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Abstract: It is well known that errors are inevitable in experimental observations, but it is equally
unavoidable to eliminate errors in modeling the process leading to the experimental observations.
If estimation and prediction are to be done with reasonable accuracy, the accumulated errors must
be adequately managed. Research in fatigue is challenging because modeling can be quite complex.
Furthermore, experimentation is time-consuming, which frequently yields limited data. Both of
these exacerbate the magnitude of the potential error. The purpose of this paper is to demonstrate a
procedure that combines modeling with independent experimental data to improve the estimation of
the cumulative distribution function (cdf) for fatigue life. Subsequently, the effect of intrinsic error
will be minimized. Herein, a simplified fatigue crack growth modeling is used. The data considered
are a well-known collection of fatigue lives for an aluminum alloy. For lower applied stresses, the
fatigue lives can range over an order of magnitude and up to 107 cycles. For larger applied stresses,
the scatter in the lives is considerably reduced. Consequently, modeling must encompass a variety
of conditions. The primary conclusion of the effort is that merging independent experimental data
with a reasonably acceptable model vastly improves the accuracy of the calibrated cdfs for fatigue
life, given the loading conditions. This allows for improved life estimation and prediction. For the
aluminum data, the calibrated cdfs are shown to be quite good by using statistical goodness-of-fit
tests, stress-life (S-N) analysis, and confidence bounds estimated using the mean square error (MSE)
method. A short investigation into the effect of sample size is also included. Thus, the proposed
methodology is warranted.
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1. Introduction

Error analysis has been employed for quite some time, especially for complex en-
gineering problems. Typical issues associated with error analysis are determining how
errors combine, how errors propagate, or, more importantly, how errors are mitigated.
Uncertainty can occur either by systematic or random errors. Frequently, propagation of
uncorrelated errors is assessed by using the square root of the sum of the squares of the
errors. The difficulty in this type of analysis is determining how many contributors to the
total uncertainty need to be considered. Useful presentations of error analysis are contained
in references [1–5]. An article that uses error analysis as a teaching tool is [6]. The content
is well presented, and there is an excellent reference section. A more recent journal article
that uses error analysis is [7]. The authors provide a concise review of the basic approaches
for error analysis: the reliability state function, the first-order second-moment method, the
response surface method, and sensitivity analysis of errors. For the mechanical system that
they considered, they were successful with their approach. They also provide a valuable
reference list. It goes without saying that error analysis depends on the accuracy of the
model and the data. The amount of uncertainty in each variable in the model increases the
overall uncertainty. As more sources of uncertainty are considered, the overall uncertainty
must increase. Without some control on uncertainty, it can become so large that the results
are overshadowed by the accumulated error.

Materials 2024, 17, 3383. https://doi.org/10.3390/ma17143383 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17143383
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-9773-2125
https://doi.org/10.3390/ma17143383
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17143383?type=check_update&version=1


Materials 2024, 17, 3383 2 of 16

The approach to be demonstrated below is a combination of scientifically or physically
based modeling with adjustments made by strategically fusing an independent set of
experimental data. The method was first developed for modeling the yield strength for
an aircraft engine alloy [8]. Extensive mechanistic and structural materials modeling was
employed to estimate the yield strength. Due to modeling error, even though the scientific
model predictions were detailed and thorough, they did not adequately match the rich
databases that were to be used for validation for the yield strength prediction. The model
was subsequently calibrated by using the additional yield strength data. The result was
that, for this application, the calibrated yield strength was excellent for estimation and
prediction. A major reason for the success in this problem is that the variability in the
simulated model results and the experimental data for the yield strengths are reasonably
small. Furthermore, yield strength is time-independent.

Fatigue, obviously, is time-dependent, and, consequently, life data tend to have greater
variability. The proposed methodology was applied to data from a very high cycle fatigue
application for a steel [9]. The selected data were primarily for three distinct cases. One case,
for relatively high applied load, exhibited failure induced by surface abnormalities only.
The amount of scatter was comparatively small. For another case, with moderate applied
load, the failures were primarily induced by surface flaws, but there were a few failures
that initiated at subsurface inclusions. In this case, the scatter in fatigue lives was almost
four orders of magnitude. The final example was for a smaller applied load for which about
half of the failures were surface-induced and the remainder were internally induced. The
scatter was about three orders of magnitude. This application included uncertainty from a
variety of inputs, and the bimodal behavior is an added complication. Thus, a mechanistic
model that characterizes the complexities is necessary because inadequacies or oversights
are contributors to uncertainty. As modeling complexity increases, the amount of extra
data needed for calibration also increases. The overriding conclusion from this work is
that calibration of a viable model with sufficient data improves reliability estimation and
prediction. The technique seems to be appropriate and warranted.

Based on the success of the above examples, the purpose of this work is to investigate
the applicability of the methodology for two other sets of fatigue data. The integration of
fatigue life data with a mechanistic model is investigated for data given in Shimokawa
and Hamaguchi [10]. This is a detailed and reputable set of data. These data have been
used by others; one recent example is [11]. Again, the strategy is to incorporate suitable
additional fatigue data with mechanistic modeling to overcome inherent error and to
improve subsequent reliability estimations and predictions with statistical confidence.

2. 2024-T4 Aluminum Alloy

Shimokawa and Hamaguchi [10] established a rather large collection of fatigue data
for 2024-T4 Aluminum Alloy (AA). The specimens were subjected to constant amplitude
loading. They conducted tests on rectangular specimens that were 110 mm long, 52 mm
wide, and 1 mm thick. The principle focus of their investigation was the effect of dif-
ferent types of notches or holes on fatigue life. The analyses below utilize two of their
experimental programs.

2.1. Center Cut Circular Hole

These samples had a center cut circular hole of radius 5 mm. The fatigue data for this
condition are summarized in Table 1, which is reproduced from [10] for completeness. Note
that ∆σ is the applied stress amplitude, and, for each ∆σ, n is the sample size, x is the sample
average, s is the sample standard deviation, and cv is the sample coefficient of variation. For
the eight different values of ∆σ, there were a total of 222 fatigue tests conducted. Clearly,
the statistical behavior is different when ∆σ is 157 MPa and greater compared to applied
loads less than that. For ∆σ that replicate ordinary operations, fatigue lives are usually
longer with greater variability. Thus, modeling requires special consideration.
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Table 1. Summary of fatigue data for 2024-T4 specimens with a circular notch [10].

Stress Amplitude,
∆σ (MPa) Sample Size, n Median Life Sample Average, x Sample Standard

Deviation, s
Sample Coefficient of

Variation, cv (%)

255 21 18,500 18,200 1760 9.6

235 30 29,100 28,700 2500 8.7

206 30 59,300 59,400 4230 7.1

177 30 144,200 146,000 12,600 8.6

157 30 251,700 264,000 22,600 8.6

137 30 469,100 519,000 96,200 18.5

127 30 1,424,700 1,710,000 1,090,000 63.8

123 21 4,401,800 4,530,000 2,660,000 58.7

The fatigue failure data for the 2024-T4 AA specimens with a center cut circular hole
are shown in Figure 1. The data are plotted on two-parameter Weibull probability paper. By
observation, a two-parameter Weibull cumulative distribution function (cdf) is acceptable
for ∆σ greater than or equal to 177 MPa. For ∆σ less than 177 MPa, a two-parameter Weibull
cdf is not acceptable because the tails of the data deviate too much from linearity. In other
words, the Anderson–Darling (AD) goodness-of-fit test indicates that a two-parameter
Weibull cdf is not acceptable for these data. Possibly, a three-parameter Weibull cdf might
be a better choice; however, the AD test implies that the tails of the data for ∆σ, equal
to 127 and 137 MPa, are sufficiently different that three-parameter Weibull cdfs are not
acceptable. A log-normal cdf was proposed in [10]. It was indicated in that paper that the
log-normal cdf was a better choice than a two-parameter Weibull cdf. When ∆σ equals
127 or 137 MPa, a log-normal cdf is not acceptable, according to the AD test. All of the
above discussion is solely statistical modeling which is empirical, and the selection of a cdf
is grounded in pragmatism. It is also appropriate to show the fatigue data in a stress-life
(S-N) format. Figure 2 displays the S-N data for the specimens with a center cut circular
hole. As mentioned above, it is clear graphically that the scatter is nearly the same for each
∆σ above 150 MPa, but below 150 MPa, the scatter is significantly greater. For the two
smallest values of ∆σ, the scatter exceeds an order of magnitude.
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Figure 1. Fatigue failure data for 2024-T4 AA given ∆σ; specimens with a center cut circular hole [10].
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Figure 2. S-N data for 2024-T4 AA; specimens with a center cut circular hole [10].

2.2. Center Cut Notch

Another series of fatigue experiments for 2024-T4 AA that were included in [10] were
for the same rectangular specimens but with a different notch design. These specimens had
a center cut notch 10 mm long with a maximum center width of 3 mm tapered down to a
tip of radius 0.25 mm. The loading was perpendicular to the notch design. The fatigue lives
are summarized in Table 2. There were nine different values for ∆σ, for a total of 252 tests
for this specimen type. For ∆σ greater than or equal to 147 MPa, the scatter in fatigue
lives is about the same; however, when ∆σ is less than 147 MPa, the scatter increases as
∆σ decreases. Notice the asterisk for x, s, and cv when ∆σ is 64 MPa. The reason is that
the three maximum fatigue data for this case are censored. Thus, an estimate for the mean
and standard deviation cannot be computed by simple averaging, as with the other values
for ∆σ. An excellent nonparametric estimate for the mean and standard deviation can be
obtained by using the Kaplan–Meier estimator for the empirical distribution function. A
well-developed presentation of the Kaplan–Meier methodology can be found in [12].

Table 2. Summary of fatigue data for 2024-T4 specimens with a tapered notch [10].

Stress Amplitude,
∆σ (MPa) Sample Size, n Median Life Sample Average, x Sample Standard

Deviation, s
Sample Coefficient of

Variation, cv (%)

216 21 15,700 16,200 1460 8.97

206 30 20,700 22,100 2020 9.13

176 30 47,100 49,900 4620 9.26

147 30 128,000 134,000 11,500 8.58

118 30 326,600 348,000 41,600 12.0

98 30 806,800 843,000 137,000 16.2

78 30 1,959,200 2,080,000 492,000 23.7

69 30 3,443,200 3,680,000 1,090,000 29.5

64 21 7,412,000 7,280,000 * 2,270,000 * 31.2 *

* indicates censored data.
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For the notched specimens, the fatigue failure data are shown in Figure 3. There are
similarities to the data in Figure 1. For the six largest values of ∆σ, a two-parameter Weibull
cdf is acceptable; however, for the other three conditions, it would not be acceptable. The
scatter in the data coupled with the curvature makes a statistical fit more challenging.
Furthermore, when ∆σ is 64 MPa, there are three identical data that were censored, as
indicated by the arrow in Figure 3. Thus, the censoring has a significant effect for fitting a
cdf for these data. Again, empirically selecting a suitable cdf is nontrivial, and it appears
that more involved analysis may be needed. Likewise, Figure 4 is the S-N diagram for
specimens with a notch. When ∆σ exceeds 100 MPa, the scatter is similar, but for less than
100 MPa, the scatter increases as ∆σ decreases. Again, the arrow indicates that there are
three similar data that were censored.
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Figure 3. Fatigue failure data for 2024-T4 AA given ∆σ; specimens with a center cut notch [10].
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3. A Fatigue Crack Growth Model for the 2024-T4 AA Data

The selection of an acceptable mechanistic model for any fatigue problem is difficult.
This is equally true for the two examples considered herein. A nontrivial reason for this is
that the experiments reported in [10] were conducted about four decades ago. Nevertheless,
a simplified fatigue crack growth model is proposed. Given a crack length of a for N cycles,
the crack growth rate da/dN is assumed to be characterized by the following equation:

da
dN

= C(∆K − ∆Kth)
ρ, (1)

where ∆K is the driving force and ∆Kth is the threshold. The materials constants for 2024-T4
AA are C and ρ. For the 2024-T4 AA considered, ρ is assumed to be 3.33.

3.1. Center Cut Circular Hole

Failure is assumed to be caused by a semi-circular surface crack that transitions into a
through-the-thickness crack. Thus, ∆K differs for the two regimes. The driving force for a
surface crack (sc) ∆Ksc is assumed to be the following:

∆Ksc = (2.24/π)kt∆σ
√
πa, (2)

where 2.24/π is the geometric factor for a semi-circular crack in an infinite plate, and kt is
the stress concentration factor for the hole. Using Figure 2.59 in [13] for an estimated value
for the stress concentration factor for the test specimens, kt is 2.5. Similarly, the driving
force for a through-the-thickness crack (tc) ∆Ktc is

∆Ktc = Ftc(a/ro)∆σ
√
πa, (3)

where ro is the radius of the hole. Numerical values for Ftc(a/ro) for an infinite plate under
uniaxial tension containing a circular hole with a single through crack emanating from the
hole perpendicular to the loading axis can be fit empirically, to within graphical resolution,
by the following function:

Ftc(a/ro) = 0.681 + {0.865/[(a/ro) + 0.324]}; (4)

See reference [14]. Equations (3) and (4) were used for simplicity and computational
convenience.

The fatigue life Nf is the sum of the cycles needed for the surface crack growth Nsc and
the through-the-thickness crack growth Ntc, i.e.,

N f = Nsc + Ntc =

atc∫
ao

da
C(∆Ksc − ∆Kth)

n +

a f∫
atc

da
C(∆Ktc − ∆Kth)

n , (5)

where ao is the initial damage size, atc is the crack size at which the surface crack transitions
into a through-the-thickness crack, and af is the final crack size. The integrals in Equation (5)
are clearly from Equation (1). With ∆Ksc given in Equation (2), the first integral can be
explicitly integrated. With ∆Ktc defined by Equation (3), the second has to be integrated
numerically. It is assumed that a surface crack transitions into a through-the-thickness
crack at atc, which is the solution of

Ftc(atc/ro) = (2.24/π)kt, (6)

i.e.,

atc = ro

[
0.865

(2.24kt/π)− 0.681
− 0.324

]
. (7)

For the specimens under consideration, ro is 5 mm, which implies that atc is 2.31 mm.
Since the width of the specimen is 52 mm, af is set to be 21 mm.
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The variables C, ∆Kth, and ao are assumed to be random variables (rvs) that characterize
the variability in the microstructural properties of the material. They are also assumed
to be independent of the loading and time. A three-parameter Weibull cdf has been used
frequently to represent material properties, and it is used for these rvs. The form used
herein is given by

F(x) = 1 − exp{−[(x − γ)/β]α}, x ≥ γ (8)

where α is the shape parameter, β is the scale parameter, and γ is the minimum. An
important property of Equation (8) is the mean µ, which is

µ = γ+ βΓ(1 + 1/α), (9)

where Γ (·) is the Gamma function. Another significant characteristic is the cv, which is

cv =
β
√

Γ(1 + 2/α)− Γ2(1 + 1/α)
γ+ βΓ(1 + 1/α)

. (10)

The estimated values for the parameters for the rvs are based on a conglomeration
of data for 2024-T3; see [15–20]. It is assumed that the material properties are sufficiently
close for those of 2024-T4 that they can be used for the ensuing analyses. Table 3 contains
the parameter values for the rvs used for the subsequent computations.

Table 3. Weibull parameters used in the fatigue crack growth model.

Random Variable α β γ µ cv (%)

initial damage size ao (m) 0.95 9.75 × 10−6 6.5 × 10−6 16.5 × 10−6 63.8

fatigue coefficient C (m/cyc)/(MPa
√

m)3.33 3.0 3.5 × 10−12 1.0 × 10−12 4.13 × 10−12 27.5

threshold driving force ∆Kth (MPa
√

m) 8.75 0.30 0.25 0.53 7.3

Figure 5 shows the fatigue failure data for ∆σ equal to 123, 137, and 206 MPa, which
are also in Figure 1. The dashed lines are the simulated model cdfs developed above, which
is entirely independent of the fatigue lives. The model is quite good when ∆σ is 123 MPa.
When ∆σ is 137 or 206, the model is not suitable at all. In fact, the model and the data have
a maximum deviation of almost an order of magnitude when ∆σ is 206 MPa. For the other
values of ∆σ shown in Figure 1, the model is likewise not appropriate. Consequently, an
alternative approach is required.
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Figure 5. Selected fatigue failure data for 2024-T4 AA specimens with a center cut circular hole [10],
and the corresponding simulated model for the given ∆σ.
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3.2. Center Cut Notch

For this case, the stress concentration factor used in [10] is 3.8, and that is assumed
for the ensuing computations as well. The failure, again, is assumed to be caused by a
semi-circular surface crack that emanates from the notch. Since the through-the-thickness
portion of the crack growth was relatively insignificant for the center cut circular hole
computation, it has been omitted for this case. Thus, ∆K is assumed to have the same form
as Equation (2). The rvs C and ∆Kth are assumed to have the same cdfs as above because
they are characteristic of the material properties. For ao, however, the surface area from
which a crack emanates for the center cut circle specimens is about 20 times greater than
that for the center cut notch specimens. Consequently, the cdf for ao is adjusted. The mean
is increased to 19.9 × 10−6 m and the cv is reduced to 10.4%. As the surface area under
high stress decreases, the critical size for the crack initiation increases, but with fewer such
sites in the field. Clearly, this needs to be verified.

In Figure 6, the fatigue failure data shown are for ∆σ equal to 64, 118, and 206 MPa.
These data are also part of Figure 3. Again, the dashed lines are the cdfs computed by
simulating the model, which is an independent computation from the experimental fatigue
lives shown. When ∆σ is 64 MPa, the model is graphically quite good. Recall that the
arrow indicates censored data. For the other two cases shown, ∆σ is 118 or 206, the model
represents the data quite poorly. Likewise, for the other values of ∆σ shown in Figure 3,
the model is unacceptable. As indicated with the center cut circular hole data, a different
tactic is needed.
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Figure 6. Selected fatigue failure data for 2024-T4 AA specimens with a center cut notch [10], and the
corresponding simulated model for the given ∆σ.

4. Model Calibration for Fatigue Life Analysis

The modeling for the cdfs shown in Figures 5 and 6 is excellent for the smallest applied
load, when ∆σ is 123 MPa for the center cut circular hole case and when ∆σ is 64 MPa for
the center cut notch condition; however, for the others, they are poor representations of the
experimental data. Fortunately, these data for each ∆σ are independent of the modeling,
and they are available to augment the modeling results. The proposed approach to control
the difference between the fatigue data and the model simulations is a straightforward em-
pirical calibration. For each given value of the applied stress ∆σ, let Ni be an experimental
fatigue life out of a total of n, and similarly, let Yj be one of the m simulated values for the
model. Because the magnitude of fatigue lives for the data and model simulations are so
large, and because they frequently exhibit substantial scatter, they are transformed initially
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using the natural logarithm. That is, let LNi and LYj be ln(Ni) and ln(Yj), respectively. The
transformation LZj that is applied to LYj consists of a rotation and translation, so that
the sample averages and sample standard deviations of the LNi and LZj collections are
identical. This is accomplished by the following equations:

LZj = aLYj + b, (11)

where
a =

sLN
sLY

and b = LN − sLN
sLY

LY, (12)

where LN and LY are the sample averages, and sLN and sLY are the sample standard
deviations of {LNi : 1 ≤ i ≤ n} and {LYi : 1 ≤ i ≤ m}, respectively. To return to actual
cycles, the LZj values are transformed by applying the exponential function.

4.1. Center Cut Circular Hole

Figure 7 shows the fatigue data for the center cut circular hole specimens, which are
also in Figure 1. In addition, the solid lines are the calibrated cdfs as described above.
Visually, all of the calibrated cdfs characterize the data quite well. A comparison of the
model cdf in Figure 5 with the calibrated cdf in Figure 7 when ∆σ is 123 MPa indicates
very little difference. Undoubtedly, if the model is accurate, there is little need for any
calibration. When ∆σ is 137 MPa or 206 MPa, however, the contrast between the model cdfs
and the calibrated cdfs is striking. It clearly demonstrates the need for the translation and
rotation in Equation (11). The Kolmogorov–Smirnov (KS) and AD goodness of fit tests were
applied to validate the quality of the calibrated cdfs. The largest KS test statistic for the
eight different values of ∆σ is 0.18, which indicates that the calibrated cdf is acceptable for
each value of ∆σ for any significance level less than 0.20. The KS test primarily reflects the
behavior of the central region of the data. The AD test implies that the cdfs are acceptable
for the same significance level for each ∆σ except 137 and 157 MPa. These two cdfs are
not acceptable, according to the AD test. The reason for this observation is that the AD
test describes the behavior in the tails of the cdf. This is apparent in Figure 7 because the
tails are quite distinct from the fatigue data. In both cases, however, the cdfs are on the
conservative side of the data, and would serve as suitable cdfs for prediction. Therefore,
the calibrated cdfs are acceptable representations of the fatigue data. Because the calibrated
cdfs are a combination of basic mechanistic modeling and experimental fatigue data, they
are appropriate for estimation and prediction beyond the data range, especially for applied
loads that represent typical operating conditions.

Another way in which to assess the validity of the calibrated cdfs is to consider the S-N
behavior. Consider Figure 8, which is a reproduction of Figure 2 with estimated percentile
lines added. These percentiles are taken directly from the calibrated cdfs shown in Figure 7.
The solid line consists of the estimated medians. Because the calibrated cdfs are excellent
representations of the central portion of the data, the estimated medians are also quite
good. The dashed lines are the estimated 99% confidence bounds. The upper bound is
the estimated 99.5 percentile and the lower bound is the 0.5 percentile computed from the
calibrated cdfs. All the data lie between the bounds, and the bounds are very tight. Using
the calibrated cdfs provides an excellent characterization of the fatigue data. As a final
comment, it should be noted that the sharp corner on the lower bound when ∆σ is 127 MPa
corresponds to the difference in the calibrated cdf and the data in the lower tail in Figure 7.
Because the calibrated cdf is conservative, the lower bound is appropriate.
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Figure 7. Fatigue failure data for 2024-T4 AA specimens with a center cut circular hole [10], and the
corresponding calibrated cdfs for the given ∆σ.
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Figure 8. S-N data for 2024-T4 AA; specimens with a center cut circular hole [10], and estimated
median and 99% confidence bounds from the calibrated cdfs.

4.2. Center Cut Notch

As with the above example, Figure 9 contains the fatigue data for the center cut notch
specimens, which were also shown in Figure 3, and the calibrated cdfs for each value of ∆σ.
Recall that the arrow in Figure 9 indicates that there are three censored data. Graphically,
the calibrated cdfs characterize the data quite well. Except for the smallest data when ∆σ is
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98 MPa and the largest data when ∆σ is 78 MPa, the data are close to the calibrated cdfs.
As with the center cut circular hole case when ∆σ is the smallest, i.e., 123 MPa, when ∆σ

is 64 MPa, the difference between the model cdf and the calibrated cdf is very small. To
further assess the goodness of fit of the calibrated cdfs, the KS and AD tests were used. The
KS test indicates that all of the calibrated cdfs are acceptable for any significance less than
0.20. The AD test infers that the calibrated cdfs are acceptable for any significance value less
than 0.20, except when ∆σ is 98 MPa, 147 MPa, and 216 MPa. The AD test implies that the
calibrated cdf is not acceptable when ∆σ is 98 MPa. This is clearly seen in Figure 9 because
the tails are not very close to the calibrated cdf. Finally, the calibrated cdfs for ∆σ equal to
147 MPa and 216 MPa are acceptable for a significance of 0.05. All things considered, the
calibrated cdfs are acceptable as estimates for the center cut notch fatigue data, except for
when ∆σ is 98 MPa.
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Figure 9. Fatigue failure data for 2024-T4 AA specimens with a center cut notch [10], and the
corresponding calibrated cdfs for the given ∆σ.

Before continuing, recall that because of the censored data when ∆σ equals 64 MPa, the
sample average and standard deviation were estimated by using the Kaplan–Meier method-
ology [12]. They are recorded in Table 2. These estimates were used in the calibration; see
Equation (12). The inference is that the proposed calibration approach is also suitable when
censored data are part of the results. In fact, the methodology requires no modification as
long as the sample average and standard deviation can be suitably estimated.

Figure 10 shows the S-N data from Figure 4 with the estimated percentile lines. As
before, the median behavior is the solid line, and the 99% confidence bounds are the dashed
lines; all of these are obtained from the calibrated cdfs shown in Figure 9. The estimated
medians are excellent. The confidence bounds characterize the data well. Not only are
they close to the data, but they also reflect the scatter for each given value of ∆σ. For the
censored data, it is conceivable that the actual life is outside the confidence bounds. Even if
this were the case, the bounds are excellent because they are conservative.
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Figure 10. S-N data for 2024-T4 AA; specimens with a center cut notch [10], and estimated median
and 99% confidence bounds from the calibrated cdfs.

5. Mean Square Error Analysis

Mean Square Error (MSE) analysis is a well-known methodology to assess the validity
of an estimation. The error ei is the difference between the calibrated cdf and the fatigue
data. The MSE is given by

MSE =
1
n

n

∑
i=1

e2
i . (13)

Approximating confidence bounds with the MSE is typically done by using the square
root of the MSE in Equation (13). Let σMSE be the square root of the MSE, which can
be taken as an estimate for the standard deviation. For unbiased error distributions, the
standard error is equivalent to σMSE; see reference [21]. Additional information for the
MSE can be found in [22]. When ei is epitomized by a normal cdf, 95% confidence bounds
are estimated by adding and subtracting 2σMSE from the calibrated cdf.

Figure 11 shows the fatigue data for three values of ∆σ for the center cut notch speci-
mens along with the calibrated cdfs from Figure 9. The three examples shown represent the
range of accuracy for the calibrated cdfs. The dashed lines for each case are the estimated
95% MSE confidence bounds. Clearly, the bounds encompass the data in each case. The
widths of the bounds are dependent on the accuracy of the calibrated cdf. When ∆σ is
118 MPa, the calibrated cdf is an excellent approximation for the data. The average error is
only 970 cycles and the corresponding σMSE is 8600 cycles. For this case, ±2σMSE is only
about 5% of the median behavior. Consequently, the bounds reflect the data extremely well.
The calibrated cdf is not as close to the data when ∆σ is 98 MPa, especially in the lower
tail. Here, the average error is 3100 cycles, the corresponding σMSE is 47,500 cycles, and
±2σMSE is about 12% of the median. Also, the difference between the calibrated cdf and
the lower confidence bound is the same as that between the calibrated cdf and the smallest
fatigue data. This difference is basically 2σMSE. For the center cut notch specimens, the MSE
confidence bounds are very good for each ∆σ with a complete set of fatigue data, including
∆σ equal to 98 MPa. The MSE analysis is another validation of the proposed methodology.
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Figure 11. Fatigue failure data for 2024-T4 AA specimens with a center cut notch [10] for selected
values of ∆σ, the corresponding calibrated cdfs, and MSE confidence bounds.

The MSE analysis for confidence bounds for the center cut circular hole data is es-
sentially the same. When ∆σ is greater than 157 MPa, the calibrated cdfs are excellent
fits to the fatigue data; see Figure 7. For these four, the MSE confidence bounds are very
tight and envelop all the data, like the example when ∆σ is 118 MPa in Figure 11. For
∆σ equal to 137 MPa, the MSE confidence bounds contain the data, but they are wider
because of the deviation in the tails of the cdf. The σMSE is 43,000 cycles, and ±2σMSE is
about 17% of the median. Similarly, when ∆σ is 157 MPa, the MSE bounds encompass
the data and are rather tight because σMSE is only 7200 cycles, and ±2σMSE is only 5% of
the median. For the remaining two values of ∆σ, the MSE is not acceptable because the
error is so large in magnitude. For ∆σ equal to 127 MPa, the error between the minimum
data and the calibrated cdf is over 150,000 cycles. At the maximum data, the error is over
1,050,000 cycles. Altogether, the average error is 52,000 cycles and σMSE is 340,000 cycles.
When ∆σ is 123 MPa, there are three data points near the median where ei is quite large.
The MSE analysis is not as robust for the center cut circular hole; nevertheless, it lends
credibility to the proposed methodology.

6. Sample Size for Calibration

In experimental work, the overriding issue is the number of tests required to ade-
quately characterize the property being investigated. One of the best and most complete
professional guidelines for material properties that indicates the acceptable sample size
for a qualified experimental program is MMPDS [23], which is a scientifically developed
procedure for metallic materials to assess experimental and design data so that they are
acceptable for certification. MMPDS is a joint effort of government agencies and industrial,
educational, and international aerospace organizations. Specifically, chapter 9 is related to
statistical analysis. In Section 9.9.1.1, the comment is made that for fatigue experimentation
subjected to load-controlled conditions, each load should include at least six observations
to failure. While this is a good rule of thumb, it may not be sufficient to fully characterize
the scatter for a given load condition.
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As an example, consider the center cut notch when ∆σ is 69 MPa, which is shown
in Figures 3, 9 and 11. This example is chosen because there is substantial scatter in the
data and the calibrated cdf is an excellent fit. The sample size is 30. The main purpose of
this effort was to demonstrate that the calibration method is effective and warranted. The
query is whether or not less than 30 data points would have been just as effective for the
calibration. Figure 12 shows the fatigue lives when ∆σ equals 69 MPa, the calibrated cdf,
and the MSE confidence bounds, which were also shown in Figure 11. The only difference
is that the axis for the cycles has been expanded for the graph in Figure 12. Arbitrarily,
15 out of the 30 data points were randomly selected and used to calibrate the cdf. The
white data are the ones that were randomly chosen. The corresponding calibrated cdf
using just the 15 randomly selected data points is represented by the short-long dashed line.
Graphically, it is reasonably similar to the cdf calibrated using all 30 data points; however,
there is some deviation in the lower tail. In fact, the KS and AD tests, comparing the entire
sample with the augmented cdf, indicate that it is acceptable for any level of significance
less than 0.2. The MSE confidence bounds, shown as the short-short dashed lines, are a
bit wider, but not overly so. Thus, a sample size of only 15 may have been acceptable.
Alas, caution must be exercised because the random sample shown is excellent because the
15 data points are widely distributed over the entire sample of 30. Due to randomness, the
15 selected data points could have primarily reflected the upper tail, which would not have
adequately served for calibration. Further analysis is required prior to making a definitive
statement about the sample size.
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Figure 12. Fatigue failure data for 2024-T4 AA specimens with a center cut notch [10] for ∆σ equal to
69 MPa. The calibrated cdfs and MSE confidence bounds using all 30 data points and 15 randomly
selected data points are shown.

To add a bit more understanding about the required sample size for quality calibration,
a random selection from the 30 fatigue data points for ∆σ equal to 69 MPa was repeated
1000 times. The size of the random sample was 10, 15, or 20. It should be noted that the
total number of ways to select 10 or 20 data points from 30 is over 30 million, and the
number of ways to choose 15 out of 30 is over 115 million. Thus, repeating the calibrations
1000 times will not lead to duplications. As expected, when only 10 data points are used
for the calibration the ensuing cdf may not be acceptable. Out of the different attempts,
the KS test implied that 4.9% would be unacceptable. Of the remainder, 72.6% would be
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acceptable for any significance below 0.2, and the rest would be acceptable with smaller
a significance. The AD test was more severe because 53.0% of the calibrated cdfs were
unacceptable, and only 20.7% were acceptable with a significance of 0.2. If 15 data points
are used to calibrate the cdf, the results improve. Less than 1% are unacceptable, according
to the KS test, but 31% are still unacceptable using the AD test. Using 20 randomly selected
data points for the calibration improves the results considerably. The KS test indicates that
100% of the cdfs are acceptable with any significance less than 0.2. Because the tail behavior
is more challenging, the AD test yields 11.0% that are unacceptable, and 60.9% that are
acceptable with a significance less than 0.2, and the remaining attempts are acceptable with
a smaller level of significance.

Certainly, the more data that are available, the better the calibration will be. The scatter
in the data is not that large when ∆σ is 69 MPa. Thus, fewer data may be sufficient for the
calibration. In fact, 25 to 30 data points seems to be appropriate. When there is more scatter
in the data, there may need to be more data in order to achieve an acceptable calibration.
For example, the lower tail of the data when ∆σ equals to 98 MPa is sufficiently different
from the calibrated cdf that additional data would be helpful. It is difficult, a priori, to
select an appropriate sample size for fatigue testing, but 30 tests for each loading condition
is an excellent beginning.

7. Results and Discussion

The purpose of this effort was to demonstrate the validity and value of calibrating
a cdf for fatigue life with independent experimental data. The cdf is generated from a
probabilistic fatigue crack growth model using standard simulation methods. Even though
the model is somewhat simplistic, the proposed methodology yields convincing results.
The fatigue data considered were taken from [10]. Two different types of specimens, based
on different center cut features, were used in the analysis. One set of experiments were
conducted with specimens with a center cut circular hole, and the other set used a center cut
notch design. There were eight different values for the stress amplitude ∆σ for the center
cut circular hole specimens, and nine different ones for the center cut notch specimens. An
extremely significant feature of these data sets is that the amount of data for each value
of ∆σ is noteworthy. All things considered, the methodology produces excellent results
for estimation and prediction of the fatigue behavior. A primary motive for this process
is to improve the characterization and accuracy of the cdf for fatigue life given ∆σ. The
calibration of the model cdf with data drastically improves the estimation because the
uncertainty is controlled empirically. Certainly, as the modeling is improved, the overall
accuracy is likewise better, and the reliance on the data for the calibration is diminished.
This is illustrated in Figure 7 when ∆σ is 123 MPa, and in Figure 9 when ∆σ is 64 MPa.

For the fatigue model, it was assumed that three rvs and their associated cdfs were
sufficient to capture the majority of the variability. Even so, it was shown that most of
the simulated cdfs were not an accurate characterization of the fatigue life. In fact, some
cdfs differed from the corresponding data by almost an order of magnitude. Further
improvements in modeling could alleviate these discrepancies. Even for cdfs when the
scatter in the data was relatively small, there were significant differences.

The proposed calibration method was demonstrated to be quite useful for the two dif-
ferent types of specimens and the multiple values of ∆σ for each. The validation for the
approach was strongly established for all but three of the values of ∆σ; however, even those
three were well characterized by the S-N behavior. Nevertheless, the fatigue life model
could be improved, which would lead to even more accurate calibrations. From this effort,
the proposed methodology appears to be warranted. The approach should be implemented
for additional applications to determine its full capability.

A few final comments are in order regarding the sample size needed for the calibration.
For fatigue experimentation, especially for critical load bearing components, 30 tests for the
key loading conditions is an excellent rule of thumb. If an accurate mechanical model for
fatigue can be established, then possibly as few as 15 tests may be sufficient. The sample
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size is intimately related to the amount of scatter in the data. Data with large scatter will
necessarily require more experiments for the calibration.
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