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Abstract: Factory made steel fiber and steel fiber derived from worn tires was used to develop cement
concrete, which was subjected to torsional forces. A dedicated stand for torsion tests, allowing for
the measurement of force, deflection, and torsion angle, was used. The test results showed that both
the factory-made fiber and the waste steel fiber significantly improved torsional properties of the
concrete matrix. The test results of specimens made with waste fiber were characterized by slightly
worse results compared to factory-made fibers, but there was a significant improvement in torsional
properties compared to samples without fibers. Taking into account the financial and environmental
benefits, the application of waste steel fiber recovered from car tires could be an interesting alternative
to using commercially sold steel fiber applied for the production of construction elements subjected
to torsional forces.

Keywords: concrete; torsional properties; steel fiber

1. Introduction

In recent times, much attention has been paid to environmental protection. Energy
saving, reduction in CO2 emission, and reuse of materials contained in waste products are
becoming topics that are gaining popularity. The materials that have completed their service
life and are disposed of in landfills have a value that is yet to be determined. The reuse of
these materials has become a priority of the modern economy in sustainable development
times. The construction industry has great potential in the field of management and
utilization of waste, especially regarding concrete as a material used worldwide with
significant capability of utilizing other waste materials [1–4]. Waste materials can also be
obtained from other sources than the construction industry: silica fume, a material added to
concrete since the beginning of the 50s of the 20th century, is a by-product in the production
of silicon and ferrosilicon alloys, fly ash, used as a partial substitute material for Portland
cement, is a coal combustion product. Another example is the automotive industry, which
has achieved unprecedented development in the last few decades. Worldwide, the number
of cars has increased significantly. This involves the management of used car parts and
the need to reuse materials. Car tires are a good example of reusable vehicle components.
Modern tires are reinforced with steel fibers that can be successfully recovered. Waste
tire steel fiber (WTSF) after cutting can be successfully used in the production of steel
fiber-reinforced concrete [5–7]. In the research work conducted for the purpose of this
paper, steel fibers recovered from car tires were used.

Because concrete is a brittle material [8–11], the process of its destruction is rapid
and potentially dangerous for people in the case of a construction disaster. One of the
means to improve this property is to reduce brittleness by adding fibers to the concrete
matrix. Fiber-reinforced concrete (FRC), after the hardening process, is characterized
by significantly higher tensile strength, higher dynamic modulus of elasticity, improves
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post-cracking properties under tension [12], and reduced brittleness in comparison to
ordinary concrete. Also, higher flexural strength is achieved [13,14] together with abrasion
resistance, mechanical impact resistance, and resistance to freezing and thawing processes.
In the production of FRC, various types of fibers are applied, differing in the material
used (e.g., steel, polypropylene, carbon, glass, basalt, and natural) and the shape (e.g.,
straight, hooked-end, or crimped) [15–18]. Advantageous properties of FRC allow for
using this material in tunnel construction, bridge surfacing, industrial flooring, heavy-duty
pavements, or mining [14,19–23].

Also, WTSF can effectively increase concrete’s ductility, tensile strength, and compres-
sive strength [24]; flexural behavior is also improved [25]. Zia et al. reported a 16% increase
in splitting tensile strength after adding 0.3% of WTSF [26]; in the same study, an increase
in water absorption up to 22% was reported after adding 0.5% of WTSF.

Many buildings and bridge structures are subjected to significant torsional moment
and some of them may require strengthening. Examples of concrete elements often loaded
with a torsional moment are lateral beams of stairways, edge floor joists, spatial frames,
spandrel beams in buildings, beams supporting a canopy, spiral stairs, bridge decks, and
reinforced concrete arches loaded perpendicularly to their surface [27–30].

Structural concrete elements submitted to a torsional moment should be properly
designed and manufactured. The difference between poor-quality and good-quality con-
crete rests not so much on the choice of ingredients but mainly on the proportions [31];
therefore, a properly designed mixture of concrete is a key to success. This paper is devoted
to studying experimentally the effect of adding two types of fiber, factory made steel fiber,
and steel fiber derived from waste tires, on the torsional behavior of structural beams.
Based on the literature review conducted, it appears that no analysis has been conducted on
concrete elements with the addition of steel cords subjected to torsional moment. Therefore,
the results of the research presented in this article are the first attempt to use waste steel
fibers in elements made of cement composites subjected to twisting. These tests are the
beginning of the analysis of concrete elements with steel cords subjected to torsion.

2. Materials and Methods

Three types of composite mixes were used in the experiment: control mix without
any fibers (CM), fiber-reinforced composite mix containing commercial steel fibers of
straight ends (steel fiber-reinforced concrete, SFRC), and fiber-reinforced composite mix
containing waste steel fibers recovered from worn out tires (waste tire steel fiber-reinforced
concrete, WTSFRC, see Figure 1). Table 1 presents the average diameters, lengths, and
tensile strengths of commercial and waste steel fibers. The values for commercial fibers
were adopted based on the manufacturer’s declaration but the values for waste fibers were
tested. The measurements were carried out on 100 randomly selected waste fibers. The
diameter measurements were carried out using a micrometer with a range of 50 mm and
an accuracy of 0.01 mm. The length measurements were performed using a caliper with a
range of 150 mm and an accuracy of 0.02 mm on previously straightened fibers. The tensile
strength measurement of the fibers was conducted on a strength testing machine with a
range of 10 kN and an accuracy of 1%. The standard deviation was 0.02 mm, 3.8 mm, and
3.5 MPa, respectively, for diameter, length, and tensile strength. Other components of the
composite mixes were as follows: ordinary Portland cement CEM I 42.5 [32], tap water that
complied with the European standard [33], and fine aggregate up to 2 mm (see Table 2).
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Table 1. Steel fibers used in the experiment.

Fiber Type Diameter (mm) Length (mm) Tensile Strength
(MPa)

Factory made steel fiber 0.4 1 14.0 1 2800 1

WTSF 0.3 2 13.3 2 1789 2

1 Values declared by a producer, 2 Mean value on the basis of measurements.

Table 2. Composition of the composite mixtures used in the experiment (g).

Component CM SFRC WTSFRC

Cement 450 450 450
Fine aggregate 1350 1350 1350

Water 225 225 225
Steel fiber - 60 60

Before preparing the concrete mixes, basic properties of the aggregate were examined.
The following tests were performed: sieve analysis, fineness modulus, median diameter,
loose and compacted bulk density, and water absorptivity. Sieve analysis was conducted
according to EN 933-2:1996 [34]. Rectangular mesh sieves of the following mesh sizes were
used: 0.63, 0.125, 0.25, 0.5, 1.0, and 2.0 mm.

Fineness modulus of the aggregate was calculated with the use of Abrams method as
follows [35]:

mA = 0.01∑n
i=1 bi, (1)

mA = n − 0.01∑n
i=1 yi, (2)

where n is equal to number of nonzero i values, bi = 100 − yi = total percentage of the
fraction of the aggregate retained on the ith member of the specified Tyler series of sieves,
yi = total percentage of a sample of the aggregate passing through the ith member of Tyler
series of sieves.

Median diameter is defined as follows: splitting a sample of aggregate, in such a way
that half of the grains are characterized by higher or equal (to median grain) value of the
diameter and the other half of grains are characterized by the lower or equal (to median
grain) value of the diameter, was derived from the following formula [36]:

dm = dj +
dk − dj

∑ fk − ∑ f j
(50 − ∑ fi), (3)



Materials 2024, 17, 3269 4 of 14

where dm is the median grain diameter in (mm), dj is the sieve opening for Σfj, dk is the
sieve opining for Σfk, Σfj is the sum of the content of fractions closest to, but smaller than
50%, and Σfk is the sum of the content of fractions closest to, but bigger than 50%.

The bulk density test of the aggregate was performed according to the EN 1097-3
standard [37]; the water absorptivity test was performed according to the EN 1097-6
standard [38].

The next stage of the research was testing the mechanical properties of the compos-
ite in a hardened state. Flexural strength was determined with the use of specimens
40 × 40 × 160 mm according to the European standard EN-196-1 [39]. During the flexural
strength test, deflection was also recorded. Compressive tests were performed with the
use of specimens characterized by a cross-section of 40 × 40 mm according to the standard
EN-196-1 [39]. A total of 12 specimens were tested for each type of cement composite and
cross-section shape. A total number of 72 specimens were tested in order to determine the
compressive strength.

The molds for the torsion test specimens were made from PET-G using a 3D printer.
The molds consisted of two parts screwed together with 4 screws. Three samples were
made from a single mold. Specimens intended for the torsion tests were characterized by a
rectangular and circular cross-section and formed in such a way that the failure occurred
in the narrowed zone (see Figure 2). The cross-section area of the narrowed zone was on
average 716 mm2 and 947 mm2 for the circular and the rectangular cross-section shape,
respectively. The specimens were mounted in the apparatus dedicated for the torsion test
(see Figure 3). Six specimens were tested for each type of cement composite and cross-
section shape. 72 specimens were tested in total in the torsion tests. All samples were cured
in the same temperature (20 ◦C) and humidity (100%) conditions for 28 days. After one
day, the samples were demolded.
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machine with a range of 20 kN and an accuracy of 0.5% was used in the tests. The testing 
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Figure 3. Dedicated stand for torsion test with mounted specimen.

The stand was composed of elements connected with articulated joints. The force was
transferred from the compression testing machine to the crossbeam via a ball joint (see
Figure 4). Next, the crossbeam transmitted the force into two arms via ball joints. The
arms were connected to the spin shafts equipped with sample holders (see Figure 5). The
testing machine with a range of 20 kN and an accuracy of 0.5% was used in the tests. The
testing procedure consisted of controlling the relation between distance and speed of the
machine’s traverse. Up to a displacement of 0.1 mm, the speed was 0.1 mm/min; above
0.1 mm, the speed was increased to 0.2 mm/min.
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3. Research Test Results

The course of the grading curve of the tested aggregate (see Figure 6) deviates only
slightly from the curve recommended by the European standard EN 196-1 [39].
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Fineness modulus, median diameter, and bulk density in a loose and compacted
state (see Table 3) are typical for the post-glacial sands found in the Western Pomerania
region [36].

Table 3. Properties of the aggregate used in the experiment.

Fineness Modulus via Median Bulk Density Water
Abrams Diameter Loose Compacted Absorptivity

(-) (mm) (g/cm3) (g/cm3) (%)

2.77 0.84 1.70 1.84 9.2
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Figures 7 and 8 present the relationship between force and deflection of the tested
SFRC and WTSFRC, respectively. The maximum force of tested specimens was achieved for
SFRC; also, the curves are smoother compared to the WTSFRC results. The force–deflection
relationship for the cement matrix has not been studied. The maximum values of flexural
strength for all composites are provided in Table 4.

Materials 2024, 17, 3269 7 of 14 
 

 

Figures 7 and 8 present the relationship between force and deflection of the tested 
SFRC and WTSFRC, respectively. The maximum force of tested specimens was achieved 
for SFRC; also, the curves are smoother compared to the WTSFRC results. The force–de-
flection relationship for the cement matrix has not been studied. The maximum values of 
flexural strength for all composites are provided in Table 4. 

 
Figure 7. Relationship between force and deflection of the tested SFRC in flexural test. 

 
Figure 8. Relationship between force and deflection of the tested WTSFRC in flexural test. 

Research results of the tested composites (see Table 4) revealed that there are signifi-
cant differences between the compressive strength and flexural strength of the tested com-
posites. The composite characterized by the highest compressive strength and flexural 
strength was SFRC. The composite CM (without fibers) was characterized by the lowest 
compressive strength and flexural strength. 

Table 4. Compressive and flexural strength of the tested cement composites. 

Composite Name Compressive Strength (MPa) Flexural strength (MPa) 
CM 43.4 (1.1) 1 8.5 (0.3) 1 

SFRC 55.2 (0.8) 1 14.4 (1.6) 1 
WTSFRC 48.2 (2.0) 1 9.7 (0.3) 1 

1 standard deviation (in brackets). 

Figure 7. Relationship between force and deflection of the tested SFRC in flexural test.

Materials 2024, 17, 3269 7 of 14 
 

 

Figures 7 and 8 present the relationship between force and deflection of the tested 
SFRC and WTSFRC, respectively. The maximum force of tested specimens was achieved 
for SFRC; also, the curves are smoother compared to the WTSFRC results. The force–de-
flection relationship for the cement matrix has not been studied. The maximum values of 
flexural strength for all composites are provided in Table 4. 

 
Figure 7. Relationship between force and deflection of the tested SFRC in flexural test. 

 
Figure 8. Relationship between force and deflection of the tested WTSFRC in flexural test. 

Research results of the tested composites (see Table 4) revealed that there are signifi-
cant differences between the compressive strength and flexural strength of the tested com-
posites. The composite characterized by the highest compressive strength and flexural 
strength was SFRC. The composite CM (without fibers) was characterized by the lowest 
compressive strength and flexural strength. 

Table 4. Compressive and flexural strength of the tested cement composites. 

Composite Name Compressive Strength (MPa) Flexural strength (MPa) 
CM 43.4 (1.1) 1 8.5 (0.3) 1 

SFRC 55.2 (0.8) 1 14.4 (1.6) 1 
WTSFRC 48.2 (2.0) 1 9.7 (0.3) 1 

1 standard deviation (in brackets). 

Figure 8. Relationship between force and deflection of the tested WTSFRC in flexural test.

Table 4. Compressive and flexural strength of the tested cement composites.

Composite Name Compressive Strength (MPa) Flexural Strength (MPa)

CM 43.4 (1.1) 1 8.5 (0.3) 1

SFRC 55.2 (0.8) 1 14.4 (1.6) 1

WTSFRC 48.2 (2.0) 1 9.7 (0.3) 1

1 standard deviation (in brackets).
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Research results of the tested composites (see Table 4) revealed that there are significant
differences between the compressive strength and flexural strength of the tested composites.
The composite characterized by the highest compressive strength and flexural strength was
SFRC. The composite CM (without fibers) was characterized by the lowest compressive
strength and flexural strength.

The destruction model of the tested specimens was similar for most of the tested
specimens. After reaching the maximum value of the destructive force, a crack appeared
in the sample at angle of about 45 degrees to the longitudinal axis of the specimen (see
Figures 9 and 10).
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4. Discussion

The research presented in this article was aimed at determining the influence of the
shape of the sample’s cross-section during the torsion test. The results of the tests are
presented in Figures 11–16. The analysis of the graphs shows a few properties of the
tested elements. All graphs in the initial part have a linear characteristic. This means that
the torsion angle increases proportionally with the load. This is due to the fact that the
elements work in the non-cracked phase. This phase ends when the linear function ends or
changes its shape, for elements without and with fibers, respectively. For the samples made
without fibers (Figures 11 and 12), the end of the non-cracked phase is the moment when
the element is destroyed. However, for elements with fibers, it is the moment (cracking
moment) of transition to the next phase of its work (Figures 13–16). Table 5 presents a
comparison of cracking moments (and breaking moments—for the matrix) for all analyzed
elements. The highest values of cracking/destruction moments for rectangular and circular
cross-section shapes (MR and MC) were obtained for elements without fibers (CM), and
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the lowest values were obtained for the mixture containing waste fibers (WTSFRC). It
seems that the addition of fibers to the cement matrix does not have a positive effect on the
cracking moment. The positive effect of adding fibers to the cement matrix becomes visible
after cracking the elements.
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Table 5. Average values of cracking/destruction moments (MR, MC) for the tested specimens.

Specimen Cross-Section Shape, Moment CM SFRC WTSFRC

Rectangular, MR (N·m) 26.17 (2.8) 1 26.08 (1.9) 1 24.35 (2.2) 1

Circular, MC (N·m) 19.31 (1.4) 1 17.40 (1.5) 1 16.13 (2.4) 1

Aspect ratio MR/MC 1.36 1.50 1.51
1 standard deviation (in brackets).

The shape of the sample, as well as its cross-sectional area, has an influence on the
value of the cracking moment. The ratio of rectangular to circular cross-sectional area was
approximately 1.32 and was similar to the 1.36 ratio of cracking moments for the cement
matrix (Table 5), as opposed to composites with the addition of fibers, for which the ratio
of cracking moments was about 1.5.

In Table 6, an analysis of theoretical cracking moments was conducted. Four calcula-
tion methods were applied. The ACI 318-19 [40], Hassan et al. [41], and Hsu and Mo [42]
methods are based on the compressive strength of the composite, while the Okay and En-
gin [43] method is based on the tensile strength in bending. Depending on the calculation
method used, the values of the moments differ quite significantly. The highest values were
obtained for the Okay and Engin [43] method, while the lowest were for the calculation
proposal contained in ACI 318-19 [40].

Table 6. Cracking/destruction moments for the rectangular (MR) and circular (MC) specimens.

Calculation Methods Equations CM SFRC WTSFRC
MR MC MR MC MR MC

ACI 318-19 [40] Tcr = 0.33λ
√

fc·
A2

cp
pcp

14.82 11.64 16.72 13.12 15.62 12.26

Okay and Engin [43] Tcr = Wt fct,j 47.74 45.04 80.87 76.30 54.48 51.40
Hassan et al. [41] Tcr = 0.41

√
fc

A2
cp

pcp
fcr 18.23 14.31 22.00 17.27 20.92 16.42

Hsu and Mo [42] Tcr = 0.4 Acp t
√

fc 22.15 17.38 24.97 19.61 23.34 18.32

Note: λ—modified factor (for normal-weight concrete it is equal to one); fc—compressive strength; Acp—area of the
rectangular cross-section; pcp—perimeter of the rectangular cross-section; Wt—section torsional resistance moment
(Wt = C1·h·b2 for the rectangular specimens or Wt = π·r3/2 for the circular specimens); b—shorter dimension of
the rectangular cross-section; h—longer dimension of the rectangular cross-section; C1—coefficient depending on
h/b ratio (is equal to 0.208); r—radius of the circular specimens, fctf—flexural strength, fcr—fiber modified factor
(fcr = 1 + Vf·Ar/500); Vf—percentage of the fiber dosage; Ar—aspect ratio of the fiber (fiber length/fiber diameter);
t—should be taken as 1.2Acp/pcp for solid sections.

A comparative analysis of experimental and empirical cracking moments is presented
in Figure 17. It shows that the moment values calculated using the ACI 318-19 [40] method
are significantly lower than the experimental values obtained. Therefore, this method is
not recommended for use with the composites analyzed. The calculation method proposed
by Okay and Engin [43] is also not recommended for assessing the bending moments of
the composites analyzed, as the theoretical values obtained are significantly higher than
the experimental values. At the same time, it should be noted that the application of this
method provides a safety margin. Among the other two methods, [41] and [42], the best
agreement between theoretical and experimental values of cracking moments was obtained
with the Hsu and Mo [42] method. This is likely due to the fact that this calculation method
for cracking moments takes into account the addition of dispersed reinforcement.
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Based on the cracking moments, it is possible to determine the values of tangential
stress. The values of tangential stress at the moment of cracking the elements are presented
in Table 7 (column MCR). In addition, the same table shows the values of tangential stresses
for the torsion angle of 2.5◦.

Table 7. Average values of the tangential stress.

Moment or Torsion Angle CM SFRC WTSFRC
MCR 2.5◦ MCR 2.5◦ MCR 2.5◦

Rectangular cross-section TR (MPa) 4.36 (0.60) 1 - - 4.34 (0.34) 1 2.18 (0.59) 1 3.96 (0.34) 1 1.85 (0.59) 1

Circular cross-section TC (MPa) 3.62 (0.23) 1 - - 3.23 (0.27) 1 1.78 (0.39) 1 2.93 (0.44) 1 1.13 (0.23) 1

Aspect ratio TR/TC 1.20 - 1.34 1.22 1.35 1.64
1 standard deviation (in brackets).

The highest values of tangential stress at the moment of cracking (TR and TC) were
obtained for elements without fibers (CM), but the lowest values were obtained for the
mixture containing waste fibers (WTSFRC). It seems that the addition of fibers to the cement
matrix does not have a positive effect on the tangential stress. The positive effect of adding
fibers to the cement matrix becomes visible after the cracking moment. For the mixtures
SFRC and WTSFRC, it is possible to determine the tangential stresses. For example, for the
torsion angle of 2.5◦, the maximum value of the tangential stresses is obtained for elements
with SFRC.

The shape of the sample has an influence on the value of the tangential stresses too. The
ratio of rectangular to circular tangential stresses was between 1.20 and 1.64 (see Table 7).
The lowest values of the ratio (TR/TC) were obtained for elements without fibers (CM),
but the highest values were obtained for the mixture containing waste fibers (WTSFRC).
The ratio of rectangular to circular areas was 1.27.

5. Conclusions

The conducted research tests allow for the following conclusions:

• The addition of steel fibers has little effect on compressive strength of the tested cement
composites;

• The type of mixture has little effect on the cracking moment;
• Fibers significantly affect the destruction process of the cement composite, turning it

from a brittle material to quasi-plastic one;
• The shape of the sample has an influence on the value of the cracking moment and the

tangential stress;
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• The torsional failure of the composite with the addition of steel fibers is slower in
comparison to the composite without fibers. Torsional stress is partially transferred
through the fibers.
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