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Abstract: Ultra High-Performance Concrete (UHPC) is a cement-based composite material with great
strength and durability. Fibers can effectively increase the ductility, strength, and fracture energy
of UHPC. This work describes the impacts of individual or hybrid doping of basalt fiber (BF) and
steel fiber (SF) on the mechanical properties and microstructure of UHPC. We found that under
individual doping, the effect of BF on fluidity was stronger than that of SF. Moreover, the compressive,
flexural, and splitting tensile strength of UHPC first increased and then decreased with increasing
BF dosage. The optimal dosage of BF was 1%. At a low content of fiber, UHPC reinforced by BF
demonstrated greater flexural strength than that reinforced by SF. SF significantly improved the
toughness of UHPC. However, a high SF dosage did not increase the strength of UHPC and reduced
the splitting tensile strength. Secondly, under hybrid doping, BF was partially substituted for SF to
improve the mechanical properties of hybrid fiber UHPC. Consequently, when the BF replacement
rate increased, the compressive strength of UHPC gradually decreased; on the other hand, there was
an initial increase in the fracture energy, splitting tensile strength, and flexural strength. The ideal
mixture was 0.5% BF + 1.5% SF. The fluidity of UHPC with 1.5% BF + 0.5% SF became the lowest with
a constant total volume of 2%. The microstructure of hydration products in the hybrid fiber UHPC
became denser, whereas the interface of the fiber matrix improved.

Keywords: UHPC; basalt fiber; hybrid fibers; fracture energy; micro-structure

1. Introduction

Ultra-high performance concrete (UHPC) is a novel type of concrete material with
distinct performance indices [1,2], comprising cement, mineral admixtures, admixtures, fine
aggregates, fibers, etc. UHPC is widely utilized in the railroad, road, bridge, and building
sectors [3]. Unlike conventional concrete, UHPC can provide ultra-high compressive
strength of up to 120 MPa and reasonable bending strength [4], with high cement-use
efficiency, a dense microstructure, ultra-high mechanical characteristics, and durability [5,6].
Despite providing excellent compressive strength and stiffness, UHPC has limitations,
including poor toughness, weak bending, and tensile qualities [7]. The existing approach
to addressing these limitations is adding fibers to the matrix to boost UHPC performance.
Fiber may effectively reduce the spread of cracks and dissipate the fracture energy of the
cementitious material [8]. Common fiber types include steel fiber, mineral fiber, organic
fiber, and glass fiber. The right quantity of fiber is interwoven and overlapped in the
concrete to create a spatial skeletal structure. The fiber can reinforce and toughen UHPC,
bridging cracks and reducing them [9,10].

According to numerous research, UHPC’s toughness, flexural strength, and com-
pressive strength can all be significantly increased by adding steel fiber (SF) [11,12]. In
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order to directly bridge diagonal cracks or indirectly disperse stress to both sides of the
crack, steel fibers can be employed like stirrups [13]. Abba et al. [14] discovered that the
compressive strength of UHPC with 3% SF can reach 164 MPa, 12 MPa higher than that
with 1% SF. Jin et al. [15] noted that the tensile strength of UHPC with 3% SF can become
approximately 2.4 times greater (16.05 MPa) than samples without SF (6.67 MPa). However,
SF is expensive and has a high density, as well as poor corrosion resistance. Moreover,
carbon dioxide emissions generated during steel fiber production exhibit adverse effects on
natural resources and the environment [16].

Basalt fiber, a novel type of eco-friendly fiber with good compatibility, thermal stability,
chemical stability, and corrosion resistance [17,18], can effectively control concrete con-
traction and cracks expansion, thereby significantly increasing the mechanical properties,
bending toughness, and durability. BF is lighter with similar mechanical quality to SF.
Nevertheless, basalt fibers have low energy consumption and are cheaper than steel fibers,
providing additional economic benefits [19]. Chen et al. [20] used BF to reinforce UHPC and
discovered that the UHPC with BF has better flowability and fiber distribution, unlike that
with SF. Wu et al. [21] noted that BF exhibits a larger size, which causes a smaller specific
surface area and fiber-distribution density in the UHPC slurry, resulting in a reduction of re-
sistance for UHPC slurry flow. Jiang et al. [22] confirmed the feasibility of using BF instead
of SF to strengthen ultra-high-performance seawater sea–sand concrete, geared towards
resolving SF corrosion caused by chloride ions. Elsewhere, Nuaklong et al. [23] found that
adding basalt fiber increased the elastic modulus of UHPC by 2.67% and improved sample
transverse ductility. Due to its affordability and environmental friendliness, BF is typically
utilized as a reinforcing material in a variety of areas. Its advantages include resistance to
acids and alkalis, high strength, and resilience to both high and low temperatures [24–26].

Hybrid fiber concrete is stronger and more durable than single-fiber concrete [27].
This is because small-diameter fibers can successfully connect macrocracks, large-diameter
fibers may effectively block microcracks from preventing the development of macrocracks,
and hybrid fibers can exert a good synergistic impact to improve concrete performance.
Meng et al. [28] ascertained that a hybrid fiber combination could effectively improve the
compressive strength of UHPC. Lai et al. [29] stated that the combined use of SF and BF
can promote the resistance of UHPC to projectile effects and explosions. Niu et al. [30]
discovered that fibers of varying hybridized geometries and materials can improve the
mechanical properties of UHPC. Li et al. [31] found that hybrid fiber-reinforced UHPC
exhibits good ductility by mixing steel fibers with seven nonmetallic fibers. Lin et al. [32]
analyzed the dynamic properties of UHPC enhanced by hybrid POMF-SF, indicating that
hybrid fibers increase the dynamic mechanical strength of UHPC.

Now, several studies have indicated that fiber can improve the majority of UHPC
characteristics. However, distribution, content, and hybrid combination of fibers influence
the mechanical properties and durability of UHPC [33]. The mechanical properties of UHPC
may be reduced when the fiber content is too high, resulting in the opposite effect [34,35].
Khayat et al. [36] noted a critical value of fiber content, beyond which the flowability
of UHPC can be significantly minimized. Xu et al. [37] found that SF content increased
the bonding surface area between the fiber and UHPC, thereby improving the tensile
properties but reducing the fluidity of UHPC. Therefore, it is important to investigate the
effects of doping hybrid basalt and steel fibers of UHPC. Simultaneously, research on UHPC
materials mainly focuses on steel and organic fibers, with less emphasis on basalt fibers
since inorganic fibers have little effect on toughness. However, the resin-twisted basalt
fiber (BF) has benefits, including a strong anchoring effect and good dispersibility due to its
unique ribbed surface shape. The toughening effect is superior to short-cut basalt fibers. As
a result, the importance of hybrid reinforced fiber on the mechanical properties of UHPC is
currently an important area of research.

This work investigated the effects of individual or hybrid BF and SF doping on the
mechanical properties of UHPC. First, we investigated the effects of single-doped fibers on
the functional and mechanical properties of UHPC. Secondly, the functional and mechanical
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characteristics of hybrid fiber UHPC were examined by partially substituting SF with BF at
25%, 50%, and 75% replacement rates. We elucidated the mechanism of fiber in the matrix
in conjunction with SEM scanning examination.

2. Materials and Methods
2.1. Raw Materials

The BF used in the test was produced by Jiangsu Tianlong Basalt Continuous Fiber
Co., Ltd. (Yangzhou, China), and the SF was produced by Jiangsu Subot New Materials
Co., Ltd. (Nanjing, China). Figure 1 shows the appearance of the fibers. Table 1 presents
the fiber-characteristic parameters [38].
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Figure 1. Fibers used in the test. (a) BF; (b) SF.

Table 1. Fiber-characteristic parameters.

Fiber Type Diameter/µm Length/mm Tensile
Strength/MPa

Elastic Modulus Elongation at
Break/%/GPa

BF 450 12 1245 52.3 2.2
SF 300 12 1200 210 3.5

2.2. Design Mixes

P·II 52.5 Portland cement is the cementitious material used in the test. The slag powder
used in the test is S95 and quartz sand produced by Shanghai Baosheng Construction Engi-
neering Co., Ltd. (Shanghai, China). A water reducer with a 30% water-reducing capacity
was also added to the design combination to increase uniformity and processability.

The test was split into two halves, and we used blank UHPC without fiber as the
control group.

Part 1: We investigated the effect of BF and SF on the mechanical characteristics of
UHPC when introduced independently, with a fiber content of 0.25%, 0.5%, 0.75%, 1.0%,
1.5%, and 2.0%. Table 2 shows the proportion of single-fiber blending. The specimens with
individual doping of BF were named UHPC-BF, and the specimens with an individual
doping of SF were named UHPC-SF.

Part 2: Keeping the overall volume content of 2% constant, we replaced some steel
fibers with basalt fibers at 25%, 50%, and 75% replacement rates. We examined how the
combination of basalt fibers and steel fibers influences the mechanical characteristics of
UHPC. Table 2 presents the mix ratio of hybrid fibers, with the initials BF and SF standing
for basalt fibers and steel fibers, respectively. Additionally, the previous values denote the
proportions of basalt and steel fibers. For instance, 05BF15SF stands for UHPC with 1.5%
steel fibers and 0.5% basalt fibers.

The UHPC specimens were prepared by JJ-5 cement mortar mixer. Cementitious
material (cement, mineral admixtures) and sand were put into the mixing pot and stirred
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for 2 min to ensure good dispersion and achieve higher fiber matrix interface performance.
The superplasticizer and water were mixed evenly, and then half of them were added into
the mixing pot and stirred for 6 min. The fibers were added to the mixtures lowly and
stirred for 2 m to disperse evenly. Finally, the UHPC slurry was poured into the mold, and
the specimen was formed by shaking table for 2 m. The formed specimen was put into the
standard maintenance room for 24 h and then removed into the standard curing room until
the specified age.

Table 2. Mix proportion design of fiber UHPC.

Specimen BF/kg SF/kg Cement/kg Silica
Fume/kg Slag/kg Sand/kg Water

Reducer/kg Water/kg

BLANK 0 0 1120 145 105 1120 21 228
0.25% BF 6.3 0 1120 145 105 1120 21 228
0.5% BF 12.7 0 1120 145 105 1120 21 228

0.75% BF 19.0 0 1120 145 105 1120 21 228
1% BF 25.4 0 1120 145 105 1120 21 228

1.5% BF 38.1 0 1120 145 105 1120 21 228
0.25% SF 0 20.8 1120 145 105 1120 21 228
0.5% SF 0 41.6 1120 145 105 1120 21 228
0.75% SF 0 62.4 1120 145 105 1120 21 228

1% SF 0 83.3 1120 145 105 1120 21 228
1.5% SF 0 124.9 1120 145 105 1120 21 228
2% SF 0 166.6 1120 145 105 1120 21 228

05BF15SF 12.7 124.9 1120 145 105 1120 21 228
10BF10SF 25.4 83.3 1120 145 105 1120 21 228
15BF05SF 38.1 41.6 1120 145 105 1120 21 228

2.3. Testing Methods
2.3.1. Fluidity Test

Since UHPC raw materials are all fine aggregates with small particle sizes, the UHPC
slurry flow test method was referred to as the “Methods for Testing Uniformity of Concrete
Admixtures” GBT8077-2023 [39]. UHPC slurry was poured into a frustum round mold
and lifted to measure slurry flow. The truncated cone round die had an upper diameter of
70 mm, lower diameter of 100 mm, and height of 60 mm, with a smooth inner wall with
no seams.

2.3.2. Compressive Strength

A reference was made to the “Testing Method for Cement Mortar Strength (ISO Method)”
GB/T17671-2021 [40] to analyze the compressive strength of UHPC. A YA-600 microcomputer-
controlled fully automatic pressure testing machine was used to test the compressive strength
of UHPC. Prepare three UHPC cube test blocks of 100 mm × 100 mm × 100 mm each, and
take the arithmetic mean of the calculated compressive strength values of the three test
blocks as the test result.

2.3.3. Flexural Strength

The servo-hydraulic multifunctional material testing system UTM-25 was used to
compute the flexural strength of the mortar specimens in this experiment. Prepare three
UHPC specimens with a mix ratio of 100 mm × 100 mm × 400 mm for each group, and
take the arithmetic mean of these specimens as the final result of the flexural strength value
of the prism in that group.

2.3.4. Splitting Tensile Strength

The splitting tensile strength of UHPC was evaluated based on the “Standard for
Testing Methods for Physical and Mechanical Properties of Concrete” GB/T50081-2019 [41].
This test was conducted using the YA-600 microcomputer-controlled fully automatic
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pressure testing machine produced by Changchun Kexin Testing Instrument Co., Ltd.
(Changchun, China) Prepare three UHPC cube specimens of 150 mm × 150 mm × 150 mm
each and take the arithmetic mean of the calculated splitting tensile strength values of the
three specimens as the test result.

2.3.5. Fracture Toughness

The fracture test is the three-point bending fracture test in the “Hydraulic Concrete
Fracture Test Specification” DL/T5332-2005 [42], and the concrete fracture energy specimen
measures 40 mm × 40 mm ×160 mm. The effective span L of the specimen was 120 mm.
The mid-span of the specimen was cut with a depth of 12 mm and a width of 2 mm.
Figure 2 shows the geometric schematic diagram of the specimen. The servo-hydraulic
multifunctional material testing system UTM-25 was used for the fracture-toughness test.
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Fracture energy refers to the energy consumption of the fracture zone per unit area,
which can be determined by the area under the load-displacement curve. The calculation is
shown in Equation (1).

G =
W + mgδ0

A
(1)

where G is the fracture energy (J); W is the measured P-δ surrounding area of the curve
and abscissa, A is the area of the fractured ligament of the specimen (mm2); δ0 is the
displacement of the loading point during final failure (mm); m is the mass of the specimen
(kg); and g is the acceleration of gravity.

3. Results
3.1. Effect of Basalt/Steel Individual Fiber on Properties of UHPC
3.1.1. Fluidity

Figure 3 shows the effect of BF and SF on the fluidity of UHPC. As shown, the
maximum flow occurred at zero fiber content, and the flow value was 310 mm. The
flow gradually decreased with increasing fiber content, and more fiber made UHPC more
viscous and less fluid. This is because an increase in the number of fibers per unit volume
increases the difficulty of particle movement within the matrix and hinders the movement
between particles, the fibers increase the friction between them and the matrix, and they
are randomly distributed in the UHPC matrix acting as a skeleton, ultimately preventing
the flow of UHPC. In addition, an increase in the specific surface area of the fiber increases
the demand for cement slurry covering the fiber and aggregate surface, as well as decreases
matrix fluidity.

With the same content, the fluidity of BF decreased more significantly than that of
SF. With the fiber content increasing from 0% to 1%, the flow of UHPC-BF decreased by
80 mm (26%), whereas that of UHPC-SF decreased by 50 mm (16%). The fluidity of UHPC
with 1% BF was 11.5% lower than that of UHPC with 1% SF. As shown in Figure 4, this
is because the SF surface is smoother, whereas the BF surface has a ribbed shape and is
rougher, increasing the friction between it and the matrix, and thereby complicating the
molecular movement within the matrix. Each SF content conformed to the flow state UHPC.
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However, when the BF content reached 1.5%, the fluidity of UHPC-BF became lower than
200 mm, which did not meet the requirements of fluidity degree. Therefore, the addition of
UHPC-BF was halted. Since the fluidity of the specimen at this time was poor, the internal
porosity and structural damage increased, whereas the strength decreased.
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3.1.2. Compressive Strength

Figure 5a shows that BF can considerably increase the initial strength of UHPC. The
compressive strength of UHPC-BF 7 d at a 0.5% dosage was 116.1 MPa, i.e., higher than
that of UHPC-SF at the same dosage and up 29.7% from the control group. When UHPC
was 7 days old, the compressive strength of 1% BF added reached 92.1% for 28 days, and
1.0% SF added reached 90.4% for 28 days. This is because the development of cracks is
what causes the failure of UHPC; adding BF and SF can significantly reduce cracks while at
the same time improving specimen strength [43].

Figure 5b shows that the overall compressive strength of UHPC-BF has a pattern in
the figure that first increases and then decreases with increasing BF dosage. The highest
compressive strength at this time was 130.6 MPa, 28.3% higher than the blank group. The
ideal dosage was 1%. The compressive strength of UHPC-SF gradually increased with
increasing dosage. Before 1% dosage, the compressive strength quickly increased but
gradually increased at ~1%–2% dosage. UHPC-SF typically has a 28 d compressive strength
higher than UHPC-BF. This is because the compressive strength of UHPC increases at a
specific fiber content due to the fiber-bridging effect. Nonetheless, if the fiber concentration
is too high, the specimen becomes less fluid and suffers from more internal structural
damage, thereby lowering the compressive strength. Due to its massive strength, SF may
successfully join macroscopic cracks in the middle and late stages of crack formation. UHPC
hydration is completed at this point, and the strength of the matrix increases. The matrix
and SF adhere better, and the compressive strength of UHPC-SF significantly increases.



Materials 2024, 17, 3299 7 of 17

Materials 2024, 17, x FOR PEER REVIEW 7 of 17 
 

 

was 7 days old, the compressive strength of 1% BF added reached 92.1% for 28 days, and 
1.0% SF added reached 90.4% for 28 days. This is because the development of cracks is 
what causes the failure of UHPC; adding BF and SF can significantly reduce cracks while 
at the same time improving specimen strength [43]. 

  
(a) (b)  

Figure 5. Compressive strength of UHPC in single-doped fiber. (a) 7 d; (b) 28 d. 

Figure 5b shows that the overall compressive strength of UHPC-BF has a pattern in 
the figure that first increases and then decreases with increasing BF dosage. The highest 
compressive strength at this time was 130.6 MPa, 28.3% higher than the blank group. The 
ideal dosage was 1%. The compressive strength of UHPC-SF gradually increased with 
increasing dosage. Before 1% dosage, the compressive strength quickly increased but 
gradually increased at ~1%–2% dosage. UHPC-SF typically has a 28 d compressive 
strength higher than UHPC-BF. This is because the compressive strength of UHPC in-
creases at a specific fiber content due to the fiber-bridging effect. Nonetheless, if the fiber 
concentration is too high, the specimen becomes less fluid and suffers from more internal 
structural damage, thereby lowering the compressive strength. Due to its massive 
strength, SF may successfully join macroscopic cracks in the middle and late stages of 
crack formation. UHPC hydration is completed at this point, and the strength of the ma-
trix increases. The matrix and SF adhere better, and the compressive strength of UHPC-
SF significantly increases. 

3.1.3. Flexural Strength 
Figure 6a shows the variations in the flexural strength of UHPC with single-fiber con-

centration at 7 days. At 7 days, BF has a stronger improvement effect on the flexural 
strength of UHPC than that of SF at a dosage of 0–1%. Also, 1% UHPC-BF has a flexural 
strength of 26.4 MPa, which is 6.5% more than UHPC-SF. This is because BF has a rougher 
surface than SF and has superior adhesion with UHPC in the early stages due to more 
matrix friction. Cracks cause failure, and the fibers near the crack may help to carry stress. 
Moreover, since BF is highly dispersible, more fibers bear the force on the fracture surface, 
hence increasing the flexural strength of UHPC. 

Figure 5. Compressive strength of UHPC in single-doped fiber. (a) 7 d; (b) 28 d.

3.1.3. Flexural Strength

Figure 6a shows the variations in the flexural strength of UHPC with single-fiber
concentration at 7 days. At 7 days, BF has a stronger improvement effect on the flexural
strength of UHPC than that of SF at a dosage of 0–1%. Also, 1% UHPC-BF has a flexural
strength of 26.4 MPa, which is 6.5% more than UHPC-SF. This is because BF has a rougher
surface than SF and has superior adhesion with UHPC in the early stages due to more
matrix friction. Cracks cause failure, and the fibers near the crack may help to carry stress.
Moreover, since BF is highly dispersible, more fibers bear the force on the fracture surface,
hence increasing the flexural strength of UHPC.

Materials 2024, 17, x FOR PEER REVIEW 8 of 17 
 

 

  
(a) (b) 

Figure 6. Flexural strength of UHPC in single-doped fiber. (a) 7 d; (b) 28 d. 

Figure 6b shows the changes in single-doped fiber and the flexural strength of UHPC 
after 28 days. As shown, the flexural strength of UHPC initially increased and then de-
creased with increasing BF content. The strength is currently 32.6 MPa, i.e., 34.7% stronger 
than the blank group, with an ideal content of 1%. UHPC steadily increases as SF content 
increases, reaching an ideal SF content of 2% and a strength of 36.5 MPa. UHPC-SF shows 
greater flexural strength than UHPC-BF at high fiber contents. This is due to the limited 
dispersibility of SF and, therefore, fewer fibers on the stress surface at low dosages. Sec-
ondly, although BF has a greater coefficient of friction and performs better while bonding 
to the matrix, the fluidity of the specimen and its flexural strength decreases, while its 
internal loss increases when the dosage of BF is above 1%. 

With the addition of fibers, the flexural strength of UHPC was considerably en-
hanced, and its brittle failure mode changed to ductile failure. Figure 7 shows morphology 
failure from the flexural strength test of UHPC. Upon loading of fiber UHPC, microcracks 
are first created, which are subsequently supported by other fibers, causing the propaga-
tion of microcracks. The stressed fiber snaps and pulls out due to constant load increase, 
and the microcrack progressively grows into a macrocrack, hence hurting the specimen. 
After failure, the specimen is not split in half and is kept together by fibers to preserve 
integrity. 

  
(a) (b) 

Figure 7. Failure morphology of UHPC specimens. (a) Blank UHPC; (b) UHPC-BF. 

  

 

BF fractured 
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Figure 6b shows the changes in single-doped fiber and the flexural strength of UHPC
after 28 days. As shown, the flexural strength of UHPC initially increased and then
decreased with increasing BF content. The strength is currently 32.6 MPa, i.e., 34.7%
stronger than the blank group, with an ideal content of 1%. UHPC steadily increases
as SF content increases, reaching an ideal SF content of 2% and a strength of 36.5 MPa.
UHPC-SF shows greater flexural strength than UHPC-BF at high fiber contents. This is
due to the limited dispersibility of SF and, therefore, fewer fibers on the stress surface at
low dosages. Secondly, although BF has a greater coefficient of friction and performs better
while bonding to the matrix, the fluidity of the specimen and its flexural strength decreases,
while its internal loss increases when the dosage of BF is above 1%.

With the addition of fibers, the flexural strength of UHPC was considerably enhanced,
and its brittle failure mode changed to ductile failure. Figure 7 shows morphology failure
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from the flexural strength test of UHPC. Upon loading of fiber UHPC, microcracks are
first created, which are subsequently supported by other fibers, causing the propagation
of microcracks. The stressed fiber snaps and pulls out due to constant load increase, and
the microcrack progressively grows into a macrocrack, hence hurting the specimen. After
failure, the specimen is not split in half and is kept together by fibers to preserve integrity.
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3.1.4. Splitting Tensile Strength

Figure 8 compares the splitting tensile strength of UHPC with single SF and BF doping.
UHPC increased by 45%, 55%, 76%, 112%, and 87.9% compared to the control group when
the BF content was 0.25%, 0.50%, 0.75%, 1.0%, and 1.5%, respectively. BF has a stronger
capacity to prevent fracture propagation and a better connecting effect on the matrix at a
dosage of 1% [44]. The specimen currently has the highest splitting tensile strength. The
splitting tensile strength of UHPC decreases at 1.5% dosage. High BF content decreases the
UHPC flow performance, develops internal pores, and exacerbates structural degradation,
all of which reduce splitting tensile strength. However, the dosage is inadequate, and
few fibers are fractured, with a weak effect of bearing stress. The best BF dosage at this
time was 1% because the splitting tensile strength was rather low. The splitting tensile
strength of UHPC increased by 66.7%, 91%, 112.1%, 182%, 194%, and 118% compared to
the blank group at steel fiber contents of 0.25%, 0.5%, 0.75%, 1%, 1.5%, and 2%, respectively.
The optimal content of steel fiber was 1.5%, and the tensile strength of UHPC initially
increased before decreasing with increasing steel fiber content. This is because when the
fiber content increases, more fibers are added per unit area, increasing the amount of
cement slurry surrounding the fibers and decreasing the amount of hydration products the
matrix produces, hence leading to the original flaws in the UHPC matrix.
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3.2. Effect of Hybrid Fiber on Properties of UHPC
3.2.1. Fluidity

As shown in Figure 9, the fluidity of UHPC gradually decreased with an increasing
BF replacement rate, and the maximum fluidity of primary UHPC was 310 mm. The
flow degree of the dynamic UHPC was 200 mm, and the minimum flow value of the
UHPC of 15BF05SF was 175 mm, which does not meet the requirements of the dynamic
UHPC of the flow. When the BF replacement rate was below 50%, the fluidity exceeded
200 mm, indicating enhanced flow performance. However, the addition of fiber hindered
the working performance of UHPC, which was attributed to the restraining and blocking
effects of fibers. The fiber tended to wind and overlap, forming clusters that made the
matrix sticky. The rough surface morphology of BF led to increased friction with the
matrix, and its special ribbed surface created an anchorage effect, causing a more noticeable
decrease in UHPC fluidity. As BF is hydrophilic, it adsorbs a small amount of water during
the preparation process, reducing UHPC mobility. Hence, the replacement rate of BF should
not exceed 50%. Notably, SF has a smooth surface and less friction, hence, there is less effect
on the flow of UHPC than BF.
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3.2.2. Compressive Strength

Figure 10 shows the cubic compressive strength of UHPC at 3 d, 7 d, and 28 d for
each group. The 7 d compressive strength of 10BF10SF was the highest, indicating that
BF addition improves the early strength of UHPC. This is due to the rougher surface of
BF, denser cement fiber interface at the early stage of hydration, and hydrophilic sizing
agent on the BF surface, causing more C-S-H gel to adhere to the fiber surface and tighter
bonding between fibers and matrix. Secondly, the particular twisted structure of BF has
a higher matrix-anchoring effect and synergistic matrix deformation. Its compressive
strength significantly increases in the early stages of hydration. However, due to its weak
stiffness, it does not significantly increase in the latter stages of hydration compared to steel
fibers. Its compressive strength significantly increases during the early stages of hydration.
However, due to its weak stiffness, it does not significantly increase during the latter stages
of hydration, unlike steel fibers. Fiber-mediated enhancement of the internal structure of
UHPC, which can promote strength increase in the early stages, is responsible for the 3 d
strength of hybrid fiber UHPC reaching 80% of the 28 d strength. By distributing stress via
significant fissures, fibers can increase the ductility, strength, and load-bearing capacity of
composite materials based on cement.
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3.2.3. Flexural Strength

Figure 11 shows the flexural strength of composite fiber UHPC. The flexural strength
of composite fiber UHPC initially increased and then decreased with an increasing BF
substitution rate. The flexural strength of UHPC was at its best upon the addition of 1.5%
SF and 0.5% BF; its corresponding 7 d and 28 d flexural strengths increased by 1.49 and
1.75 times, respectively, compared to the control group. The flexural strength increased
by an increasing rate of BF substitution. However, significant BF weakened the flexural
strength of UHPC. It has a better anchoring effect on the substrate majorly due to the
distinctive twisted structure on the BF surface. BF predominantly increased in early UHPC
strength with a more restraining effect on its microcracks during the initial stage of load
action. Additionally, the inclusion of BF can improve the internal structure of UHPC, and
the high dispersibility of material can promote the development of a denser microstructure.
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3.2.4. Splitting Tensile Strength

Figure 12 illustrates that the splitting tensile strength of UHPC initially increases and
declines afterwards as the BF replacement rate increases. The UHPC material exhibits the
highest splitting tensile strength (05BF15SF). This is ascribed to the impact of two types
of fibers on crack propagation at various points throughout the failure process. The
incorporation of microfibers delays the development of macroscopic cracks compared to
single-type big-fiber concrete. Moreover, BF can promote fiber dispersion and terminate
the development of microcracks. BF exhibits a more rugged morphology, greater length,
and enhanced bonding impact with the matrix in comparison to SF. During the initial
loading stages, it exerts a more significant inhibiting effect on microcracks. Additionally,
BF has stronger dispersibility compared with SF. The weight of SF makes it vulnerable
to deposition during the stirring molding process, allowing for the entry of more air into
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the interior of UHPC, increasing UHPC flaws and decreasing the number of stress fibers
at the cracking site. However, the ongoing increase in the BF replacement rate decreases
the splitting tensile strength of UHPC due to the higher strength of SF, which resists the
emergence of macroscopic cracks. Fiber mixing can improve the splitting tensile strength
of UHPC more effectively than single fibers, demonstrating a beneficial synergistic effect
between SF and BF. Fiber blending achieves this by restricting early micro-cracks and later
macroscopic cracks.
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3.3. Effect of Fracture Toughness on UHPC
Effect of Single-Doped/Multi-Doped Fiber on Fracture Toughness

As indicated by the load-disturbance curve in Figure 13, we infer that BF enhances
the toughness of UHPC. The fracture energy of the specimen is significantly improved,
measuring 102% higher than that of the control group. The fibers are prone to fracture
once they are loaded, and they lack the capacity to remain connected to the cracks because
of the low strength of BF itself. This is because microcracks primarily form inside the
specimen during the early stress stage, and the BF surface is ribbed, creating a stronger
anchoring force with the matrix. Consequently, it can improve the initiation load and
inhibit microcrack formations in the specimen. Nevertheless, at a 1% SF content, the limited
quantity and uneven dispersion result in reduced SF to withstand stress on the fracture
surface of the UHPC matrix. The peak strength of UHPC-SF is inferior to that of UHPC-BF,
primarily due to the modest anchoring effect of the UHPC matrix. However, the steel
fiber itself has high strength and can effectively connect macro-cracks after UHPC fracture,
inducing ductile failure in specimens.
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The fracture energy of UHPC first increases and then falls as the replacement rate of BF
rises. The maximum fracture energy, which is 8.1% higher than that of 2% SF, is detected at
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05BF15SF. Not only does 05BF15SF surpass 2% SF in peak load, but it also exhibits a larger
load-displacement envelope area. Steel fibers play a key role in imparting ductility to UHPC,
and the incorporation of BF enhances both the initiation load and peak load. Composite-
doped fiber UHPC specimens demonstrate superior fracture performance compared to
UHPC specimens with a single dopant of steel fiber. This is because microcracks, which
first develop in the weak zone, are significantly inhibited by BF in the early stages of
specimen cracking. Consequently, stress builds up at the crack tip. The BF enhances the
initiation load and peak load by reducing local stress concentration and inhibiting fracture
propagation due to its potent anchoring effect. Through the partial substitution of BF for
steel fiber, effective fiber-bridging resistance was achieved, extending up to larger crack
widths and preventing the isolated crack from propagating. Furthermore, it resulted in the
opening of a wider crack at the location of the greatest fiber-bridging stress. Combining
BF with SF improves the internal structure of UHPC, optimizes the spatial distribution of
fibers within UHPC, alleviates subpar SF cluster dispersion performance, and increases the
strength of UHPC and toughness. Table 3 illustrates that the 15BF05SF minimum fracture
energy is 17.5 kJ/m3. Because of the quick drop in flowability caused by the number of
BF beyond the limit value (1%), the inhibitory impact of fibers on macroscopic fractures
decreases, internal flaws in UHPC increase, and the material’s peak strength and toughness
start to decline.

Table 3. Fracture energy of various types of UHPC.

Fibre Type Cracking Load Peak Load Fracture Energy
(KN) (KN) KJ/m3

BLANK 2.12 3.88 0.26
1% BF 4.28 6.45 2.36
1% SF 3.22 5.01 13.51
2% SF 4.378 9.2503 25.8

05BF15SF 6.783 9.81893 27.9
10BF10SF 5.965 8.37683 24.3
15BF05SF 3.886 5.94573 17.5

3.4. Microstructure Analysis of UHPC
3.4.1. Basalt/Steel Fiber Individual of UHPC

Once fibers are incorporated, the fracture surface of the notched specimen extract SF
and breaks BF, both of which are uniformly distributed. The fibers are somewhat bent after
being pulled out. To more clearly demonstrate how different fibers affect the fundamental
characteristics of UHPC, the microstructure of 28-day UHPC specimens was examined
using the SEM. Figure 14a displays the internal microstructure of blank UHPC, showing
its hydration products, unhydrated cement particles, and holes, with calcium hydroxide
crystal and C-S-H gel acting as the principal hydration products. The compactness of the
microstructure can also be influenced by the detrimental pores between particles. The
microstructure of UHPC was much more compact after the addition of SF due to increased
hydration products, tight bonding between fibers and matrix, and decreased porosity, as
shown in Figure 14b. The interface between SF and UHPC exhibits some flaws, and SF is
tough and difficult to break. Steel fibers may separate during the stress process owing to
the flat surface of SF and its loose attachment to the substrate. In Figure 14c, a superior
adhesion between BF and the substrate is evident, with more hydration products attached
to the surface of BF compared to SF. This is attributed to the rougher surface of BF and the
application of hydrophilic wetting agents. The dense and homogeneous microstructure
around BF facilitates strong adhesion between fibers and cement slurry. The fibers can
bridge the microcracks formed when cement slurry is loaded, allowing the specimen to
carry the load even after it has cracked. To minimize crack extension and provide ultra-high
strength for UHPC, the high adhesion between BF and cementitious materials transfers
stress to fibers, transforming it into fiber tensile strength.
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3.4.2. Hybrid Fiber of UHPC

The stress-damaged specimens and the control specimens were examined at 28 d
using SEM at various magnifications. Results showed that the resistance mechanisms of
UHPC doped with SF + BF and blank UHPC were highly distinct. A well-formed plate-
like calcium hydroxide crystal frame can be observed in the UHPC specimen. Although
the internal microstructure of fiber-doped UHPC is more compact compared to that of
blank UHPC, it contains more calcium hydroxide crystals and less hydration products.
This is because fibers reduce the pores and alter the UHPC’s internal structure. Within
UHPC, the fibers are more likely to create a spatial network structure, which minimizes the
matrix’s pores and fosters a stronger connection between hydration products and fibers.
Figure 15 illustrates the mechanism through which the hydrophilicity of BF promotes the
absorption of the gel on its surface to enhance the growth of hydration, such as C-S-H gel,
which fills the pores in the matrix and boosts the test piece’s strength. Additionally, fiber
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debonding is inhibited and the initiation and propagation of cracks are postponed by the
strong friction and anchoring force that exists between BF and the substrate. However, the
specimen’s fracture growth speed decreases once the peak load and the toughness of the
UHPC increase due to the high tensile strength of SF. Results of the SEM scanning study
indicate that the hybrid fibers have a multi-level, step-by-step inhibitory effect on cracks,
suggesting that UHPC goes through a stable phase of crack development and propagation
before failing. At different structural levels and loading stages, the combination of the two
results in a superimposition effect and synergistic impact, enabling the fibers to effectively
fulfill their individual roles. This achieves synergistic complementarity and the desired
outcomes of progressive crack resistance and enhanced toughness.
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4. Conclusions

This study employed a novel environmentally friendly resin-twisted basalt fiber
and steel fiber blend in UHPC, elucidating the impact of individual fiber doping on the
mechanical properties of UHPC. Moreover, it compared the differences in the influence of
the two types of fibers on the fundamental properties of UHPC. Next, resin-twisted basalt
fibers with replacement rates of 25%, 50%, and 75% were used to replace portions of the
steel fibers. The mechanical characteristics of UHPC under various replacement rates were
examined, the ideal dosage of hybrid fibers in UHPC was estimated, and the mechanism of
action of BF and SF in UHPC was investigated. The conclusions that follow are derived
from the findings.

(1) The fluidity of UHPC with BF decreased more than that of UHPC with SF. And when
the BF content reaches 1.5%, it does not meet the requirements of the fluidity degree.
The fluidity of UHPC gradually decreases as the replacement rate of BF rises. The
minimum UHPC flow value of 1.5% BF + 0.5% SF is 175 mm, which does not meet the
requirements of the flow state UHPC. When the BF replacement rate is below 50%,
the fluidity is greater than 200 mm.

(2) BF at a dosage of 0–1% improves the flexural strength of UHPC more effectively
compared to the SF, and the improvement in early compressive strength is significant.
The splitting tensile strength of UHPC first rises and then falls as the fiber content
increases. The ideal amounts of BF and SF are 1% and 1.5%, respectively.

(3) BF improves the resilience of UHPC, causing a significant rise in the specimen’s
initiation load and peak load. Because UHPC-BF has a denser microstructure, the BF
and matrix bonding performance is enhanced.

(4) As the BF replacement rate rises, the compressive strength of hybrid fiber UHPC
progressively falls, while the splitting tensile strength and flexural strength first rise
before falling. UHPC made with composite fibers is more durable than that of single
fiber. Analysis of the microstructure morphology indicated that the two types of fibers
may exert their respective roles at various loading stages, complementing each other
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in a synergistic manner to execute the effects of progressive fracture resistance and
toughening enhancement.

(5) The impact resistance of composite fiber UHPC first rises and then falls as the rate of
BF substitution rises, and the ductility gradually declines. The initial crack and final
failure hammer blows reach their peak values at a dosage of 0.5% BF + 1.5% SF, which
is 16.1% and 3.9% higher than that of 2% SF, respectively. The shrinkage rate of UHPC
tends to drop initially and then increases with the rise of the BF substitution rate.
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