

Correction

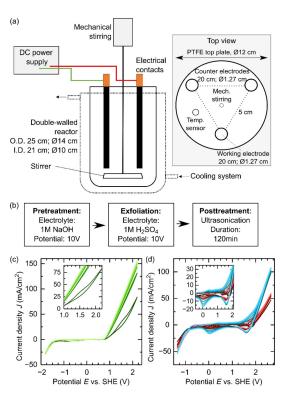
Correction: Ostermann et al. Development and Up-Scaling of Electrochemical Production and Mild Thermal Reduction of Graphene Oxide. *Materials* 2022, 15, 4639

Markus Ostermann ^{1,*,†}, Peter Velicsanyi ^{1,†,‡}, Pierluigi Bilotto ^{1,*}, Juergen Schodl ¹, Markus Nadlinger ¹, Guenter Fafilek ², Peter A. Lieberzeit ³ and Markus Valtiner ^{1,4}

- Centre for Electrochemical Surface Technology, CEST GmbH, A-2700 Wiener Neustadt, Austria; pv@zitt.at (P.V.); juergen.schodl@cest.at (J.S.); markus.nadlinger@cest.at (M.N.); markus.valtiner@cest.at (M.V.)
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, A-1040 Vienna, Austria; guenter.fafilek@tuwien.ac.at
- Institute of Physical Chemistry, University of Vienna, A-1090 Vienna, Austria; peter.lieberzeit@univie.ac.at
- ⁴ Applied Interface Physics, Vienna University of Technology, A-1040 Vienna, Austria
- * Correspondence: markus.ostermann@cest.at (M.O.); pierluigi.bilotto@cest.at (P.B.)
- [†] These authors contributed equally to this work.
- [‡] Current address: Zitt GmbH & Co., KG, D-81379 München, Germany.

Error in Figure

In the original publication [1], there was a mistake in Figure 1. In Figure 1d; the color scheme of the shown samples (an untreated graphite rod and a graphite rod pretreated anodically in 1 M NaOH for 10 min) was inversed as stated in the figure caption. The corrected Figure 1 appears below.



Citation: Ostermann, M.; Velicsanyi, P.; Bilotto, P.; Schodl, J.; Nadlinger, M.; Fafilek, G.; Lieberzeit, P.A.; Valtiner, M. Correction: Ostermann et al. Development and Up-Scaling of Electrochemical Production and Mild Thermal Reduction of Graphene Oxide. *Materials* 2022, 15, 4639. *Materials* 2024, 17, 3323. https://doi.org/10.3390/ma17133323

Received: 5 March 2024 Accepted: 6 June 2024 Published: 5 July 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Figure 1. (a) Front (left) and top (right) sides of the electrochemical exfoliation set-up. The lateral view shows the cooling system and the power supply while the top view pictures the electrodes'

Materials **2024**, 17, 3323 2 of 2

position in the electrochemical reactor. The dimensions refer to a 1600 mL reactor. (b) Production protocol for the up-scaling process with anodic pretreatment in 1 M NaOH. (c) Cyclic voltammetry applied to a graphite rod in 1 M NaOH (scan rate 10 mV/s; 6 cycles: dark green to light green). (d) Cyclic voltammetry applied to a graphite rod in 1 M $_2SO_4$ (scan rate 10 mV/s; 6 cycles: dark color to light color). Red indicates an untreated graphite rod and blue indicates a graphite rod pretreated anodically in 1 M NaOH for 10 min.

Reference

The authors further wish to revise reference 1 with the corrected format: 1. Directorate-General for Research and Innovation (European Commission). *European Green Deal: Research & Innovation Call;* Publications Office: Luxembourg, 2021.

The authors apologize for the mistake and state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.

Reference

 Ostermann, M.; Velicsanyi, P.; Bilotto, P.; Schodl, J.; Nadlinger, M.; Fafilek, G.; Lieberzeit, P.A.; Valtiner, M. Development and Up-Scaling of Electrochemical Production and Mild Thermal Reduction of Graphene Oxide. *Materials* 2022, 15, 4639. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.