Demonstration of the Optical Isotropy of TiO2 Thin Films Prepared by the Sol–Gel Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sol Preparation
2.2. Sample Preparation
2.3. Measurements Using Spectroscopic Ellipsometry
2.4. X-ray Diffraction Studies
2.5. Surface Imaging by Scanning Electron Microscopy (SEM)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Manzoli, M.; Freyria, F.S.; Blangetti, N.; Bonelli, B. Brookite, a sometimes under evaluated TiO2 polymorph. RSC Adv. 2022, 12, 3322–3334. [Google Scholar] [CrossRef]
- Parrino, F.; Pomilla, F.R.; Camera-Roda, G.; Loddo, V.; Palmisano, L. 2—Properties of titanium dioxide. In Titanium Dioxide (TiO2) and Its Applications; Parrino, F., Palmisano, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 13–66. [Google Scholar]
- Gázquez, M.; Bolívar, J.; Garcia-Tenorio, R.; Vaca, F. A Review of the Production Cycle of Titanium Dioxide Pigment. Mater. Sci. Appl. 2014, 5, 441–458. [Google Scholar] [CrossRef]
- Omar, A.; Ali, M.S.; Abd Rahim, N. Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review. Sol. Energy 2020, 207, 1088–1121. [Google Scholar] [CrossRef]
- Rabajczyk, A.; Zielecka, M.; Klapsa, W.; Dziechciarz, A. Self-Cleaning Coatings and Surfaces of Modern Building Materials for the Removal of Some Air Pollutants. Materials 2021, 14, 2161. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Liu, S.; Dai, Z.; He, Y.; Song, X.; Tan, Z. Titanium Dioxide: From Engineering to Applications. Catalysts 2019, 9, 191. [Google Scholar] [CrossRef]
- Mardare, D.; Cornei, N.; Mita, C.; Florea, D.; Stancu, A.; Tiron, V.; Manole, A.; Adomnitei, C. Low temperature TiO2 based gas sensors for CO2. Ceram. Int. 2016, 42, 7353–7359. [Google Scholar] [CrossRef]
- Akakuru, O.U.; Iqbal, Z.M.; Wu, A. TiO2 Nanoparticles: Properties and Applications. In TiO2 Nanoparticles; Wu, A., Ren, W., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 1–66. [Google Scholar]
- Nowotny, J. Oxide Semiconductors for Solar Energy Conversion—Titanium Dioxide; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Winkler, J. Titanium Dioxide. Production, Properties and Effective Usage, 2nd ed.; Vincentz Network GmbH & Co.: Hannover, Germany, 2013. [Google Scholar]
- Silva, C.G.; Carabineiro, S.A.C.; Lima, M.J.; Dražiç, G.; Figueiredo, J.L.; Faria, J.L. Titanium dioxide-based photocatalysts for the conversion of water pollutants. In Titanium Dioxide: Chemical Properties, Applications and Environmental Effects; Brown, J., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2014; pp. 49–63. [Google Scholar]
- Li, Z.; Li, Z.; Zuo, C.; Fang, X. Application of Nanostructured TiO2 in UV Photodetectors: A Review. Adv. Mater. 2022, 34, 2109083. [Google Scholar] [CrossRef] [PubMed]
- Lettieri, S.; Pavone, M.; Fioravanti, A.; Santamaria Amato, L.; Maddalena, P. Charge Carrier Processes and Optical Properties in TiO2 and TiO2-Based Heterojunction Photocatalysts: A Review. Materials 2021, 14, 1645. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sciarrino, F.; Laing, A.; Thompson, M.G. Integrated photonic quantum technologies. Nat. Photonics 2020, 14, 273–284. [Google Scholar] [CrossRef]
- Bogaerts, W.; Pérez, D.; Capmany, J.; Miller, D.A.B.; Poon, J.; Englund, D.; Morichetti, F.; Melloni, A. Programmable photonic circuits. Nature 2020, 586, 207–216. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A.; Kaźmierczak, A.; Piramidowicz, R. State-of-the-Art Optical Devices for Biomedical Sensing Applications—A Review. Electronics 2021, 10, 973. [Google Scholar] [CrossRef]
- Karasiński, P.; Tyszkiewicz, C.; Piramidowicz, R.; Kaźmierczak, A. Development of integrated photonics based on SiO2:TiO2 sol-gel derived waveguide layers: State of the art, perspectives, prospective applications. In Proceedings of the SPIE 11364, Integrated Photonics Platforms: Fundamental Research, Manufacturing and Applications, Online, 6–10 April 2020; p. 1136414. [Google Scholar]
- Ardakani, H.K. Electrical and optical properties of in situ “hydrogen-reduced” titanium dioxide thin films deposited by pulsed excimer laser ablation. Thin Solid Film. 1994, 248, 234–239. [Google Scholar] [CrossRef]
- Paxton, A.; Thiên-Nga, L. Electronic structure of reduced titanium dioxide. Phys. Rev. B—Condens. Matter Mater. Phys. 1998, 57, 1579–1584. [Google Scholar] [CrossRef]
- Panepinto, A.; Krumpmann, A.; Cornil, D.; Cornil, J.; Snyders, R. Switching the electrical characteristics of TiO2 from n-type to p-type by ion implantation. Appl. Surf. Sci. 2021, 563, 150274. [Google Scholar] [CrossRef]
- Jiang, L.; Zhou, S.; Yang, J.; Wang, H.; Yu, H.; Chen, H.; Zhao, Y.; Yuan, X.; Chu, W.; Li, H. Near-Infrared Light Responsive TiO2 for Efficient Solar Energy Utilization. Adv. Funct. Mater. 2022, 32, 2108977. [Google Scholar] [CrossRef]
- Hegeman, I.; Dijkstra, M.; Segerink, F.B.; Lee, W.; Garcia-Blanco, S.M. Development of low-loss TiO2 waveguides. Opt. Express 2020, 28, 5982–5990. [Google Scholar] [CrossRef]
- Michiels, M.; Hemberg, A.; Godfroid, T.; Douheret, O.; Colaux, J.L.; Moskovkin, P.; Lucas, S.; Caillard, A.; Thomann, A.L.; Laha, P.; et al. On the relationship between the plasma characteristics, the microstructure and the optical properties of reactively sputtered TiO2 thin films. J. Phys. D Appl. Phys. 2021, 54, 415202. [Google Scholar] [CrossRef]
- César, R.R.; Pascon, A.M.; Diniz, J.A.; Joanni, E.; Mederos, M.; Texeira, R.C. Comparasion between TiO2 thin films deposited by DC and RF sputtering. In Proceedings of the 2019 34th Symposium on Microelectronics Technology and Devices (SBMicro), Sao Paulo, Brazil, 26–30 August 2019; pp. 1–4. [Google Scholar]
- Kruchinin, V.N.; Perevalov, T.V.; Atuchin, V.V.; Gritsenko, V.A.; Komonov, A.I.; Korolkov, I.V.; Pokrovsky, L.D.; Shih, C.W.; Chin, A. Optical Properties of TiO2 Films Deposited by Reactive Electron Beam Sputtering. J. Electron. Mater. 2017, 46, 6089–6095. [Google Scholar] [CrossRef]
- Tang, H.; Prasad, K.; Sanjinès, R.; Schmid, P.E.; Lévy, F. Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 1994, 75, 2042–2047. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Pandey, A.K.; Nasrudin, A.R. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review. Renew. Sustain. Energy Rev. 2017, 77, 89–108. [Google Scholar] [CrossRef]
- Brinker, C.J.; Scherer, G.W. Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing; Academic Press: San Diego, CA, USA, 1990. [Google Scholar]
- Karasiński, P. Influence of technological parameters on the properties of sol-gel silica films. Opt. Appl. 2005, 35, 117–128. [Google Scholar]
- Kozłowski, Ł.; Shahbaz, M.; Butt, M.A.; Tyszkiewicz, C.; Karasiński, P.; Kaźmierczak, A.; Piramidowicz, R. Low-cost integrated photonic platform developed via a sol-gel dip-coating method: A brief review. Sens. Transducers 2022, 259, 82–92. [Google Scholar]
- Kim, D.J.; Hahn, S.H.; Oh, S.H.; Kim, E.J. Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol–gel dip coating. Mater. Lett. 2002, 57, 355–360. [Google Scholar] [CrossRef]
- Vorotilov, K.A.; Orlova, E.V.; Petrovsky, V.I. Sol-gel TiO2 films on silicon substrates. Thin Solid Film. 1992, 207, 180–184. [Google Scholar] [CrossRef]
- Nizioł, J.; Gondek, E.; Karasiński, P. Changes in Optical Parameters of SiO2:TiO2 Films Obtained by Sol-Gel Method Observed as a Result of Thermal Treatment. Materials 2021, 14, 2290. [Google Scholar] [CrossRef] [PubMed]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- Mehdipour-Ataei, S.; Tabatabaei-Yazdi, Z. Heat Resistant Polymers. In Encyclopedia of Polymer Science and Technology; Wiley: Hoboken, NJ, USA, 2015; pp. 1–31. [Google Scholar]
- DuPont. DuPont™ Kapton®—Summary of Properties. 2024. Available online: https://www.dupont.com/content/dam/dupont/amer/us/en/ei-transformation/public/documents/en/EI-10142_Kapton-Summary-of-Properties.pdf (accessed on 20 February 2024).
- Yunnan, F.; Manos, M.T. Surface Modification of Polyimide Films for Inkjet-Printing of Flexible Electronic Devices. In Flexible Electronics; Simas, R., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 1. [Google Scholar]
- Skolik, M.; Domanowska, A.; Karasiński, P.; Gondek, E.; Michalewicz, A. Double layer sol-gel derived antireflective coatings on silicon—Design, optical and Auger Electron Spectroscopy characterization. Mater. Lett. 2019, 251, 210–213. [Google Scholar] [CrossRef]
- Gondek, E.; Karasiński, P. One-dimensional photonic crystals as selective back reflectors. Opt. Laser Technol. 2013, 48, 438–446. [Google Scholar] [CrossRef]
- Kite, S.V.; Sathe, D.J.; Patil, S.S.; Bhosale, P.N.; Garadkar, K.M. Nanostructured TiO2 thin films by chemical bath deposition method for high photoelectrochemical performance. Mater. Res. Express 2019, 6, 026411. [Google Scholar] [CrossRef]
- Manickam, K.; Muthusamy, V.; Manickam, S.; Senthil, T.S.; Periyasamy, G.; Shanmugam, S. Effect of annealing temperature on structural, morphological and optical properties of nanocrystalline TiO2 thin films synthesized by sol–gel dip coating method. Mater. Today Proc. 2020, 23, 68–72. [Google Scholar] [CrossRef]
- Dobrzański, L.A.; Szindler, M. Sol gel TiO2 antireflection coatings for silicon solar cells. J. Achiev. Mater. Manuf. Eng. 2012, 52, 7–14. [Google Scholar]
- Stotaw Talbachew, H.; Girma Goro, G. Synthesis and Characterization of Titanium Oxide Nanomaterials Using Sol-Gel Method. Am. J. Nano Res. Appl. 2014, 2, 1–7. [Google Scholar] [CrossRef]
- Tompkins, H.G.; Hilfiker, J.N. Spectroscopic Ellipsometry: Practical Application to Thin Film Characterization; Momentum Press: New York, NY, USA, 2016. [Google Scholar]
- Garcia-Caurel, E.; Ossikovski, R.; Foldyna, M.; Pierangelo, A.; Drévillon, B.; De Martino, A. Advanced Mueller Ellipsometry Instrumentation and Data Analysis. In Ellipsometry at the Nanoscale; Losurdo, M., Hingerl, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 31–143. [Google Scholar]
- Arteaga, O. Useful Mueller matrix symmetries for ellipsometry. Thin Solid Film. 2014, 571, 584–588. [Google Scholar] [CrossRef]
- Hilfiker, J.N.; Hong, N.; Schoeche, S. Mueller matrix spectroscopic ellipsometry. Adv. Opt. Technol. 2022, 11, 59–91. [Google Scholar] [CrossRef]
- Jellison, G.E.; Boatner, L.A.; Budai, J.D.; Jeong, B.S.; Norton, D.P. Spectroscopic ellipsometry of thin film and bulk anatase (TiO2). J. Appl. Phys. 2003, 93, 9537–9541. [Google Scholar] [CrossRef]
- van Popta, A.C.; Cheng, J.; Sit, J.C.; Brett, M.J. Birefringence enhancement in annealed TiO2 thin films. J. Appl. Phys. 2007, 102, 013517. [Google Scholar] [CrossRef]
- van Popta, A.C.; Sit, J.C.; Brett, M.J. Optical properties of porous helical thin films. Appl. Opt. 2004, 43, 3632–3639. [Google Scholar] [CrossRef] [PubMed]
- Bruggeman, D.A.G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 1935, 416, 636–664. [Google Scholar] [CrossRef]
- Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Tompkins, H.G.; Irene, E.A. Handbook of Ellipsometry; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Janitabr-Darzi, S.; Mahjoub, A.; Nilchi, A. Investigation of structural, optical and photocatalytic properties of mesoporous TiO2 thin film synthesized by sol-gel templating technique. Phys. E-Low-Dimens. Syst. Nanostruct. 2010, 42, 176–181. [Google Scholar] [CrossRef]
- Ben Naceur, J.; Gaidi, M.; Bousbih, F.; Mechiakh, R.; Chtourou, R. Annealing effects on microstructural and optical properties of Nanostructured-TiO2 thin films prepared by sol–gel technique. Curr. Appl. Phys. 2012, 12, 422–428. [Google Scholar] [CrossRef]
- Nizioł, J.; Gondek, E.; Karasiński, P. Effect of temperature changes on parameters of the sol-gel derived silica-titania films. Mater. Lett. 2018, 223, 102–104. [Google Scholar] [CrossRef]
- Wang, Z.; Helmersson, U.; Käll, P.-O. Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature. Thin Solid Film. 2002, 405, 50–54. [Google Scholar] [CrossRef]
- Reyes-Coronado, D.; Rodríguez-Gattorno, G.; Espinosa-Pesqueira, M.E.; Cab, C.; de Coss, R.; Oskam, G. Phase-pure TiO2 nanoparticles: Anatase, brookite and rutile. Nanotechnology 2008, 19, 145605. [Google Scholar] [CrossRef] [PubMed]
- Aoki, A.; Nogami, G. Fabrication of Anatase Thin Films from Peroxo-polytitanic Acid by Spray Pyrolysis. J. Electrochem. Soc. 1996, 143, L191–L193. [Google Scholar] [CrossRef]
- Takikawa, H.; Matsui, T.; Sakakibara, T.; Bendavid, A.; Martin, P.J. Properties of titanium oxide film prepared by reactive cathodic vacuum arc deposition. Thin Solid Film. 1999, 348, 145–151. [Google Scholar] [CrossRef]
- Boschloo, G.K.; Goossens, A.; Schoonman, J. Photoelectrochemical Study of Thin Anatase TiO2 Films Prepared by Metallorganic Chemical Vapor Deposition. J. Electrochem. Soc. 1997, 144, 1311–1317. [Google Scholar] [CrossRef]
- Landi, S.; Segundo, I.R.; Freitas, E.; Vasilevskiy, M.; Carneiro, J.; Tavares, C.J. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun. 2022, 341, 114573. [Google Scholar] [CrossRef]
- Jellison, G.E.; Modine, F.A. Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 1996, 69, 371–373, Erratum in Applied Physics Letters 1996, 69, 2137. [Google Scholar] [CrossRef]
- Dubey, D.R.S.; Krishnamurthy, K.; Singh, S. Experimental Studies of TiO2 Nanoparticles synthesized by Sol-gel and Solvothermal Routes for DSSCs Application. Results Phys. 2019, 14, 102390. [Google Scholar] [CrossRef]
- Dubey, R.S. Temperature-dependent phase transformation of TiO2 nanoparticles synthesized by sol-gel method. Mater. Lett. 2018, 215, 312–317. [Google Scholar] [CrossRef]
- Khorsand Zak, A.; Abd Majid, W.H.; Abrishami, M.E.; Yousefi, R. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 2011, 13, 251–256. [Google Scholar] [CrossRef]
- Balaji, M.; Chandrasekaran, J.; Raja, M. Role of substrate temperature on MoO3 thin films by the JNS pyrolysis technique for P–N junction diode application. Mater. Sci. Semicond. Process. 2016, 43, 104–113. [Google Scholar] [CrossRef]
- Karasiński, P.; Zięba, M.; Gondek, E.; Nizioł, J.; Gorantla, S.; Rola, K.; Bachmatiuk, A.; Tyszkiewicz, C. Sol-Gel Derived Silica-Titania Waveguide Films for Applications in Evanescent Wave Sensors—Comprehensive Study. Materials 2022, 15, 7641. [Google Scholar] [CrossRef] [PubMed]
Sample Annealing Temperature [°C] | Thickness [nm] | Roughness [nm] | Refractive Index at λ = 632 nm |
---|---|---|---|
200 | 323.6 | 0.89 | 1.791 |
300 | 187.0 | 1.35 | 2.039 |
400 | 144.1 | 1.54 | 2.217 |
500 | 124.5 | 1.76 | 2.226 |
600 | 122.6 | 2.98 | 2.318 |
Sample Annealing Temperature [°C] | (A) Indirect | (B) Direct | (C) Indirect |
---|---|---|---|
200 | 3.59 (345.4) | 4.30 (288.4) | 3.57 (347.3) |
300 | 3.37 (368.0) | 4.07 (304.7) | 3.40 (364.7) |
400 | 3.29 (376.9) | 3.94 (314.7) | 3.34 (371.3) |
500 | 3.27 (379.2) | 3.91 (317.1) | 3.35 (370.1) |
600 | 3.28 (378.0) | 3.93 (315.5) | 3.34 (371.3) |
Sample Annealing Temperature [°C] | 2θ (101) Peak Position [deg] | 2θ FWHM β [deg] | Intensity [a.u.] | Crystallite Size D [nm] |
---|---|---|---|---|
400 | 25.276 | 0.831 | 262 | 11 |
500 | 25.290 | 0.637 | 563 | 15 |
600 | 25.314 | 0.442 | 1329 | 24 |
Sample Annealing Temperature [°C] | Lattice Parameters | Lattice Strain [%] | Dislocation Densities δ [1/m2] | Stacking Fault Probability α [%] | ||
---|---|---|---|---|---|---|
a = b [Å] | c [Å] | α = β = γ [deg] | ||||
400 | 3.7849 | 9.5880 | 90 | 1.60 | 6.86·1015 | 0.71 |
500 | 3.7835 | 9.5745 | 90 | 1.22 | 3.86·1015 | 0.55 |
600 | 3.7797 | 9.5700 | 90 | 0.83 | 1.71·1015 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nizioł, J.; Zięba, M.; Śniechowski, M.; Gondek, E.; Pakieła, W.; Karasiński, P. Demonstration of the Optical Isotropy of TiO2 Thin Films Prepared by the Sol–Gel Method. Materials 2024, 17, 3391. https://doi.org/10.3390/ma17143391
Nizioł J, Zięba M, Śniechowski M, Gondek E, Pakieła W, Karasiński P. Demonstration of the Optical Isotropy of TiO2 Thin Films Prepared by the Sol–Gel Method. Materials. 2024; 17(14):3391. https://doi.org/10.3390/ma17143391
Chicago/Turabian StyleNizioł, Jacek, Magdalena Zięba, Maciej Śniechowski, Ewa Gondek, Wojciech Pakieła, and Paweł Karasiński. 2024. "Demonstration of the Optical Isotropy of TiO2 Thin Films Prepared by the Sol–Gel Method" Materials 17, no. 14: 3391. https://doi.org/10.3390/ma17143391
APA StyleNizioł, J., Zięba, M., Śniechowski, M., Gondek, E., Pakieła, W., & Karasiński, P. (2024). Demonstration of the Optical Isotropy of TiO2 Thin Films Prepared by the Sol–Gel Method. Materials, 17(14), 3391. https://doi.org/10.3390/ma17143391