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Abstract: High-performance hydrogen sulfide (H2S) sensors are mandatory for many industrial
applications. However, the development of H2S sensors still remains a challenge for researchers. In
this work, we report the study of a TiO2-based conductometric sensor for H2S monitoring at low
concentrations. TiO2 samples were first synthesized using the sol-gel route, annealed at different
temperatures (400 and 600 ◦C), and thoroughly characterized to evaluate their morphological and
microstructural properties. Scanning electronic microscopy, Raman scattering, X-ray diffraction, and
FTIR spectroscopy have demonstrated the formation of clusters of pure anatase in the TiO2 phase.
Increasing the calcination temperature to 600 ◦C enhanced TiO2 crystallinity and particle size (from
11 nm to 51 nm), accompanied by the transition to the rutile phase and a slight decrease in band gap
(3.31 eV for 400 ◦C to 3.26 eV for 600 ◦C). Sensing tests demonstrate that TiO2 annealed at 400 ◦C
displays good performances (sensor response Ra/Rg of ~3.3 at 2.5 ppm and fast response/recovery
of 8 and 23 s, respectively) for the detection of H2S at low concentrations in air.

Keywords: sol-gel; TiO2 nanopowder; thermal treatment; H2S sensor

1. Introduction

With the swift evolution of the global industry and the desire to improve air quality,
hydrogen sulfide (H2S) has been recognized as one of the highly concerned pollution gases,
commonly emitted by industries operating in the fields of pulp and paper manufacturing,
natural gas, biological decomposition of organic waste material, and crude petroleum [1–3].
H2S is a hazardous chemical, colorless, and extremely flammable [4,5]. At low concentra-
tions, it has an odor of rotten egg, which may cause coughing and sore throat and eyes,
while people exposed to high concentrations (300–500 ppm) may experience the human
olfactory nerve system and the collapse of the cardiovascular system [6]. Therefore, it is
mandatory to develop H2S sensors with good performance.

Among the variety of sensors used for gas sensing, conductometric sensors have
proven to be pretty attractive for detecting a variety of gases, since they are easy to fabricate,
low cost, and simple to operate [7–9]. In the literature, there are many reports on H2S sen-
sors based on metal oxide semiconductors (MOS), such as Fe2O3 [10], CuO [11], ZnO [12],
WO3 [13], and NiO [14]. However, TiO2-based H2S sensor development is still scarce, and
their gas-sensing performance needs to be improved [15]. TiO2 has intriguing physical
and chemical features, making it a promising choice for gas sensor applications due to its
distinct allotropic phases (anatase, rutile, and brookite) [6]. This involves the microstruc-
tural, morphological, and defect characteristics, which can play a crucial role in enhancing
sensor response. Meanwhile, selecting synthesis techniques for the TiO2 nanoparticles is
a vital step to achieving a larger surface area with higher roughness. Various physical
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and chemical routes are commonly used for the synthesis of TiO2 nanoparticles, such as
Pulsed Laser Deposition (PLD) [16], sol-gel [17], thermal evaporation [18], sputtering [15],
spray pyrolysis [19], and Atomic Layer Deposition (ALD) [20]. TiO2 has a high surface
area, enhancing its interaction with gas molecules and improving sensitivity [21–23]. It
is chemically stable and corrosion-resistant, ensuring long-term durability and reliability.
TiO2 exhibits excellent photocatalytic activity [24], significantly changing its conductivity
when exposed to light and gas molecules, which enhances sensitivity and response time.
The material can be synthesized in various nanostructured forms, providing greater surface
area and more active sites for gas adsorption. Additionally, TiO2 is cost-effective and
abundantly available, making it an economical choice for gas sensor development. There-
fore, these features provide the TiO2-based sensor with great sensitivity and selectivity for
hydrogen sulfide.

In this study, we have synthesized TiO2 nanoparticles (NPs) with the modified sol-gel
method using ethyl alcohol under supercritical conditions, which requires lower energy
consumption and allows the synthesis of materials with high purity and homogeneity.
We investigated their structural, morphological, and optical properties and their perfor-
mances in gas-sensing for detecting low hydrogen sulfide concentrations in the range from
0.5 to 4 ppm. The developed sensor exhibited enhanced sensitivity, selectivity, and fast
response/recovery times to H2S.

2. Experimental Section
2.1. Synthesis of TiO2 Nanopowder

TiO2 nanopowder was prepared using the protocol of El Mir et al. [25,26] based on
the following steps. First, 15 mL of Titanium (IV) isopropoxide Ti(OC3H7)4 (97%, from
Sigma–Aldrich, Saint Louis, MO, USA) was dissolved in 45 mL of methanol blended with
2 mL of acetic acid (CH3COOH). The mixture was kept under magnetic stirring until the
precursors were completely dissolved. The resulting solution was then poured into the
autoclave to achieve drying in supercritical conditions of 250 mL of ethanol (Tc = 243 ◦C;
Pc = 63.6 bars), with a heating rate of 45◦ C/h. Afterward, the as-obtained nanopowder
was calcined for 2 h in air at different temperatures, (T = 400 ◦C) and (T = 600 ◦C). For the
preparation of the TiO2 conductometric sensor, a quantity of 1 mg of TiO2 powder was
sonicated for 30 min with 1 mL of deionized water. The gas sensor was manufactured in
the temperature range between 20 ◦C and 25 ◦C. A scheme of the synthesis procedure is
illustrated in Figure 1.
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2.2. Characterizations

Microstructural analysis was determined with a D2 phaser Bruker X-ray diffractometer
(Bruker, Billerica, MA, USA) using the Cu Kα line (0.159 nm) in the 10–80◦ 2θ range. FT-IR
spectra were recorded utilizing a PerkinElmer spectrometer (PerkinElmer, Waltham, MA,
USA) equipped with a universal attenuated total reflectance (ATR) sampling accessory. The
UV–visible diffuse reflectance spectra (UV–visible DRS) were measured using a Shimadzu
(Kyoto City, Japan) 2600–2700 spectrometer with BaSO4 as a reference. Raman spectra
of the samples were recorded using the XploRa Raman spectrometer (Horiba Scientific,
Piscataway, NJ, USA) equipped with an Olympus BX-40 microscope (Olympus, Tokyo,
Japan) (objective ×50 focal length), Peltier cooled CCD detector, 532 nm diode laser, and
600 L/mm grating. The laser power was 5 mW, and the acquisition time was 30 s. Two
to ten spectra were registered for each sample at different positions to verify sample
homogeneity. The reference spectrum of Si (peak position of 521 cm−1) was measured to
avoid temperature drift. Scanning Electron Microscope (SEM) images were taken using a
Zeiss (Oberkochen, Germany) (Gemini II) microscope at the acceleration voltage of 5 kV.

2.3. Gas Sensing Tests

The gas sensing tests were carried out with sensors fabricated by printing TiO2 on
the sensor device with a heating element and Pt-interdigitated electrodes. For the tests,
the sensor devices were introduced into the test chamber. An Agilent E3632A instrument
(Agilent, Santa Clara, CA, USA) was employed for setting the operating temperatures,
whereas the resistance of the TiO2 sensing layer was measured with an Agilent 34970A
multimeter (Agilent, Santa Clara, CA, USA). H2S sensing tests were carried out under a
flow of dry synthetic air of 100 cc/min, operating at temperatures from 100 to 400 ◦C, with
H2S gas concentrations of 0 to 4 ppm. The gas response, S, is defined as the ratio Ra/Rg
for n-type behavior, where Ra is the baseline resistance in dry synthetic air and Rg is the
electrical resistance at different gas concentrations. The response time, τres, and recovery
time, τrec, were defined as follows. Response time, τres, i.e., the time required for the sensor
to reach 90% of the saturation resistance after injection of the target gas, and recovery time,
τrec, i.e., the time required for the sensor to reach 90% of the resistance baseline value in air.
These were also evaluated.

3. Results and Discussion
3.1. Sample Characterizations

TiO2 samples synthesized using the sol-gel route and annealed at different tempera-
tures (400 and 600 ◦C) were first thoroughly analyzed by different characterization tech-
niques. The SEM images of the TiO2 sample annealed at 400 ◦C are reported in Figure 2.

The sample annealed at 400 ◦C is not completely homogeneous, showing regions with
different microscopic features characterized by randomly distributed and non-uniform
clusters of TiO2 (Figure 2a,b). However, all regions show a high porosity on a nanometric
scale with grain size in the range of 10–20 nm (Figure 2c,d).

Figure 3 reports characteristic SEM images of the TiO2 sample annealed at 600 ◦C. The
morphology of this sample is more homogeneous, with a bigger grain size in the 30–50 nm
range and a fractal-like structure induced by calcination. In addition, it can be noted that,
at the highest annealing temperature, the collapse of the mesostructure occurs, which could
be caused by the crystallization of the amorphous titania into nanosized anatase particles
and/or with the transition from the anatase to the rutile phase.
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To investigate this transition phase process, further characterizations have been carried
out. The vibrational properties were investigated by Raman measurements, the profiles
of which are reported in Figure 4. The three Raman peaks centered at about 386, 509.3,
and 630.3 cm−1 (inset in Figure 4) are assigned to the Raman active modes of the anatase
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TiO2 crystalline structure, while the peak at about 472.5 cm−1 is associated with the Raman
active modes of the rutile crystalline phase [27]. The bands in the region higher than
1500 cm−1 are due to C-C and C-H/C-O contributions, which is in good agreement with
FTIR data. Ultimately, Raman evidence indicates that the two TiO2 phases characterize
the investigated samples. However, the relative intensity of the peaks of the anatase phase
compared to the peak associated with the rutile phase is different in the two samples. This
indicates that the phase transition from the anatase phase to the rutile phase occurs at the
highest temperature.
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In Figure 5, the XRD patterns of both TiO2 samples are shown. In Figure 5a, which
shows the XRD pattern of TiO2 powder annealed at 400 ◦C, we identified the (101), (103),
(004), (112), (200), (105), (211), (204), (116), (220), and (215) diffraction peaks ascribed to
the TiO2 tetragonal structure in the anatase phase (JCPDS 21-1272) [28,29]. As shown in
Figure 5b, upon increasing the annealing temperature to 600 ◦C, the diffraction peaks are
narrower and slightly more intense. We can also discern the orthorhombic structure of TiO2
as discerned by its characteristic (011) peak centered at 31.7◦ (JCPDS 80-5176) [30].

The Rietveld refinements of the crystal structures of the as-prepared TiO2 samples were
carried out using the FullProf software (https://www.ill.eu/sites/fullprof/, accessed on 6
May 2024). The method employs a least-squares procedure to compare Bragg intensities
and those calculated from a possible structural model. In the first step of refinement,
the global parameters, such as background and scale factors, were refined. In the next
step, structural property parameters such as lattice parameters, profile shape and width
parameters, preferred orientation, asymmetry, isothermal parameters, atomic coordinates,
and site occupancies were refined in sequence.

The average crystallite size and the lattice strain were calculated according to the
Williamson–Hall method using the following equation [31]:

βcos θ =
Kλ

D
+ 4ε sin θ (1)

https://www.ill.eu/sites/fullprof/
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where β is the peak full width at half maximum (FWHM), θ is the Bragg angle, K is the
shape factor (0.9), λ is the incident wavelength (λ = 1.5406 Å), and ε is the film strain. The
trend of βcosθ as a function of 4sinθ for the investigated samples is shown in Figure 5c,d.
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Figure 5. (a,b) Rietveld refinement of the X-ray diffraction profile and (c,d) Williamson–Hall plots of
TiO2 nanopowders calcined at 400 ◦C and 600 ◦C.

The fitting quality of the experimental data is assessed by computing parameters
such as the ‘goodness of fit’ χ2, the Bragg R-factor, and the Rf-factors (Profile R-factor
(Rp), Weighted Profile R-factor (Rwp), and Expected R-factor (Rexp)). The values of these
structural parameters are reported in Table 1.

Table 1. Fitting parameters of the Rietveld refinement on DRX profiles of TiO2 annealed at 400 ◦C
and 600 ◦C.

Sample χ2 Bragg R-Factor R Factors Rp Rwp Rexp

TiO2 (400 ◦C) 1.86 11.0 11.2 5.34 6.47 4.75

TiO2 (600 ◦C) 2.57 2.83 1.55 4.37 5.37 3.35

The results deduced from the Rietveld refinements of the XRD profiles are reported in
Table 2, giving information about the significant variation of the phase composition and
the crystallite size. It emerges that the crystallite size of the TiO2 sample increases upon
increasing the annealing temperature.



Materials 2024, 17, 3283 7 of 16

Table 2. Crystallographic properties of TiO2 annealed at 400 ◦C and 600 ◦C.

Sample Crystalline Phase Space Group Lattice
Parameters (Å)

Crystallite
Size (nm)

Strain
(×10−5)

Phase
Composition (%)

TiO2 (400 ◦C) Tetragonal (anatase) I41/amd a = b = 3.7761
c = 9.4950 11 0.00359 100

TiO2 (600 ◦C)

Tetragonal (anatase) I41/amd a = b = 3.7868
c = 9.5174 51 0.00224 76.95

Orthorhombic
(rutile) Pnma

a = 5.1124
b = 3.2054
c = 6.0871

- - 23.05

Figure 6 shows the FTIR spectra of TiO2 samples in the 400–4000 cm−1 range. The spec-
trum of the sample annealed at 400 ◦C shows two broad bands, centered at about 500 and
860 cm−1, which are assigned to the Ti–O bending and Ti−O−Ti stretching vibrations [32],
respectively. Furthermore, the barely visible contributions at about 1240 and 1340 cm−1

are ascribed to the C-H twisting and bending vibrational modes [33,34], whereas the two
bands at around 1630 and 3310 cm−1 correspond to the presence of related hydroxyl groups
(Ti-OH) and those of water molecules [35,36]. As expected, when calcination temperature
increases, peaks relative to the hydroxyl groups and adsorbed C-H disappear. At the
same time, we observed a slight change in the diffraction profile of TiO2, indicating the
rearrangement of the Ti-O network to facilitate the crystallization of TiO2 [32].
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This agrees with what is known from the literature [37], which reports that although the
oxygen content remains constant up to annealing temperatures of 900 ◦C, when there is an
increase in temperature, there is also an increase in “O− species” due to the hydroxyl groups
and carbon impurities desorbing from the surface. This process, due to the localized charge
transfer between anionic and cationic frameworks during thermally induced reduction,
favors the sensing mechanism of H2S, which reacts with the adsorbed oxygen species to
form SO2 and H2O (see Section 3.3).
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UV–visible absorption measurements were carried out to investigate the changes
in optical transitions of TiO2 nanostructures caused by annealing. The Kubelka–Munk
equation was used to calculate the absorption spectra of the samples from the diffuse
reflectance spectra [26]. Figure 7a shows absorbance spectra with wavelengths ranging
from 250 to 800 nm for both samples synthesized using the sol-gel method. The absorbance
of the nanostructures is around 90% in the UV range and decreases dramatically beginning
in the visible range. Seemingly, annealing has no significant impact on the absorbance of
the ceramic in the UV range. The bandgap energy Eg of TiO2 nanostructures was estimated
according to the Tauc method, following Equation (2) [29,38,39]:

(αhν)2 = A(hν − Eg) (2)
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In this equation, α is the absorption coefficient, A is a constant, and hν is the photon
energy. Extrapolating the linear part of the curve to the hν-axis yielded the optical band
gap, as illustrated in Figure 7b. The estimated band gap energy values were 3.31 eV and
3.26 eV for samples annealed at 400 ◦C and 600 ◦C, respectively. Similar behavior was
reported in the literature for TiO2 nanostructures synthesized using the sol-gel method [29].

3.2. Gas Sensing Tests

Before investigating the gas sensing properties, the baseline resistance of the TiO2
layer, denoted as Ra, versus operating temperature has been investigated (see Figure 8).
The sensor baseline displays a higher resistance at low temperatures. As the temperature
increases, the resistance baseline decreases because of the thermal excitation of electrons
into the conduction band, indicating the semiconductor behavior of TiO2. The data have
further shown that TiO2 (600 ◦C) is more resistive, due to the presence of the rutile phase,
compared to TiO2 (400 ◦C).

Operating temperature is also an important parameter to take into account for the gas
sensing response. Indeed, temperature influences the adsorption/desorption processes
of gases occurring on the sensing surface, as well as their reaction rate with adsorbed
oxygen on the TiO2 surface, and consequently the sensor response. As the above Figure 8
demonstrates, at temperatures lower than 300 ◦C, the baseline resistance is very high. To
evaluate the optimal operating temperature for the sensing tests, the sensor was exposed
to 1.5 ppm H2S gas at temperatures ranging from 300 to 400 ◦C (Figure 9). Based on the
results obtained, 350 ◦C appears to be the best operating temperature for this sensor, which
displayed a high response to H2S and short response/recovery times.
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In these operating conditions (Figure 10a), the sensor response of TiO2 (400 ◦C) was
registered to be 3.26 for 2.5 ppm of H2S, higher than that reported for the TiO2 (600 ◦C)
sensor. In addition, we confirmed this result in Figure 10b, which depicts the evolution of
the sensor response as a function of the H2S concentration for both sensors. This finding
is consistent with the results of XRD and SEM analyses. Indeed, it is well-known that
when the grain size of the sensing material is small enough, it substantially impacts the gas
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sensing properties [37,38]. In addition, the sensor annealed at 400 ◦C has a larger surface-
to-volume ratio due to the smaller grain size, thus further justifying the larger response
compared to the TiO2 (600 ◦C) sensor. The lower response for the sensor annealed at 600 ◦C
could therefore be related to the improvement in the crystallinity of TiO2 nanoparticles. The
rearrangement of the atoms is a process that reduces the gas adsorption on the surface [39].
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Apart the above structural considerations, the effect of the different phases (anatase
and rutile) on the sensing response cannot be excluded. The advantages of using anatase or
rutile in gas sensing have been discussed for a long time and depend on many variables
such as the target gas and operating temperature. For example, Zakrzewska and Radecka
discovered that rutile-dominated TiO2 nanomaterials exhibited higher sensitivity towards
hydrogen than those with the prevailing anatase [40]. This phenomenon could be accounted
for by band alignment and electron transfer from rutile to anatase to facilitate oxygen
pre-adsorption. On the contrary, by using density functional theory (DFT) to study the
adsorption and reaction of H2S on TiO2 anatase (101) and rutile (110) surfaces, it has been
demonstrated that the adsorption and dissociation of hydrogen sulfide at the TiO2 anatase
surface require a lower energy barrier compared to at the anatase surface [41]. This latter
finding indicates that the presence of anatase at a high concentration (100%) is a factor to
take into account when considering the sensor response enhancement of H2S.

The sensing performance of the TiO2 (400 ◦C) sensor was further investigated by
exposing the fabricated sensors to different concentrations of H2S gas. Figure 11a shows
the plotted gas response to H2S gas sensed by the TiO2 (400 ◦C) sensor at an operating
temperature of 350 ◦C. The response amplitude of the sensor increases with H2S concen-
tration in the range of 0.5 to 4 ppm. Moreover, in Figure 11b, it can be observed that the
response increases almost linearly with the concentration. The sensor is also sufficiently
sensitive at the lowest concentration (0.5 ppm) of H2S tested. This result suggests that it
can be promising for the sensing of hydrogen sulfide in practical applications.

The response and recovery times are two very important characteristics of gas sensors
in practical applications. The response and recovery times of the TiO2 (400 ◦C) sensor
as a function of various H2S concentrations at the operating temperature of 350 ◦C are
presented in Figure 12. The measured response and recovery times are short. Indeed, in
the H2S concentration range of 0.5 to 4 ppm, the response time is slower than 10 s and the
recovery time is slower than 31 s.
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Figure 11. (a) Resistance vs. time for different concentrations and (b) response vs. concentration of
the TiO2-NP sensor at an operating temperature of 350 ◦C.
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Figure 12. Response and recovery time vs. H2S concentrations of TiO2-NPs at an operating tempera-
ture of 350 ◦C.

The gas sensing selectivity of the TiO2 (400 ◦C) sensor against different gases, i.e.,
nitrogen dioxide, carbon monoxide, and hydrogen, was also studied (Figure 13). The
selectivity patterns indicate that, for all the interfering gases, it presents low responses, and
therefore exhibits excellent selectivity to H2S.

Repeatability is an important indicator for measuring the reliability of the sensor
response and the stability of the sensor. Figure 14 shows the reproducibility of the sensor
when exposed to three consecutive pulses of 4 ppm of H2S gas at the working temperature of
350 ◦C. It is observed that the response and recovery characteristics are almost reproducible.
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3.3. Gas Sensing Mechanism

The gas sensing mechanism of the developed sensor is explained by the change in
the conductance of the semiconducting TiO2 sensing layer. Herein, the conductivity of the
sensor is modified by the phenomenon of target gas adsorption-desorption, which causes
variations in the electrical conductivity of the sensing layer. The kinetics of gas adsorption
and desorption are critical to the performance of gas sensors, influencing their sensitivity,
response time, and recovery time. The adsorption process is enhanced by a high surface
area, optimal pore size, and high surface energy. Materials such as nanostructured titanium
dioxide (TiO2) are ideal due to their large surface area and chemical stability, providing
numerous active sites for the adsorption of gas molecules. Desorption depends on factors
such as binding energy and temperature. Strong interactions between gas molecules and the
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sensor surface can slow down desorption, resulting in longer recovery times. Increasing the
temperature can facilitate faster desorption by providing the necessary energy to overcome
binding forces. Sensor design must balance these kinetics to achieve rapid detection and
quick recovery. Enhancing selectivity involves modifying the sensor material, such as
doping TiO2 with elements such as silver or platinum, to tailor the interaction strength
with specific gases. These modifications optimize both adsorption and desorption rates,
ensuring that the sensor performs reliably and efficiently. Understanding and optimizing
these kinetic processes are then essential for developing high-performance gas sensors
capable of detecting hazardous gases accurately and swiftly.

When the sensor is exposed to air, oxygen molecules are adsorbed on the surface and
extract electrons from the conduction band [39,40]. Oxygen molecules are adsorbed on the
active sites of the rough grain surface as (O−

2 , O−, and O2−) by trapping electrons from the
conduction band, which results in an electron depletion region [42–44].

When the TiO2-based sensor was exposed to H2S, it reacted with adsorbed oxygen
species and released the trapped electrons back to the TiO2 (see Figure 15). Hence, the high
sensitivity to hydrogen sulfide can be attributed to its low dissociation energy compared to
other gases on TiO2 anatase, enabling it to readily react with the adsorbed oxygen [45–48])
to form SO2 and H2O, as seen in Equation (3). This causes the bulk release of a large con-
centration of free electrons, which results in the narrowing of the electron depletion region.

2H2S (g) + 3O−
2 (ads) → 2H2O (g) + 2SO2(g) + 3e− (3)
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The good performances of our sensor compared to those reported in the literature are
reported in Table 3. Remarkably, the sensor response is very high, considering the low H2S
concentration tested in our case, as well as being faster.
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Table 3. Comparison of the sensing performances of the TiO2-based sensor with other sensors
reported in the literature.

Material H2S (ppm) Response
(Ra/Rg)

Temperature
(◦C)

Response Time
(s)

Recovery Time
(s) Reference

TiO2 nanoplates
(Anatase) 10 4.8 300 10 - [46]

TiO2 nanotube
(Anatase) 50 26 300 22 6 [6]

TiO2 nanowires
(Rutile) 80 11 140 - - [47]

TiO2-Al2O3
(Rutile) 1000 38.7 650 390 480 [49]

Ag-doped TiO2
nanofiber 100 8.5 350 - - [44]

CuO doped TiO2
nanoparticle
(Anatase)

50 1.78 Room
temperature 14 22 [50]

TiO2 nanoparticles
(Anatase) 2.5 3.3 350 8 23 This work

Finally, we planned new tests for the evaluation of further characteristics regarding
our sensor. Among these, humidity is well-known to influence the response of resistive
sensors. However, the exact behavior is not predictable and various findings have been
reported, depending on the metal oxide, the target gas, the operating temperature, and the
humidity value [51]. Therefore, tests carried out in different humidity conditions have been
planned for the near future.

4. Conclusions

In summary, titanium dioxide nanoparticles were prepared by a modified sol-gel tech-
nique and then annealed at different air temperatures (400 ◦C and 600 ◦C). The synthesized
samples exhibit a polycrystalline structure, characterized by grains of pure anatase on
TiO2 (400 ◦C) and with about 25% of rutile in TiO2 (600 ◦C). Subsequently, the samples
were used to fabricate gas sensors for H2S. The TiO2 (400 ◦C)-based gas sensor was found
to display the best performances in terms of high response, fast response/recovery, and
good selectivity when operating at 350 ◦C. The obtained results confirm that the TiO2
sample treated at 400 ◦C can be considered very promising for the detection of low H2S
concentrations and suitable for a variety of environmental applications.
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