatta, L.K.G.; Venkatesh, K.N.K.; Gundanna, S.K.; Bhatta, U.M. Synthesis and characterization of activated carbon from Delonix regia seeds for CO2 adsorption. Energy Clim. Chang. 2021, 2, 100064. [Google Scholar] [CrossRef]
- Davaritouchaee, M.; Hiscox, W.C.; Martinez-Fernandez, J.; Fu, X.; Mancini, R.J.; Chen, S. Effect of reactive oxygen species on biomass structure in different oxidative processes. Ind. Crops Prod. 2019, 137, 484–494. [Google Scholar] [CrossRef]
- Jain, D.; Kanungo, J.; Tripathi, S.K. Enhancement in performance of supercapacitor using eucalyptus leaves derived activated carbon electrode with CH3COONa and HQ electrolytes: A step towards environment benign supercapacitor. J. Alloys Compd. 2020, 832, 154956. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Am. Phys. Soc. 2000, 61, 14095. [Google Scholar] [CrossRef]
- Kanjana, K.; Harding, P.; Kwamman, T.; Kingkam, W.; Chutimasakul, T. Biomass-derived activated carbons with extremely narrow pore size distribution via eco-friendly synthesis for supercapacitor application. Biomass Bioenergy 2021, 153, 106206. [Google Scholar] [CrossRef]
- Zhang, P.; Fan, J.; Wang, Y.; Dang, Y.; Heumann, S.; Ding, Y. Insights into the role of defects on the Raman spectroscopy of carbon nanotube and biomass-derived carbon. Carbon 2024, 222, 118998. [Google Scholar] [CrossRef]
- Saka, C.; Baytar, O.; Yardim, Y.; Şahin, Ö. Improvement of electrochemical double-layer capacitance by fast and clean oxygen plasma treatment on activated carbon as the electrode material from walnut shells. Biomass Bioenergy 2020, 143, 105848. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, Q.; Gao, S.; Tang, G.; Liu, K.; He, S.; Huang, C. Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 2019, 155, 706–726. [Google Scholar] [CrossRef]
- Feng, W.; He, P.; Ding, S.; Zhang, G.; He, M.; Dong, F.; Wen, J.; Du, L.; Liu, M. Oxygen-doped activated carbons derived from three kinds of biomass: Preparation, characterization and performance as electrode materials for supercapacitors. RSC Adv. 2016, 6, 5949–5956. [Google Scholar]
- Shrestha, D.; Maensiri, S.; Wongpratat, U.; Lee, S.W.; Nyachhyon, A.R. Shorea robusta derived activated carbon decorated with manganese dioxide hybrid composite for improved capacitive behaviors. J. Environ. Chem. Eng. 2019, 7, 103227. [Google Scholar] [CrossRef]
- Moulder, J.F.; Chastain, J. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics Division, Perkin-Elmer Corporation: Waltham, MA, USA, 1992. [Google Scholar]
- Qiu, C.; Jiang, L.; Gao, Y.; Sheng, L. Effects of oxygen-containing functional groups on carbon materials in supercapacitors: A review. Mater. Des. 2023, 230, 111952. [Google Scholar] [CrossRef]
- Tonkaew, P.; Deechakawan, N.; Kanjanakosit, N.; Chanta-urai, T.; Kwamman, T.; Chutimasakul, T.; Anantachaisilp, S. Gamma irradiation assisted nickel impregnation on activated carbon derived from water hyacinth for electrocatalyst application. J. Phys. Conf. Ser. 2023, 2431, 012056. [Google Scholar] [CrossRef]
- Smith, M.W.; Dallmeyer, I.; Johnson, T.J.; Brauer, C.S.; McEwen, J.-S.; Espinal, J.F.; Garcia-Perez, M. Structural analysis of char by Raman spectroscopy: Improving band assignments through computational calculations from first principles. Carbon 2016, 100, 678–692. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Fang, D. A review on C1s XPS-spectra for some kinds of carbon materials. Fuller. Nanotub. Carbon Nanostructures 2020, 28, 1048–1058. [Google Scholar] [CrossRef]
- Cevik, E.; Karaman, B.; Gunday, S.T.; Bozkurt, A. Graft copolymer electrolytes for electrochemical double layer electrochemical capacitor applications. Synth. Met. 2021, 278, 116814. [Google Scholar] [CrossRef]
- Karaman, B.; Bozkurt, A. Enhanced performance of supercapacitor based on boric acid doped PVA-H2SO4 gel polymer electrolyte system. Int. J. Hydrogen Energy 2018, 43, 6229–6237. [Google Scholar] [CrossRef]
- Cevik, E.; Gunday, S.T.; Anil, I.; Alagha, O.; Bozkurt, A. Construction of symmetric supercapacitors using anhydrous electrolytes containing heterocyclic oligomeric structures. Int. J. Energy Res. 2020, 44, 3203–3214. [Google Scholar] [CrossRef]
- Liu, M.; Yang, X.; Wu, X.; Wang, X.; Li, Y.; Ma, F.; Zhou, J. Understanding the pore-structure dependence of supercapacitive performance for microporous carbon in aqueous KOH and H2SO4 electrolytes. Electrochim. Acta 2022, 401, 139422. [Google Scholar] [CrossRef]
- Kang, J.; Wen, J.; Jayaram, S.H.; Yu, A.; Wang, X. Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes. Electrochim. Acta 2014, 115, 587–598. [Google Scholar] [CrossRef]
- Li, X.-R.; Jiang, Y.-H.; Wang, P.-Z.; Mo, Y.; Lai, W.-D.; Li, Z.-J.; Yu, R.-J.; Du, Y.-T.; Zhang, X.-R.; Chen, Y. Effect of the oxygen functional groups of activated carbon on its electrochemical performance for supercapacitors. N. Carbon Mater. 2020, 35, 232–243. [Google Scholar] [CrossRef]
- Wang, D.; Liu, S.; Fang, G.; Geng, G.; Ma, J. From Trash to Treasure: Direct Transformation of Onion Husks into Three-Dimensional Interconnected Porous Carbon Frameworks for High-Performance Supercapacitors in Organic Electrolyte. Electrochim. Acta 2016, 216, 405–411. [Google Scholar] [CrossRef]
- Xiao, Z.; Chen, W.; Liu, K.; Cui, P.; Zhan, D. Porous biomass carbon derived from peanut shells as electrode materials with enhanced electrochemical performance for supercapacitors. Int. J. Electrochem. Sci. 2018, 13, 5370–5381. [Google Scholar] [CrossRef]
- Mo, R.-J.; Zhao, Y.; Wu, M.; Xiao, H.-M.; Kuga, S.; Huang, Y.; Li, J.-P.; Fu, S.-Y. Activated carbon from nitrogen rich watermelon rind for high-performance supercapacitors. RSC Adv. 2016, 6, 59333–59342. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Peng, Y.; Wang, X.; Wang, J.; Zhao, J. 3-dimensional interconnected framework of N-doped porous carbon based on sugarcane bagasse for application in supercapacitors and lithium ion batteries. J. Power Sources 2018, 390, 186–196. [Google Scholar] [CrossRef]
- Yang, V.; Senthil, R.A.; Pan, J.; Kumar, T.R.; Sun, Y.; Liu, X. Hierarchical porous carbon derived from jujube fruits as sustainable and ultrahigh capacitance material for advanced supercapacitors. J. Colloid Interface Sci. 2020, 579, 347–356. [Google Scholar] [CrossRef]
Samples | BET Surface Area (m2/g) a | Micropore Area (m2/g) b | Average Pore Size (nm) c |
---|---|---|---|
WHAC | 1038.70 | 251.39 | 3.99 |
WHAC50 | 966.45 | 642.10 | 3.43 |
WHAC100 | 856.61 | 643.93 | 7.23 |
WHAC150 | 957.34 | 725.21 | 3.47 |
Samples | Atomic Concentration (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
C1s | O1s | Ca2p | Si2p | Al2p | Mg2p | N1s | Cl2p | P2p | |
WHAC | 60.6 | 26.2 | 2.7 | 5.7 | 1.6 | 3.2 | - | - | - |
WHAC50 | 70.3 | 21.5 | 1.4 | 2.1 | 1.4 | 1.9 | 0.8 | 0.2 | 0.4 |
WHAC100 | 72.5 | 21.6 | 1.5 | 1.3 | 1.0 | 2.2 | - | - | - |
WHAC150 | 74.1 | 18.1 | 1.6 | 2.0 | 0.9 | 2.1 | 0.7 | 0.5 | - |
Sample | Rs (Ω) |
---|---|
WHAC | 1.03 |
WHAC50 | 0.53 |
WHAC100 | 0.40 |
WHAC150 | 0.62 |
Biowaste Source | Chemical Activation | Cp (F g−1) at 1 A g−1 | Electrolyte | Cycle Stability | Ref. |
---|---|---|---|---|---|
Onion husk | K2CO3 | 188 | 1M TEABF4 | 92.5% (2000 cycles) | [63] |
Peanut shell | ZnCl2 | 340 | 1M H2SO4 | 95.3% (10,000 cycles) | [64] |
Watermelon rind | KOH | 333 | 6M KOH | 96.8% (10,000 cycles) | [65] |
Tea leaves | KOH | 330 | 2M KOH | 92.0% (2000 cycles) | [20] |
Sugarcane bagasse | KOH | 298 | 1M H2SO4 | 94.5% (5000 cycles) | [66] |
Jujube fruit | NaOH | 460 | 6M KOH | 92.2% (130,000 cycles) | [67] |
Durian shell | KOH | 178 | 1M KOH | 99.0% (4000 cycles) | [46] |
Palm petiole | KOH | 309 | 1M KOH | 94.0% (10,000 cycles) | [36] |
Water hyacinth leaves | KOH | 257 | 2M H2SO4 | 99.4% (7000 cycles) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weerasuk, B.; Chutimasakul, T.; Prigyai, N.; Nilgumhang, K.; Kaeopookum, P.; Sangtawesin, T. Structural and Electrochemical Evolution of Water Hyacinth-Derived Activated Carbon with Gamma Pretreatment for Supercapacitor Applications. Materials 2024, 17, 3233. https://doi.org/10.3390/ma17133233
Weerasuk B, Chutimasakul T, Prigyai N, Nilgumhang K, Kaeopookum P, Sangtawesin T. Structural and Electrochemical Evolution of Water Hyacinth-Derived Activated Carbon with Gamma Pretreatment for Supercapacitor Applications. Materials. 2024; 17(13):3233. https://doi.org/10.3390/ma17133233
Chicago/Turabian StyleWeerasuk, Bordin, Threeraphat Chutimasakul, Nicha Prigyai, Kewalee Nilgumhang, Piriya Kaeopookum, and Tanagorn Sangtawesin. 2024. "Structural and Electrochemical Evolution of Water Hyacinth-Derived Activated Carbon with Gamma Pretreatment for Supercapacitor Applications" Materials 17, no. 13: 3233. https://doi.org/10.3390/ma17133233
APA StyleWeerasuk, B., Chutimasakul, T., Prigyai, N., Nilgumhang, K., Kaeopookum, P., & Sangtawesin, T. (2024). Structural and Electrochemical Evolution of Water Hyacinth-Derived Activated Carbon with Gamma Pretreatment for Supercapacitor Applications. Materials, 17(13), 3233. https://doi.org/10.3390/ma17133233