Metal Material Processing Using Femtosecond Lasers: Theories, Principles, and Applications
Abstract
:1. Introduction
2. Theory of Metal Material Processing Using Femtosecond Lasers
2.1. Characteristics of Laser Processing
- (1)
- Heat loss in the processing area will reduce the energy efficiency and processing utilization rate.
- (2)
- A large amount of heat diffusion will make it difficult for the processing area temperature to reach the material’s melting point. Under a continuous pulse energy, materials are transformed from a solid state to a liquid state repeatedly, resulting in slags, which are similar to volcanic vents, thus reducing the processing quality.
- (3)
- The existence of thermal diffusion will expand the processing area, and it will be difficult to achieve micro-fine precision machining.
- (4)
- The presence of heat will lead to thermal expansion and contraction, and diffusion will affect mechanical stress, causing the surrounding materials near the heat affected zone (HAZ) to inevitably crack and melt.
- (1)
- A weak thermal effect: When a femtosecond laser interacts with a metal surface, it causes rapid heating of electrons on a femtosecond timescale due to their low specific heat capacity. Consequently, the surface material undergoes instantaneous ionization and ejection from inside, carrying heat energy away and reducing the temperature. This entire process is significantly shorter than lattice heat conduction. No thermal effects and cracks occur in materials.
- (2)
- Wide applicability: The pulse duration is on a femtosecond scale, with a high power density, and the nonlinear absorption effect plays a major role in the ablation procedure, achieving excellent micro/nano-processing in diamonds, silicon, ceramics and other materials.
- (3)
- Submicron machining accuracy: As a Gaussian beam, the typical energy distribution of a femtosecond laser is high energy in the spot’s center and low energy at the edge. Ablation only occurs when the laser energy density is higher than the threshold and the processing accuracy is less than the diffractive limitation, thus extending it to the submicron level.
- (4)
- An accurate ablation threshold: Only when the laser energy accumulates to a certain degree will ablation occur. Once the laser’s pulse width is fixed, the materials are ablated while the laser energy density exceeds the threshold. Nonlinear absorption plays a leading role in ultrashort-pulse-width laser processing, and the ablation threshold deviation of ultrashort-pulse lasers can be ignored, resulting in clear ablation.
2.2. Theory of Metal Material Processing Using Femtosecond Lasers
3. Recent Progress in Metal Processing Using Femtosecond Lasers
3.1. Metal Material Drilling Using Femtosecond Lasers
3.2. Metal Ablation Thresholds Using Femtosecond Lasers
3.3. Micro/Nano-Surface Modification Using Femtosecond Lasers
3.4. Printed Circuit Board Micromachining Using Femtosecond Lasers
3.5. Liquid Metal Processing Using Femtosecond Lasers
4. Challenges, Outlooks, and Conclusions
- (1)
- According to the above analysis, the research on the femtosecond laser processing of metal materials is mainly based on single-pulse femtosecond lasers. However, in actual applications, multi-power or multi-intensity pulse lasers are mostly applied, and the cumulative effect of multi-pulse lasers cannot be ignored; thus, the two-temperature model of the interaction between materials and multi-pulse femtosecond lasers needs to be improved.
- (2)
- Moreover, the femtosecond metal processing technique is based on the two-temperature model, which involves determining the laser’s impact on the electron–lattice energy transfer. The high electron temperature during this process affects various electronic physical parameters, including subsequent quantization correction in heat transfer. By combining the dual-temperature equation with a molecular dynamics simulation, a comprehensive understanding of the energy transfer during ultrafast laser processing may be achieved at both the macroscopic and microscopic levels.
- (3)
- The ultimate goal of theoretical research is to guide practice. At present, femtosecond laser processing is at the laboratory stage, and it has not yet been developed for commercial large-scale applications. Therefore, lots of experimental work is needed to continue to obtain the experimental data and summarize the process parameters that affect processing quality and accuracy so as to realize precision machining and make full use of the processing advantages of femtosecond lasers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Z.; Sun, W.; Wu, J.; Chen, H.; Zhang, F.; Wang, S. The Fundamental Mechanisms of Laser Cleaning Technology and Its Typical Applications in Industry. Processes 2023, 11, 1445. [Google Scholar] [CrossRef]
- Nasim, H.; Jamil, Y. Diode lasers: From laboratory to industry. Opt. Laser Technol. 2014, 56, 211–222. [Google Scholar] [CrossRef]
- Kim, J.-E.; Song, M.-K.; Han, M.-S.; Kim, J.-D. A study on the application of laser cleaning process in shipbuilding industries using 100 W fiber laser. J. Mech. Sci. Technol. 2021, 35, 1421–1427. [Google Scholar] [CrossRef]
- Farooq, A.; Alquaity, A.B.S.; Raza, M.; Nasir, E.F.; Yao, S.; Ren, W. Laser sensors for energy systems and process industries: Perspectives and directions. Prog. Energy Combust. Sci. 2022, 91, 100997. [Google Scholar] [CrossRef]
- Nayak, R.; Padhye, R. The use of laser in garment manufacturing: An overview. Fash. Text. 2016, 3, 5. [Google Scholar] [CrossRef]
- Yu, K.; Ren, J.; Zhao, Y. Principles, developments and applications of laser-induced breakdown spectroscopy in agriculture: A review. Artif. Intell. Agric. 2020, 4, 127–139. [Google Scholar] [CrossRef]
- Peng, J.; Liu, F.; Zhou, F.; Song, K.; Zhang, C.; Ye, L.; He, Y. Challenging applications for multi-element analysis by laser-induced breakdown spectroscopy in agriculture: A review. TrAC Trends Anal. Chem. 2016, 85, 260–272. [Google Scholar] [CrossRef]
- Yang, Z.; Ren, J.; Du, M.; Zhao, Y.; Yu, K. Enhanced Laser-Induced Breakdown Spectroscopy for Heavy Metal Detection in Agriculture: A Review. Sensors 2022, 22, 5679. [Google Scholar] [CrossRef]
- Hong, K.-M.; Shin, Y.C. Prospects of laser welding technology in the automotive industry: A review. J. Mater. Process. Technol. 2017, 245, 46–69. [Google Scholar] [CrossRef]
- Pinkerton, A.J. Lasers in additive manufacturing. Opt. Laser Technol. 2016, 78, 25–32. [Google Scholar] [CrossRef]
- Monchalin, J.P. Laser-Ultrasonics: From the Laboratory to Industry. AIP Conf. Proc. 2004, 700, 3–31. [Google Scholar]
- Ghoshroy, S. Coming not so soon to a theater near you: Laser weapons for missile defense. Bull. At. Sci. 2011, 67, 34–43. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Applications of Lasers for Tactical Military Operations. IEEE Access 2017, 5, 20736–20753. [Google Scholar] [CrossRef]
- Day, T.; Pushkarsky, M.; Caffey, D.; Cecchetti, K.; Arp, R.; Whitmore, A.; Henson, M.; Takeuchi, E. Quantum cascade lasers for defense and security. In Proceedings of the SPIE 8898, Technologies for Optical Countermeasures X; and High-Power Lasers 2013: Technology and Systems, Dresden, Germany, 25–26 September 2013; Volume 8898, p. 889802. [Google Scholar]
- Steiner, R. New laser technology and future applications. Med. Laser Appl. 2006, 21, 131–140. [Google Scholar] [CrossRef]
- Weber, M.J. Science and technology of laser glass. J. Non-Cryst. Solids 1990, 123, 208–222. [Google Scholar] [CrossRef]
- Golnabi, H.; Mahdieh, M.H. Trend of laser research developments in global level. Opt. Laser Technol. 2006, 38, 122–131. [Google Scholar] [CrossRef]
- Singh, V. Einstein and the Quantum. In The Legacy of Albert Einstein; World Scientific Publishing Co., Pte Ltd.: Singapore, 2006; pp. 165–191. [Google Scholar]
- Bromberg, J.L. The Birth of the Laser. Phys. Today 1988, 41, 26–33. [Google Scholar] [CrossRef]
- Linde, D.v.d. Experimental study of single picosecond light pulses. IEEE J. Quantum Electron. 1972, 8, 328–338. [Google Scholar] [CrossRef]
- Shank, C.V.; Ippen, E.P. 4. Ultrashort pulse dye lasers. In Dye Lasers; Springer: Berlin/Heidelberg, Germany, 2005; pp. 139–153. [Google Scholar]
- Han, S.; Kim, H.; Kim, Y.W.; Kim, Y.-J.; Kim, S.; Park, I.-Y.; Kim, S.-W. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure. Nat. Commun. 2016, 7, 13105. [Google Scholar] [CrossRef]
- Dobrovinskaya, E.R.; Lytvynov, L.A.; Pishchik, V. Application of Sapphire. In Sapphire: Material, Manufacturing, Applications (Micro- and Opto-Electronic Materials, Structures, and Systems); Springer: Boston, MA, USA, 2009; pp. 1–54. [Google Scholar]
- Witte, S.; Eikema, K.S.E. Ultrafast Optical Parametric Chirped-Pulse Amplification. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 296–307. [Google Scholar] [CrossRef]
- He, Z.; Li, F.; Zuo, P.; Tian, H. Principles and Applications of Resonance Energy Transfer Involving Noble Metallic Nanoparticles. Materials 2023, 16, 3083. [Google Scholar] [CrossRef]
- Sugioka, K. Progress in ultrafast laser processing and future prospects. Nanophotonics 2017, 6, 393–413. [Google Scholar] [CrossRef]
- Yu, Y.; Bai, S.; Wang, S.; Hu, A. Ultra-Short Pulsed Laser Manufacturing and Surface Processing of Microdevices. Engineering 2018, 4, 779–786. [Google Scholar] [CrossRef]
- Orazi, L.; Romoli, L.; Schmidt, M.; Li, L. Ultrafast laser manufacturing: From physics to industrial applications. CIRP Ann. 2021, 70, 543–566. [Google Scholar] [CrossRef]
- Zoubir, A.; Shah, L.; Richardson, K.; Richardson, M. Practical uses of femtosecond laser micro-materials processing. Appl. Phys. A 2003, 77, 311–315. [Google Scholar] [CrossRef]
- Vorobyev, A.Y.; Guo, C. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 2013, 7, 385–407. [Google Scholar] [CrossRef]
- Korte, F.; Serbin, J.; Koch, J.; Egbert, A.; Fallnich, C.; Ostendorf, A.; Chichkov, B.N. Towards nanostructuring with femtosecond laser pulses. Appl. Phys. A 2003, 77, 229–235. [Google Scholar] [CrossRef]
- Ameer-Beg, S.; Perrie, W.; Rathbone, S.; Wright, J.; Weaver, W.; Champoux, H. Femtosecond laser microstructuring of materials. Appl. Surf. Sci. 1998, 127–129, 875–880. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. Femtosecond laser three-dimensional micro- and nanofabrication. Appl. Phys. Rev. 2014, 1, 041303. [Google Scholar] [CrossRef]
- Potter, E.D.; Herek, J.L.; Pedersen, S.; Liu, Q.; Zewail, A.H. Femtosecond laser control of a chemical reaction. Nature 1992, 355, 66–68. [Google Scholar] [CrossRef]
- Sun, H.; Li, J.; Liu, M.; Yang, D.; Li, F. A Review of Effects of Femtosecond Laser Parameters on Metal Surface Properties. Coatings 2022, 12, 1596. [Google Scholar] [CrossRef]
- Eaton, S.M.; Hadden, J.P.; Bharadwaj, V.; Forneris, J.; Picollo, F.; Bosia, F.; Sotillo, B.; Giakoumaki, A.N.; Jedrkiewicz, O.; Chiappini, A.; et al. Quantum Micro–Nano Devices Fabricated in Diamond by Femtosecond Laser and Ion Irradiation. Adv. Quantum Technol. 2019, 2, 1900006. [Google Scholar] [CrossRef]
- Chung, S.H.; Mazur, E. Surgical applications of femtosecond lasers. J. Biophoton. 2009, 2, 557–572. [Google Scholar] [CrossRef] [PubMed]
- Sima, F.; Sugioka, K.; Vázquez, R.M.; Osellame, R.; Kelemen, L.; Ormos, P. Three-dimensional femtosecond laser processing for lab-on-a-chip applications. Nanophotonics 2018, 7, 613–634. [Google Scholar] [CrossRef]
- Jonušauskas, L.; Mackevičiūtė, D.; Kontenis, G.; Purlys, V. Femtosecond lasers: The ultimate tool for high-precision 3D manufacturing. Adv. Opt. Technol. 2019, 8, 241–251. [Google Scholar] [CrossRef]
- Shugaev, M.V.; Wu, C.; Armbruster, O.; Naghilou, A.; Brouwer, N.; Ivanov, D.S.; Derrien, T.J.Y.; Bulgakova, N.M.; Kautek, W.; Rethfeld, B.; et al. Fundamentals of ultrafast laser–material interaction. MRS Bull. 2016, 41, 960–968. [Google Scholar] [CrossRef]
- von der Linde, D.; Sokolowski-Tinten, K.; Bialkowski, J. Laser–solid interaction in the femtosecond time regime. Appl. Surf. Sci. 1997, 109–110, 1–10. [Google Scholar] [CrossRef]
- Chen, J.K.; Beraun, J.E.; Grimes, L.E.; Tzou, D.Y. Modeling of femtosecond laser-induced non-equilibrium deformation in metal films. Int. J. Solids Struct. 2002, 39, 3199–3216. [Google Scholar] [CrossRef]
- Anisimov, S.; Kapeliovich, B.; Perelman, T. Electron emission from metal surfaces exposed to ultrashort laser pulses. Zh. Eksp. Teor. Fiz 1974, 66, 375–377. [Google Scholar]
- Chichkov, B.N.; Momma, C.; Nolte, S.; von Alvensleben, F.; Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63, 109–115. [Google Scholar] [CrossRef]
- Lin, Z.; Zhigilei, L.V. Temperature dependences of the electron–phonon coupling, electron heat capacity and thermal conductivity in Ni under femtosecond laser irradiation. Appl. Surf. Sci. 2007, 253, 6295–6300. [Google Scholar] [CrossRef]
- Al-Malkawi, G.H.; Hassanein, A. Impact of the electron-phonon coupling factor and electron heat capacity on the thermal response of targets irradiated by femtosecond laser. J. Laser Appl. 2018, 30, 042004. [Google Scholar] [CrossRef]
- Tzou, D.Y.; Beraun, J.E.; Chen, J.K. Ultrafast Deformation in Femtosecond Laser Heating. J. Heat Transf. 2001, 124, 284–292. [Google Scholar] [CrossRef]
- Levy, Y.; Derrien, T.J.Y.; Bulgakova, N.M.; Gurevich, E.L.; Mocek, T. Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors. Appl. Surf. Sci. 2016, 374, 157–164. [Google Scholar] [CrossRef]
- Corkum, P.B.; Brunel, F.; Sherman, N.K.; Srinivasan-Rao, T. Thermal Response of Metals to Ultrashort-Pulse Laser Excitation. Phys. Rev. Lett. 1988, 61, 2886–2889. [Google Scholar] [CrossRef]
- Gattass, R.R.; Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2008, 2, 219–225. [Google Scholar] [CrossRef]
- Savage, N. Ultraviolet lasers. Nat. Photonics 2007, 1, 83–85. [Google Scholar] [CrossRef]
- Hendow, S.T.; Shakir, S.A. Structuring materials with nanosecond laser pulses. Opt. Express 2010, 18, 10188–10199. [Google Scholar] [CrossRef] [PubMed]
- DeMaria, A.J.; Glenn, W.H.; Brienza, M.J.; Mack, M.E. Picosecond laser pulses. Proc. IEEE 1969, 57, 2–25. [Google Scholar] [CrossRef]
- Sibbett, W.; Lagatsky, A.A.; Brown, C.T.A. The development and application of femtosecond laser systems. Opt. Express 2012, 20, 6989–7001. [Google Scholar] [CrossRef]
- Yang, Z.; Ji, P.; Zhang, Z.; Ju, Y.; Wang, Z.; Zhang, Q.; Wang, C.; Xu, W. Fundamental 3D simulation of the femtosecond laser ablation for cooling hole drilling on Ni and Fe based aero-engine components. Opt. Commun. 2020, 475, 126237. [Google Scholar] [CrossRef]
- Xu, S.; Chen, Y.; Liu, H.; Miao, X.; Yuan, X.; Jiang, X. Femtosecond laser ablation of Ti alloy and Al alloy. Optik 2020, 212, 164628. [Google Scholar] [CrossRef]
- Xia, K.; Ren, N.; Lin, Q.; Li, T.; Gao, F.; Yang, H.; Song, S. Experimental investigation of femtosecond laser through-hole drilling of stainless steel with and without transverse magnetic assistance. Appl. Opt. 2021, 60, 1399–1410. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, Z.; Wang, C.; Liu, S.; Yang, Z.; Zhang, Q.; Xu, W. Molecular dynamics-guided quality improvement in the femtosecond laser percussion drilling of microholes using a two-stage pulse energy process. Opt. Laser Technol. 2021, 139, 106968. [Google Scholar] [CrossRef]
- Deepu, P.; Jagadesh, T.; Muthukannan, D.; Jagadeesh, B. Investigation into femtosecond based laser ablation and morphology of micro-hole in titanium alloy. Optik 2023, 274, 170519. [Google Scholar] [CrossRef]
- Zhang, H.-D.; Yu, H.; Ning, J.; Zhang, L.-J.; Pan, A.-f.; Wang, W.-J. Experimental research on micro-drilling of refractory material tungsten by multi-pulse femtosecond laser ablation. Opt. Laser Technol. 2024, 168, 109962. [Google Scholar] [CrossRef]
- Meijer, J.; Du, K.; Gillner, A.; Hoffmann, D.; Kovalenko, V.S.; Masuzawa, T.; Ostendorf, A.; Poprawe, R.; Schulz, W. Laser Machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons. CIRP Ann. 2002, 51, 531–550. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, B.; Han, D.; Cui, N.; Li, B.; Shen, J.; Zhang, Z.; Du, A. High-Precision Three-Dimensional Printing in a Flexible, Low-Cost and Versatile Way: A Review. ES Mater. Manuf. 2022, 15, 1–13. [Google Scholar]
- Torrisi, L.; Borrielli, A.; Margarone, D. Study on the ablation threshold induced by pulsed lasers at different wavelengths. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007, 255, 373–379. [Google Scholar] [CrossRef]
- Maharjan, N.; Zhou, W.; Zhou, Y.; Guan, Y. Ablation morphology and ablation threshold of Ti-6Al-4V alloy during femtosecond laser processing. Appl. Phys. A 2018, 124, 519. [Google Scholar] [CrossRef]
- Liang, J.; Liu, W.; Li, Y.; Luo, Z.; Pang, D. A model to predict the ablation width and calculate the ablation threshold of femtosecond laser. Appl. Surf. Sci. 2018, 456, 482–486. [Google Scholar] [CrossRef]
- Xu, S.; Ding, R.; Yao, C.; Liu, H.; Wan, Y.; Wang, J.; Ye, Y.; Yuan, X. Effects of pulse durations and environments on femtosecond laser ablation of stainless steel. Appl. Phys. A 2018, 124, 310. [Google Scholar] [CrossRef]
- Mensink, K.; Penilla, E.H.; Martínez-Torres, P.; Cuando-Espitia, N.; Mathaudhu, S.; Aguilar, G. High repetition rate femtosecond laser heat accumulation and ablation thresholds in cobalt-binder and binderless tungsten carbides. J. Mater. Process. Technol. 2019, 266, 388–396. [Google Scholar] [CrossRef]
- Genieys, T.; Sentis, M.; Utéza, O. Measurement of ultrashort laser ablation of four metals (Al, Cu, Ni, W) in the single-pulse regime. Adv. Opt. Technol. 2020, 9, 131–143. [Google Scholar] [CrossRef]
- Pan, R.; Yang, D.; Zhou, T.; Feng, Y.; Dong, Z.; Yan, Z.; Li, P.; Yang, J.; Chen, S. Micro-welding of sapphire and metal by femtosecond laser. Ceram. Int. 2023, 49, 21384–21392. [Google Scholar] [CrossRef]
- Murzin, S.P.; Kazanskiy, N.L.; Stiglbrunner, C. Analysis of the Advantages of Laser Processing of Aerospace Materials Using Diffractive Optics. Metals 2021, 11, 963. [Google Scholar] [CrossRef]
- Dutta Majumdar, J.; Manna, I. Laser material processing. Int. Mater. Rev. 2011, 56, 341–388. [Google Scholar] [CrossRef]
- Li, L. The advances and characteristics of high-power diode laser materials processing. Opt. Lasers Eng. 2000, 34, 231–253. [Google Scholar] [CrossRef]
- Trtica, M.; Limpouch, J.; Stasic, J.; Gavrilov, P. Femtosecond laser-assisted surface modification of tungsten with 1015 W/cm2 intensity in air and vacuum ambience. Appl. Surf. Sci. 2019, 464, 99–107. [Google Scholar] [CrossRef]
- Su, Q.; Bai, S.; Han, J.; Ma, Y.; Yu, Y.; Deng, Y.; Wu, M.; Zheng, C.; Hu, A. Precise laser trimming of alloy strip resistor: A comparative study with femtosecond laser and nanosecond laser. J. Laser Appl. 2020, 32, 022013. [Google Scholar] [CrossRef]
- Lou, R.; Zhang, G.; Li, G.; Li, X.; Liu, Q.; Cheng, G. Design and Fabrication of Dual-Scale Broadband Antireflective Structures on Metal Surfaces by Using Nanosecond and Femtosecond Lasers. Micromachines 2020, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Ouyang, D.; Liu, X.; Wu, S.; Huang, X.; Li, N. Fabricating colorful bulk metallic glass surfaces by femtosecond laser processing. Mater. Chem. Phys. 2021, 266, 124561. [Google Scholar] [CrossRef]
- Liang, M.; Lin, X.; Wang, M.; Yuan, Y.; Chen, X.; Xu, C.; Zuo, P. Spatially-Shaped Femtosecond Laser Manufacturing of Microgrooves in Metals. Chin. J. Lasers 2021, 48, 0202003. [Google Scholar] [CrossRef]
- Pou-Álvarez, P.; Riveiro, A.; Nóvoa, X.R.; Fernández-Arias, M.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Lusquiños, F.; Pou, J. Nanosecond, picosecond and femtosecond laser surface treatment of magnesium alloy: Role of pulse length. Surf. Coat. Technol. 2021, 427, 127802. [Google Scholar] [CrossRef]
- Mroczkowska, K.M.; Dzienny, P.; Budnicki, A.; Antończak, A.J. Corrosion Resistance of AISI 304 Stainless Steel Modified Both Femto- and Nanosecond Lasers. Coatings 2021, 11, 592. [Google Scholar] [CrossRef]
- Pan, X.; He, W.; Cai, Z.; Wang, X.; Liu, P.; Luo, S.; Zhou, L. Investigations on femtosecond laser-induced surface modification and periodic micropatterning with anti-friction properties on Ti6Al4V titanium alloy. Chin. J. Aeronaut. 2022, 35, 521–537. [Google Scholar] [CrossRef]
- Hong, S.; Lee, H.; Yeo, J.; Ko, S.H. Digital selective laser methods for nanomaterials: From synthesis to processing. Nano Today 2016, 11, 547–564. [Google Scholar] [CrossRef]
- Heng, H.Y.Z.; Wang, X.C.; Wang, Z.K. 5—Laser dicing of silicon and electronics substrates. In Advances in Laser Materials Processing; Woodhead Publishing: Cambridge, UK, 2010; pp. 88–135. [Google Scholar]
- Suttmann, O.; Moalem, A.; Kling, R.; Ostendorf, A. Drilling, Cutting, Welding, Marking and Microforming. In Laser Precision Microfabrication; Sugioka, K., Meunier, M., Piqué, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 135, pp. 311–335. [Google Scholar]
- Tao, Q.; Lu, B.; Zhai, Z.; Cheng, J.; Liu, D. Manufacturing a 1 × 16 air-cladding polymeric optical splitter for electro-optical printed circuit boards by femtosecond laser. Opt. Eng. 2020, 59, 017105. [Google Scholar] [CrossRef]
- Lim, C.H.J.; Suchand Sandeep, C.S.; Murukeshan, V.M.; Kim, Y.-J. Direct Laser Writing of Graphene-Based Electrical Interconnects for Printed Circuit Board Repair. Adv. Mater. Technol. 2021, 6, 2100514. [Google Scholar] [CrossRef]
- Choi, H.; May, N.; Phoulady, A.; Suleiman, Y.; DiMase, D.; Shahbazmohamadi, S.; Tavousi, P. Rapid three-dimensional reconstruction of printed circuit board using femtosecond laser delayering and digital microscopy. Microelectron. Reliab. 2022, 138, 114659. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, M.; Zhang, P.; Li, C. Femtosecond Laser Machining of Flexible Printed Circuit Boards. J. Phys. Conf. Ser. 2022, 2185, 012082. [Google Scholar] [CrossRef]
- Joe, D.J.; Kim, S.; Park, J.H.; Park, D.Y.; Lee, H.E.; Im, T.H.; Choi, I.; Ruoff, R.S.; Lee, K.J. Laser–Material Interactions for Flexible Applications. Adv. Mater. 2017, 29, 1606586. [Google Scholar] [CrossRef] [PubMed]
- Qin, R.; Hu, M.; Zhang, N.; Guo, Z.; Yan, Z.; Li, J.; Liu, J.; Shan, G.; Yang, J. Flexible Fabrication of Flexible Electronics: A General Laser Ablation Strategy for Robust Large-Area Copper-Based Electronics. Adv. Electron. Mater. 2019, 5, 1900365. [Google Scholar] [CrossRef]
- Bian, J.; Chen, F.; Yang, B.; Hu, J.; Sun, N.; Ye, D.; Duan, Y.; Yin, Z.; Huang, Y. Laser-Induced Interfacial Spallation for Controllable and Versatile Delamination of Flexible Electronics. ACS Appl. Mater. Interfaces 2020, 12, 54230–54240. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, G.; Huang, L.; Ran, P.; Huang, J.; Yu, M.; Yuqian, H.; Guo, J.; Liu, Z.; Ma, X. Versatile fabrication of liquid metal nano-ink based flexible electronic devices. Appl. Mater. Today 2021, 22, 100903. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Yong, J.; Yang, Q.; He, Y.; Zhang, C.; Hou, X.; Chen, F. Femtosecond laser preparing patternable liquid-metal-repellent surface for flexible electronics. J. Colloid Interface Sci. 2020, 578, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, Q.; Yong, J.; Shan, C.; Zhang, J.; Hou, X.; Chen, F. Guiding magnetic liquid metal for flexible circuit. Int. J. Extrem. Manuf. 2021, 3, 025102. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Z.; Li, H.; Yang, Q.; Wang, H.; Shan, C.; Zhang, J.; Hou, X.; Chen, F. Femtosecond Laser-Induced Supermetalphobicity for Design and Fabrication of Flexible Tactile Electronic Skin Sensor. ACS Appl. Mater. Interfaces 2022, 14, 38328–38338. [Google Scholar] [CrossRef]
- Liang, C.; Sun, X.; Zheng, J.; Su, W.; Hu, Y.; Duan, J. Surface ablation thresholds of femtosecond laser micropatterning silver nanowires network on flexible substrate. Microelectron. Eng. 2020, 232, 111396. [Google Scholar] [CrossRef]
- Tsibidis, G.D.; Mansour, D.; Stratakis, E. Damage threshold evaluation of thin metallic films exposed to femtosecond laser pulses: The role of material thickness. Opt. Laser Technol. 2022, 156, 108484. [Google Scholar] [CrossRef]
- Kaligar, A.B.; Kumar, H.A.; Ali, A.; Abuzaid, W.; Egilmez, M.; Alkhader, M.; Abed, F.; Alnaser, A.S. Femtosecond Laser-Based Additive Manufacturing: Current Status and Perspectives. Quantum Beam Sci. 2022, 6, 5. [Google Scholar] [CrossRef]
- Cai, C.; Wang, J. Femtosecond Laser-Fabricated Photonic Chips for Optical Communications: A Review. Micromachines 2022, 13, 630. [Google Scholar] [CrossRef]
Materials | Laser Equipment | Feature Size | Applications | References | Year |
---|---|---|---|---|---|
Ni-based and Fe-based superalloys | A wavelength of ~1030 nm, a repetition rate of ~10 kHz, a pulse duration of ~200 fs | Less than 0.1 µm | Extending the application of the traditional two-temperature model to laser fabrication | [55] | 2020 |
Ti alloy and Al alloy | A Ti: sapphire chirped-pulse regenerative amplification laser system (a wavelength of ~800 nm, a pulse duration of ~30 fs, a repetition rate of ~110 Hz) (Wuhan Huaray Precision Laser Co., Ltd., Wuhan, China, HR-Femto-IR-50–40) | 20–40 µm | Needing further research on laser micromachining in the field of aerospace, biomedicine, and daily life | [56] | 2020 |
Stainless steel 304 | The laser spot diameter was 36 µm, the pulse duration was 276 fs, and the laser wavelength was 1030 nm | Less than 200 µm | Proposing the magnetic field-assisted ultrafast laser drilling technology | [57] | 2021 |
Ni-based superalloy | A fs-laser system generating 350 fs pulses at a wavelength of 1030 nm | 150–250 µm | Improving the quality of percussion laser drilling holes while ensuring high efficiency | [58] | 2021 |
Titanium alloy (Ti6Al4V) | A gaussian-profiled laser energy distribution with a wavelength of 1035 nm, average power of 40 W, and a pulse width of 350 fs (Wuhan Huaray Precision Laser Co., Ltd., Wuhan, China, HR-Femto-IR-50–40) | 200–500 µm | Exploring the influence of laser fluence, repetition rate, and pulse overlap on hole dimension and morphology | [59] | 2023 |
Tungsten (W) | A PHARO sapphire femtosecond laser, wavelength of ~1030 nm, a maximum frequency of ~1 MHz, a pulse width of ~230 fs | 5–40 µm | Providing a guidance for femtosecond laser ablation of refractory materials | [60] | 2024 |
Pulse Duration | 15 fs | 30 fs | 50 fs | 100 fs |
---|---|---|---|---|
Aluminum, Fth (J/cm2) | 0.232 | 0.239 | 0.240 | 0.229 |
Copper, Fth (J/cm2) | 0.636 | 0.651 | 0.637 | 0.659 |
Nickel, Fth (J/cm2) | 0.328 | 0.331 | 0.329 | 0.316 |
Tungsten, Fth (J/cm2) | 0.521 | 0.541 | 0.530 | 0.531 |
Materials | Laser Equipment | Feature Size | Applications | References | Year |
---|---|---|---|---|---|
Ti6Al4V alloy | Titanium: sapphire laser (Quantronix Integra C1.0), a wavelength of ~790 nm, a repetition rate of ~1 kHz | 25–30 µm | Emerging as a credible alternative to conventional chemical-based processes in surface cleaning | [64] | 2018 |
SUS 301 stainless steel sheet | The repetition rate of the femtosecond laser is 50 MHz at a wavelength of λ = 1040 nm | 2–15 µm | Widely used in laser microfabrication, laser surgery, and biomedical applications | [65] | 2018 |
304 stainless steel | Ti: sapphire A commercial chirped-pulse-amplification Ti: sapphire laser system (Spectra physics), a pulse duration of ~35 fs, a wavelength of ~800 nm | 20–41 µm | Showing great importance for texturing anti-reflectivity, color marking, anti-corrosion, and super-hydrophobic surfaces | [66] | 2018 |
Tungsten carbide | Ti: sapphire-based system delivering 230 fs pulses at a central wavelength of 1028 nm (Amplitude Systems MIKAN Ytterbium doped) | 1000 µm | Achieving high ablation rates of difficult-to-machine, ultrahard materials and helping to enable the shaping of binderless tungsten carbide | [67] | 2019 |
Four metals (aluminum, copper, nickel, and tungsten) | Beam line delivers linearly polarized ~30 fs (FWHM) pulses at 100 Hz with an 800 nm central wavelength (the beam line 5a of ASUR platform at LP3 laboratory) | Thickness varies between 0.5 and 3.2 mm | Serving as rewarding feedback for femtosecond laser micromachining and the laser damage handling of metallic components | [68] | 2020 |
Sapphire/Fe–36Ni alloy | An 1030 nm wavelength (Light Conversion), 1 kHz~1 MHz pulse repetition rate, and a 40 W maximum average power | - | Appearing as a promising technique for the direct joining of materials, and beneficial for the manufacturing of optomechanical components | [69] | 2023 |
Materials | Laser Equipment | Feature Size | Applications | References | Year |
---|---|---|---|---|---|
Tungsten | Ti: sapphire laser (PULSAR, Amplitude Technologies, based on CPA technique), with wavelength of 804 nm, 60 fs pulses with 12 mJ peak energy | 10–80 µm | Leading to precise superficial material removal, which implies the possibility of ultra-precise surface processing | [73] | 2019 |
Fe-Cr-Al alloy resistor sheet | 35 fs pulses at a 1 kHz repetition rate with the central wavelength at 800 nm | 5–10 µm | Demanding a higher machining precision for intelligent manufacturing and automatic controlling | [74] | 2020 |
Ti-6Al-4V (TC4) titanium alloys | The femtosecond laser source (Pharos, Light Conversion, Lithuania) had a wavelength of ~1030 nm, pulse duration of ~800 fs, repetition rate of ~100 kHz | 20–100 µm | Having multiple functions in metal surface modification | [75] | 2020 |
Zr-based amorphous alloy | Linearly polarized femtosecond laser (TCR-1060), wavelength of ~1030 nm, repetition rate of ~500 kHz, pulse width of ~500 fs | 0.05–0.25 µm | Providing a facile method for engraving colorful amorphous alloy surfaces | [76] | 2021 |
Nickel-based superalloy | Wavelength of ~800 nm, a repetition rate of ~1 kHz, pulse width of ~50 fs | 5–150 µm | Becoming an essential processing method, especially for difficult-to-process materials | [77] | 2021 |
AZ31B magnesium alloy | A femtosecond Yb: KYW laser source (Spectra Physic) with wavelength of ~520 nm, frequency of ~200 kHz, pulse length of ~2.7 × 10−15 s | 1–20 µm | Modifying the surface of magnesium, aiming at the improvement of the corrosion properties as well as the generation of a controlled roughness | [78] | 2021 |
AISI 304 stainless steel | Trumpf TruMicro Series 2020 fiber laser (Schramberg, Germany) with pulse duration of ~260 fs to 20 ps, wavelength of ~1030 nm | 50 µm | Comparing the effect of the laser treatment of AISI 304 stainless steel | [79] | 2021 |
Ti6Al4V titanium alloys | Pulse duration of 290 fs, which was generated from a high power and energy femtosecond laser (Light conversion, Lithuania) | 40–300 µm | Offering unique pathways to enhance the tribological performance of materials | [80] | 2022 |
Materials | Laser Equipment | Applications | References | Year |
---|---|---|---|---|
Improved EOPCB | A femtosecond laser of 100 fs, peak power of ~5 W, center wavelength of ~800 nm | Increasing the 5G communication rate, and meeting the high integration requirements for the flexible EOPCB | [84] | 2020 |
rGO on flexible PCB substrates | A Yb-doped femtosecond fiber laser (Satsuma HP, Amplitude Systems, Pessac, France), 515 nm wavelength, pulse duration of ~220 fs | Opening new perspectives for real-time PCB repair and wearable electronics | [85] | 2021 |
PCBs | The laser confocal height sensor for measuring height of the sample to ensure accurate laser focus plane (Keyence CL-P070G),with resolution of ~0.025 µm | Offering a universal solution for rapid automated reverse engineering of microelectronic devices | [86] | 2022 |
PCB (three layers: copper layer, polyimide substrate, and adhesive layer) | Ti: sapphire laser (Phoras 15-1000-PP, LIGHT CONVERSION), wavelength of 342 nm, pulse width of 330 fs | Creating high-density and precision patterns on PCBs | [87] | 2022 |
Materials | Laser Equipment | Applications | References | Year |
---|---|---|---|---|
Liquid Ga-based metal alloys and PDMS | Ti: sapphire laser system (Coherent, Inc., Librausp 1K-he200, Saxonburg, PA, USA), with a pulse duration of 50 fs, central wavelength of 800 nm, and repetition frequency of 1 kHz | Improving machining precision and miniaturizing devices; it has more significant applications in liquid metal printing, microfluidics, soft robots, and wearable devices. | [92] | 2020 |
Liquid metal with some Fe particles | Allowing for more flexible and functional LM manipulation, which shows great significance for exploring soft circuits. | [93] | 2021 | |
Gallium-based liquid metal | Monitoring various human physiological and motion signals, depicting the potential for wearable biomonitoring, human–machine interfaces, and soft robotic systems. | [94] | 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Lei, L.; Lin, S.; Tian, S.; Tian, W.; Yu, Z.; Li, F. Metal Material Processing Using Femtosecond Lasers: Theories, Principles, and Applications. Materials 2024, 17, 3386. https://doi.org/10.3390/ma17143386
He Z, Lei L, Lin S, Tian S, Tian W, Yu Z, Li F. Metal Material Processing Using Femtosecond Lasers: Theories, Principles, and Applications. Materials. 2024; 17(14):3386. https://doi.org/10.3390/ma17143386
Chicago/Turabian StyleHe, Zhicong, Lixiang Lei, Shaojiang Lin, Shaoan Tian, Weilan Tian, Zaiyuan Yu, and Fang Li. 2024. "Metal Material Processing Using Femtosecond Lasers: Theories, Principles, and Applications" Materials 17, no. 14: 3386. https://doi.org/10.3390/ma17143386
APA StyleHe, Z., Lei, L., Lin, S., Tian, S., Tian, W., Yu, Z., & Li, F. (2024). Metal Material Processing Using Femtosecond Lasers: Theories, Principles, and Applications. Materials, 17(14), 3386. https://doi.org/10.3390/ma17143386