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Abstract: This paper describes an application of a machine learning approach for parameter optimiza-
tion. The method is demonstrated for the elasto-viscoplastic model with both isotropic and kinematic
hardening. It is shown that the proposed method based on long short-term memory networks allowed
a reasonable agreement of stress–strain curves to be obtained for cyclic deformation in a low-cycle
fatigue regime. The main advantage of the proposed approach over traditional optimization schemes
lies in the possibility of obtaining parameters for a new material without the necessity of conducting
any further optimizations. As the power and robustness of the developed method was demon-
strated for very challenging problems (cyclic deformation, crystal plasticity, self-consistent model
and isotropic and kinematic hardening), it is directly applicable to other experiments and models.

Keywords: crystal plasticity; optimization; machine learning; long short-term memory networks;
self-consistent modeling; Eshelby solution; cyclic deformation; low cycle fatigue

1. Introduction

Constitutive models enable the prediction of the behavior of materials subjected to
external loadings from small [1] to large [2] length scales. In some straightforward problems,
the constitutive models are simple, and their parameters are relatively easy to establish
using standard experiments. For example, establishment of the Young’s modulus of an
isotropic, linearly elastic material is unambiguous using just the result of a uniaxial tension
test. However, in more complex situations, the constitutive models tend to use multiple
non-linear equations and many parameters in order to capture the material’s behavior.
Such a situation is present, e.g., in crystal plasticity, which is the topic of this paper.

The crystal plasticity (CP) theory in its most standard form accounts for the disloca-
tion glide on strictly defined crystallographic planes. Therefore, the information about
orientations of crystallites in a polycrystalline microstructure of a given material has to
be provided. Besides taking into account these microstructural details, the hardening
equations of crystal plasticity are typically similar to those of conventional plasticity and
typically account for isotropic and kinematic hardening. Various optimization algorithms
such as gradient optimization [3], the Newton–Raphson algorithm [4], the Levenberg–
Marquardt method [5], Bayesian optimization [6], particle swarm optimization [7] and
evolutionary algorithms [8–19] are used in order to establish the correct set of material
parameters (see the introduction in [19] for a thorough discussion). However, all of them
share a basic disadvantage: one has to repeat the optimization in the case of a new material
or new test result.

In order to overcome this limitation, Wang et al. [20] developed a neural-network-
based methodology for parameter optimization. The idea behind the approach is perform-
ing the training of a neural network (NN) once and then building the database of predicted
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outputs using the trained NN. The created database is used to predict the set of optimal
parameters based on the provided input. Both the neural network and the database can be
stored, and thus the main advantage of the proposed approach is that one does not need
to perform a new optimization to obtain the parameters of a different material. A similar
idea was presented in [21]. The main difference with regard to [20] is that machine learning
(ML) was used only to establish reasonable parameter bounds, and then fine-tuning was
performed using a genetic algorithm. Yet another approach to parameter optimization
using ML was presented in [22], where the parameters of the model were found by training
the NN to solve the inverse problem. This approach is clearly different from both [20,21]
and it was demonstrated to work well for a model containing two parameters. Determining
whether such an approach can work also for models with more parameters deserves further
study, but it has to be stressed here that solving the inverse problem in the case of a highly
non-linear problem such as the one presented here can be problematic.

In this article, we propose to perform the optimization for the case of the elasto-
viscoplastic self-consistent (EVPSC) crystal plasticity model [14]. The investigated case is
that of electrodeposited copper subjected to cyclic elasto-plastic deformation. We demon-
strate that the proposed method is robust enough in order to provide correct predictions
even in the highly complex problem as the one considered.

We build on the idea of using machine learning for the optimization of constitutive
model parameters as described in [20]. However, there are important differences with
regard to op. cit. First of all, we studied the case of a two-scale elasto-viscoplastic model,
while the single-scale viscoelastic model was used in [20]. Second, we applied the LSTM
approach directly to cyclic plasticity model data, while deep neural networks applied
to data preprocessed using singular value decomposition technique were used in op.
cit. Finally, single loading–unloading was considered in [20], while up to 50 cycles were
simulated in the current study.

The article is structured as follows. After this introductory section, we describe the
methodology (Section 2). This includes the description of the EVPSC model (Section 2.1)
that was already thoroughly described in [14,23] and machine learning methodology
(Section 2.2). These are followed by the optimization results using two approaches for
feature extraction from stress–strain curves (Section 3). The discussion (Section 4) is related
to the applicability of the proposed method to other non-obvious tasks. The paper ends
with conclusions (Section 5).

2. Methodology

This section contains two subsections. The first one (Section 2.1) covers the description
of the constitutive model together with the corresponding micromechanical scheme, which
was used to provide input data for training the machine learning framework. The second
one (Section 2.2) describes the machine learning approach applied for the purpose of
parameter optimization in this paper.

2.1. The EVPSC Model

The sequential elasto-viscoplastic self-consistent (SEVPSC) code was recently devel-
oped and validated for the case of electrodeposited copper films [14] and is based on the
sequential linearization scheme by [23]. (The code was written in FORTRAN and will be
shared upon reasonable request. Researchers willing to use the code should contact Karol
Frydrych.) The scheme coincides with the additive tangent approach [24] for the case of
the Mori–Tanaka scheme. The results for the case of the self-consistent case were presented
in [14,25]. Details of the self-consistent formulation can be found in the aforementioned
papers. Nevertheless, some equations essential for the understanding of the present paper
are provided in the following.
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The strain rate, stress rate and stress have to fulfill the conditions stating that the aver-
age response over the polycrystal is consistent with the corresponding macroscopic values:

˙̄ε = ⟨ε̇g⟩ , ˙̄σ = ⟨σ̇g⟩ , σ̄ = ⟨σg⟩ . (1)

In order to account for the interaction of the grain level and overall quantities, the ad-
ditive tangent interaction law proposed by [26] or [27] is adopted:

ε̇g − ˙̄ε = −M̄e
∗ · (σ̇g − ˙̄σ)− M̄v

∗ · (σg − σ̄) , (2)

where ˙̄ε, ˙̄σ and σ̄ denote the overall strain rate, stress rate and stress. In Equation (2), M̄v
∗

and M̄e
∗ are the fourth-order inverse Hill tensors for a purely viscous problem and a purely

elastic problem, respectively.
The parameters to be established with the proposed ML methodology concern the

isotropic and kinematic hardening at the level of individual grain. In the following, the
formulation of the single grain (subscript g) constitutive model is provided. The total strain
rate is calculated by adding elastic ε̇e

g and viscoplastic strain rates ε̇v
g (the current version of

the model is formulated in the small-strain theory):

ε̇g = ε̇e
g + ε̇v

g (3)

In order to account for the elastic part, the anisotropic Hooke’s law is used:

σ̇g = Ae
g · ε̇e

g or ε̇e
g = Me

g · σ̇g , (4)

where Ae
g is the fourth-order elastic stiffness tensor. The associated compliance tensor is

Me
g = (Ae

g)
−1.

We use the rate-dependent CP formulation for a constitutive description at the single
grain level. The plastic strain rate tensor at this level is calculated as a sum of shears on
slip systems:

ε̇v
g =

N

∑
r=1

γ̇r,gPr,g , where Pr,g =
1
2
(mr,g ⊗ nr,g + nr,g ⊗ mr,g) (5)

where γ̇r,g is the slip rate, and {mr,g, nr,g} are the slip direction and the normal slip plane
unit, respectively. Superscripts r and g denote a given slip systems and grain, respectively.
Pr,g is the symmetric Schmid tensor. The resolved shear stress (RSS) is a projection of the
Cauchy stress tensor on the given slip system:

τr,g = Pr,g : σg. (6)

The slip rate depends on the RSS as well as on the slip system backstress χr,g and the
critical resolved shear stress (CRSS) τ

r,g
c [28]:

γ̇r,g = γ̇0

∣∣∣∣τr,g − χr,g

τ
r,g
c

∣∣∣∣nsign(τr,g − χr,g) . (7)

Note that in Equation (7), both isotropic and kinematic hardening are included.
The other quantities are the reference slip rate γ̇0 and the inverse of the strain rate sensitivity
n. The tangent viscous compliance tensor is equal to a derivative of viscoplastic strain rate
over the stress and thus equals:

Mv
g = nγ̇0

N

∑
r=1

∣∣∣∣τr,g − χr,g

τ
r,g
c

∣∣∣∣n−1 sign(τr,g − χr,g)

τ
r,g
c

Pr,g ⊗ Pr,g . (8)
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The evolution of the CRSS and backstress are governed by isotropic and kinematic
hardening laws, respectively. The linear–exponential isotropic hardening evolution appears
as follows:

τ
r,g
c = τ0

c + h1γg +
(

τsat − τ0
c

)(
1 − e−hbγg

)
, (9)

where τ0
c , τsat, h1, hb are material parameters of the isotropic hardening and γg =

∫ t
0 γ̇gdt is

the accumulated shear in the grain. The Ohno–Wang kinematic hardening law [29] reads:

χ̇r,g = hkγ̇r,g − hkb|γ̇r,g|
(

χr,ghkb
hk

)hm

, (10)

where hk, hkb and hm denote the kinematic hardening parameters. We have thus 4 isotropic
hardening and 3 kinematic hardening parameters, which yields in total 7 hardening param-
eters subjected to optimization; cf. [14].

2.2. Machine Learning

Long short-term memory (LSTM) networks are a type of recurrent neural networks
(RNNs) [30]. RNNs themselves are a type of artificial neural networks (ANNs) that are
specifically designed for processing sequential data. The key difference of RNNs, as com-
pared to traditional feedforward neural networks, is presence of connections that allow
outputs to affect subsequent inputs of the same node in the network. The influence of
history-related information on the current outputs can be thus considered. Therefore,
RNNs were applied in areas where both order and context are of importance, e.g., language
modeling and speech recognition [31,32]. Contrary to linear elasticity, models of plasticity
are well known to be history- and path-dependent [33–40] and thus are naturally suitable
for treatment with RNNs [41]. This is even more important in the case of cyclic loading,
which is considered here [42]. Capturing time dependency is possible in RNNs through the
hidden states that are updated at each time step when a new input is processed. The possi-
ble deficiencies of RNNs include vanishing or exploding gradients. Such problems were
partially mitigated in more advanced variants such as LSTM (applied here) and Gated
Recurrent Units (GRUs). These improvements brought the RNNs to a new level, enabling
them to be a key tool in sequence modeling.

LSTM model architecture was selected because of its proven performance in other
sequential prediction tasks, such as speech recognition and low parameter count when
compared to fully connected networks, although as outlined in [43], there is no clear answer
as to whether LSTM or GRUs are better at solving a given task. As compared to traditional
RNNs, LSTM networks have a more complex architecture (cf. Figure 1). In particular,
the LSTM cell contains several gates, such as the forget gate f, input gate i, cell gate g and
output gate o. The presence of gates allows for the flow of information to be regulated;
that is, the gates control which information is added to or removed from the cell state,
enabling the network to maintain and access long-term dependencies more efficiently. Our
implementation is a unidirectional LSTM as defined in PyTorch 2.0 [44] with a hidden state
vector length of 2048. All three curves from the dataset are generated simultaneously by the
network. The output is a tensor whose shape depends on the number of predicted values
per cycle and number of cycles. Note that the term tensor in this subsection does not match
the definition of tensor from the previous subsection and refers only to an understanding
of this term in the machine learning jargon.

Two ways of evaluating the fitness of a given parameter set were tested. The first was
exactly the same as in [14], i.e., the stress values at the points where loading changes its
direction were compared; cf. Figure 2. This approach will be from now on termed App1.
In this case, the shape of the output tensor is 2-by-100 (2 values in 2 points for each of
the 50 cycles). In the second approach (App2), the stress–strain curves for each example
were replaced with 3 simpler curves: stress amplitude A, mean stress σ̄ and the slope of
each cycle α in order to simplify the prediction task; cf. Figure 3. In this second case, the
shape of the output tensor is 3-by-50. The input to the network is the same vector of seven
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parameters repeated 200 or 150 times (depending on the approach) to match the desired
output sequence length.

Figure 1. Scheme showing difference between the architecture of the typical (a) recurrent neural
network (RNN) and (b) long short-term memory (LSTM) network. The figure was reprinted from [45]
based on the Creative Commons Attribution (CC BY) license.

Figure 2. Scheme showing locations of difference evaluations according to Approach 1.

Both input and output data were normalized to improve training stability by elimi-
nating large differences in the scale of data. The model was trained for 300 epochs with
a batch size of 16 and an initial learning rate of 1 × 10−3. The learning rate was decayed
for each batch with a cosine annealing schedule. Warm restarts were applied after the
first 50 epochs and after doubling the previous learning rate decay period after that until
the end of training [46]. A weight decay of 1e-5 was used for regularization. The Adam
optimization algorithm was applied to train the network with mean squared error as a loss
function. The architecture of the network is shown in Figure 4.
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Figure 3. Scheme showing difference evaluations according to Approach 2: stress amplitude A, mean
stress σ̄, and slope of each cycle tan(α) were used.

Figure 4. Scheme showing the architecture of the network used in the present contribution. The input
x is a set of 7 hardening parameters; outputs yi are data describing the shape of stress–strain curves.

3. Results

The method was applied as follows. First, the database of SEVPSC code results
was created by generating 36370 loading–unloading curves. Each result was produced
by running the SEVPSC code for the same loading scheme but with a different set of
parameters. The parameters were generated by selecting every possible combination of
parameters from a list of values. The list for each parameter was generated by selecting
five equally spaced values from a set range (cf. Table 1). Then, part of the database was
used for training the LSTM network, while the remaining part was moved to the test set
(the ratio of training set size to the whole set size was equal to 60%). The MSE obtained in
both approaches is shown in Figure 5.

Table 1. Ranges of the hardening parameters serving to generate the database.

τ0
c τsat h1 hb hk hkb hm

Min 10.0 10.0 0.0 0.0 0.0 0.0 0.0
Max 80.0 120.0 5.0 120.0 1.0·105 1000.0 10.0
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(a)

(b)

Figure 5. Mean squared error as a function of cycles in (a) approach 1 and (b) approach 2.

The next step was thus using the trained LSTM network for parameter optimization.
The approach consists of using the trained LSTM to generate predictions in points lying in
the parameter space that are more densely distributed than the set used for training. For
this, 35.8 million results were generated. Then, for the reference case (obtained by running
the SEVPSC code with random parameters), the closest result in the LSTM-generated
database is searched by calculating the mean squared error (MSE) between reference case
curves and generated examples and selecting the generated example with the lowest MSE.
We have tested the method for 30 different parameter sets. The six representative parameter
sets obtained using this technique are shown in Table 2. The corresponding stress–strain
curves obtained using the optimized parameters compared against the reference ones are
shown in Figure 6. The entire group of parameter sets is presented in the Supplementary
Material. We divided the results into six categories:

1. Very good or reasonable agreement of SS curves obtained using parameters optimized
in both approaches—Figure 6a and Supplementary Figure S1;

2. Disagreement in the first cycle and reasonable agreement of SS curves obtained using
parameters optimized in both approaches—Figure 6b and Supplementary Figure S2;

3. Reasonable agreement of SS curves obtained using parameters optimized in App 1
(lack of convergence for App 2 parameters)—Figure 6c and Supplementary Figure S3;

4. Reasonable agreement of SS curves obtained using parameters optimized in App 2
(lack of convergence for App 1 parameters)—Figure 6d and Supplementary Figure S4;

5. Striking disagreement or lack of convergence—Figure 6e and Supplementary Figure S5;
6. Lack of convergence for the optimized parameters in both approaches—Figure 6f and

Supplementary Figure S6.

Out of 30 cases examined, 13 cases show very good or reasonable agreement in
both approaches (category 1). Three cases show reasonable agreement in late cycles but
disagreement in the first cycle (category 2). It can be thus stated that more than half of the
cases the method worked correctly with both approaches. In four cases, App 1 provided
the correct prediction, while App 2 did not converge (category 3). The reverse situation
(category 4) was present in another four cases. Therefore, in 24 cases (80%), at least one
approach provided a reasonably correct set of parameters. Concerning category 5, in one
case, both approaches provided parameter sets, leading to striking disagreement in SS
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curves (Figures 6e and S5b). In another case (cf. Supplementary Figure S5a), there was
striking disagreement for App 2 and a lack of convergence for App 1. Finally, in four cases,
neither approach provided a parameter set that can converge in actual SEVPSC simulation
(category 6).

Let us now take a closer look on the obtained results. In terms of the approaches,
it seems that both of them are balanced, and we cannot argue that either App1 or App2
is better. Cases where the predicted SS curve agrees with the actual one (Category 1,
cf. Figures 6a and S1) prove the potential of the method. The fact that almost half of cases
show only slight deviations in the shape of the curve in the first cycle is actually slightly
surprising as the information about the shape of the first cycle was absent in both methods.
It is thus easy to understand why three other cases (Category 2, cf. Figures 6b and S2) agree
with the reference curve in the cyclic deformation regime while having some deviation in
the first cycle. Moreover, these three cases can be treated as correct predictions since the
LSTM had no information about the shape of the initial loading curve. In the rest of the cases
(Categories 3–6), there was either agreement or a lack of convergence, except for the curve
shown in Figure 6e. Cases where the simulations with optimized parameters fail to converge
are not useful but also harmless. Thus, only 1 case out of 30 led to a misleading prediction.

Table 2. Reference parameters vs. parameters that made LSTM generate closest matching curves.

τ0
c τsat h1 hb hk hkb hm

Category 1

Reference 1.00 × 101 6.50 × 101 4.17 4.00 × 101 1.00 × 105 5.00 × 102 3.33
App 1 2.91 × 101 9.00 × 101 4.09 1.09 × 101 1.00 × 105 4.55 × 102 2.73
App 2 1.64 × 101 8.00 × 101 1.36 2.18 × 101 1.00 × 105 4.55 × 102 2.73

Category 2

Reference 1.00 × 101 8.33 × 101 8.33 × 10−1 1.20 × 102 3.33 × 104 1.00 × 103 0.00
App 1 6.73 × 101 1.00 × 102 5.00 1.09 × 101 9.09 × 103 5.45 × 102 9.09 × 10−1

App 2 6.73 × 101 1.20 × 102 4.55 × 10−1 1.09 × 101 9.09 × 103 8.18 × 102 3.64

Category 3

Reference 1.00 × 101 1.00 × 101 1.67 1.20 × 102 3.33 × 104 8.33 × 102 8.33
App 1 1.00 × 101 1.00 × 101 5.00 2.18 × 101 2.73 × 104 8.18 × 102 7.27
App 2 1.64 × 101 1.00 × 101 5.00 2.18 × 101 2.73 × 104 7.27 × 102 3.64

Category 4

Reference 1.00 × 101 2.83 × 101 5.00 8.00 × 101 1.00 × 105 5.00 × 102 3.33
App 1 4.18 × 101 2.00 × 101 1.82 2.18 × 101 1.00 × 105 4.55 × 102 2.73
App 2 2.91 × 101 1.20 × 102 1.36 0.00 1.00 × 105 4.55 × 102 2.73

Category 5

Reference 1.00 × 101 1.00 × 101 5.00 1.20 × 102 3.33 × 104 6.67 × 102 0.00
App 1 1.00 × 101 1.00 × 101 5.00 2.18 × 101 2.73 × 104 9.09 × 102 8.18
App 2 22.73 30.00 5.00 32.73 0.00 0.00 0.00

Category 6

Reference 10.00 83.33 1.67 60.00 0.00 1000.00 0.00
App 1 35.45 90.00 2.73 43.64 0.00 1000.00 4.55
App 2 22.73 90.00 0.91 54.55 0.00 727.27 0.00
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(a) (b)

(c) (d)

Figure 6. Cont.
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(e) (f)

Figure 6. The results of using neural networks for optimization: stress–strain curves obtained using
the SEVPSC code for the arbitrary parameter set and its closest neighbors. Only the first and last
cycle are shown for the sake of clarity. The selected examples refer to categories: (a) 1: very good or
reasonable agreement of SS curves obtained using parameters optimized in both approaches, (b) 2:
disagreement in the first cycle and reasonable agreement of SS curves obtained using parameters
optimized in both approaches, (c) 3: reasonable agreement of SS curves obtained using parameters
optimized in App 1 (lack of convergence for App 2 parameters), (d) 4: reasonable agreement of SS
curves obtained using parameters optimized in App 2 (lack of convergence for App 1 parameters),
(e) 5: striking disagreement or lack of convergence, (f) 6: lack of convergence for the optimized
parameters in both approaches.

4. Discussion

The trained network was used for parameter identification. But it could be also used
as a surrogate model to obtain the same overall information in a far shorter time. Such
an approach was already presented in a number of papers; e.g., in [47], the surrogate ML
model was trained using data from discrete dislocation dynamics. The network was able to
predict the stress–strain curve based on the initial dislocation configuration. On the other
hand, Deshpande, Lengiewicz and Bordas [48] trained their deep learning (DL) network
based on large deformation finite element method (FEM) simulations. Such an approach
made it possible to predict the deformed shape based on the initial specimen geometry and
applied boundary conditions.

Many surrogate models were also constructed in the framework of crystal plasticity
(CP). A surrogate model for the viscoplastic self-consistent (VPSC) model was built in [49].
The researchers developed both forward and backward ML configurations. The first made
it possible to predict the final crystallographic texture and stress–strain curve based on
the initial texture and hardening parameters. The second enabled the prediction of the
initial texture and hardening parameters based on the final texture and stress–strain curve.
A neural network allowing the prediction of the stress–strain curve and texture but this
time trained using the crystal plasticity finite element method (CPFEM) was presented
in [50]. CPFEM-trained ML architecture was used to predict cyclic stress values in low-
cycle-fatigue experiments in [51]. An interesting contribution was presented in [52], where
the ML was trained on an elastic–viscoplastic fast Fourier transform (EVPFFT) model,
and the prediction concerned spatially resolved crystallographic orientations. A novelty
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in [53] was the application of CP-trained ML to non-monotonic strain paths. In [54], it was
demonstrated that using an encoder–decoder deep learning framework, it is possible to
regenerate stress–strain curves for a material subjected to several loading–unloading cycles.

We hereby stress that even though our approach of using the ML architecture for
parameter optimization could be used as a surrogate model, it is currently clearly different
from the aforementioned approaches. In our case, the main purpose of training the ML
network was to find parameters for the physical model (EVPSC), which still serves as
a base of all the simulations provided. Moreover, constructing a surrogate model that
estimates only the stress–strain points at loading direction changes (App1) or features of
each cycle (App2) would be pointless. Even if the surrogate model is able to predict the
full stress–strain curve (and our trained ML framework is not), it would still reduce the
wealth of information that can be attained from the EVPSC model. As pointed out in [14],
the main advantages of the EVPSC model are its capabilities to account not only for the
global response, but also to give insight into details of the plastic deformation occurring
at every grain. Such information would be lost in the case of constructing the surrogate
model that returns only the average quantities.

5. Conclusions

This paper demonstrates the possibility of using a machine learning framework based
on LSTM to efficiently optimize material parameters in a highly complex situation of
modeling the cyclic deformation of copper films using the elasto-viscoplastic self-consistent
model with isotropic and kinematic hardening. One can conclude that the method is able
to provide a reasonably accurate estimate of the parameter set that in most cases provides
the correct cyclic stress–strain.

A significant advantage of the proposed machine-learning-based method over opti-
mization algorithms is that in the case of a different material subjected to the same loading
conditions, one does not need to perform any other simulations to obtain the optimal
parameters. One could argue that a similar result could be obtained using only a sufficient
database. Using such a database instead of the machine learning approach, however, has
two disadvantages. First, in order to achieve an accuracy comparable to the one attained
here, one should perform about 10 thousand times more simulations (because the number of
simulations used for training was 3670 and the number of data points generated by trained
ML framework was 35.8 million). Second, in order to use the database for future purposes,
one would have to store the whole database of results (which would be 35.8 million times
977 kB = 35 TB), while in our case it is enough to store the trained model (which would be
just 50.8 MB) and when necessary regenerate the database with an arbitrarily large or small
number of example inputs to achieve a desired database size.

In this paper, the LSTM-based architecture was applied, as some advantages of LSTM
over more traditional recurrent units were demonstrated [43]. However, op. cit. also
stated that the results of comparison between LSTM and GRUs are not conclusive and
shall depend on the application. Moreover, new architectures specifically designed for
mechanics problems were proposed; cf., e.g., the minimal state cells (MSCs) [55]. In the
future, it will be very interesting to perform detailed studies where the efficiency of various
architectures, like LSTM, GRUs, and MSCs (and possibly others) is compared. This task is,
however, surely outside the scope of the present contribution.

Of course, the developed approach is not able to provide the material parameters
based on different loading conditions than were used as an input. Therefore, in such a case,
one would have to repeat the optimization. The method was demonstrated for a highly
challenging problem of cyclic deformation simulated with the micromechanical model
accounting for both isotropic and kinematic hardening. It is expected that the approach will
be directly applicable to other cases. In particular, one can naturally apply the developed
methodology to a case of studying low and high cycle fatigue with plasticity and damage
models; cf., e.g., [56].
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Supplementary Materials: The following supporting information can be downloaded at: Available
online: www.mdpi.com/xxx/s1, Figure S1: The results of using neural networks for optimization:
stress-strain curves obtained using the SEVPSC code for the arbitrary parameter set and its closest
neighbours—Category 1: Very good or reasonable agreement of SS curves obtained using parameters
optimized in both approaches); Figure S2: The results of using neural networks for optimization:
stress-strain curves obtained using the SEVPSC code for the arbitrary parameter set and its closest
neighbours—Category 2: Disagreement in the first cycle and reasonable agreement of SS curves in
further cycles obtained using parameters optimized in both approaches; Figure S3: The results of
using neural networks for optimization: stress-strain curves obtained using the SEVPSC code for
the arbitrary parameter set and its closest neighbours—Category 3: Reasonable agreement of SS
curves obtained using parameters optimized in App 1 (lack of convergence for App 2 parameters);
Figure S4: The results of using neural networks for optimization: stress-strain curves obtained using
the SEVPSC code for the arbitrary parameter set and its closest neighbours—Category 4: Reasonable
agreement of SS curves obtained using parameters optimized in App 2 (lack of convergence for App
1 parameters); Figure S5: The results of using neural networks for optimization: stress-strain curves
obtained using the SEVPSC code for the arbitrary parameter set and its closest neighbours—Category
5: Striking disagreement or lack of convergence; Figure S6: The results of using neural networks
for optimization: stress-strain curves obtained using the SEVPSC code for the arbitrary parameter
set and its closest neighbours—Category 6: Lack of convergence for the optimized parameters in
both approaches; Table S1: Reference parameters vs parameters that made LSTM generate closest
matching curves—Category 1: Very good or reasonable agreement of SS curves obtained using
parameters optimized in both approaches); Table S2: Reference parameters vs parameters that made
LSTM generate closest matching curves—Category 2: Disagreement in the first cycle and reasonable
agreement of SS curves in further cycles obtained using parameters optimized in both approaches;
Table S3: Reference parameters vs parameters that made LSTM generate closest matching curves—
Category 3: Reasonable agreement of SS curves obtained using parameters optimized in App 1 (lack
of convergence for App 2 parameters); Table S4: Reference parameters vs parameters that made
LSTM generate closest matching curves—Category 4: Reasonable agreement of SS curves obtained
using parameters optimized in App 2 (lack of convergence for App 1 parameters); Table S5: Reference
parameters vs parameters that made LSTM generate closest matching curves—Category 5: Striking
disagreement or lack of convergence; Table S6: Reference parameters vs parameters that made LSTM
generate closest matching curves—Category 6: Lack of convergence for the optimized parameters in
both approaches.

Author Contributions: Conceptualization, S.P.; Methodology, K.F., M.T. and S.P.; Software, M.T.;
Validation, K.F. and M.T.; Formal analysis, K.F. and M.T.; Investigation, K.F. and S.P.; Resources,
S.P.; Data curation, M.T.; Writing—original draft, K.F.; Writing—review & editing, M.T. and S.P.;
Supervision, S.P.; Project administration, S.P.; Funding acquisition, S.P. All authors have read and
agreed to the published version of the manuscript.

Funding: The publication was created within the framework of the project of the Minister of Science
and Higher Education “Support for the activities of Centres of Excellence established in Poland under
Horizon 2020” under contract no. MEiN/2023/DIR/3795.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article/Supplementary Material, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhao, Y.; Chen, X.; Park, C.; Fay, C.C.; Stupkiewicz, S.; Ke, C. Mechanical deformations of boron nitride nanotubes in crossed

junctions. J. Appl. Phys. 2014, 115, 164305. [CrossRef]
2. Kacprzak, G.; Zbiciak, A.; Józefiak, K.; Nowak, P.; Frydrych, M. One-Dimensional Computational Model of Gyttja Clay for

Settlement Prediction. Sustainability 2023, 15, 1759. [CrossRef]

www.mdpi.com/xxx/s1
http://doi.org/10.1063/1.4872238
http://dx.doi.org/10.3390/su15031759


Materials 2024, 17, 3397 13 of 14

3. Ganesan, S.; Yaghoobi, M.; Githens, A.; Chen, Z.; Daly, S.; Allison, J.E.; Sundararaghavan, V. The effects of heat treatment on the
response of WE43 Mg alloy: Crystal plasticity finite element simulation and SEM-DIC experiment. Int. J. Plast. 2021, 137, 102917.
[CrossRef]

4. Guery, A.; Hild, F.; Latourte, F.; Roux, S. Identification of crystal plasticity parameters using DIC measurements and weighted
FEMU. Mech. Mater. 2016, 100, 55–71. [CrossRef]

5. Cruzado, A.; LLorca, J.; Segurado, J. Modeling cyclic deformation of inconel 718 superalloy by means of crystal plasticity and
computational homogenization. Int. J. Solids Struct. 2017, 122, 148–161. [CrossRef]

6. Kuhn, J.; Spitz, J.; Sonnweber-Ribic, P.; Schneider, M.; Böhlke, T. Identifying material parameters in crystal plasticity by Bayesian
optimization. Optim. Eng. 2021, 23, 1489–1523. [CrossRef]

7. Hu, L.; Jiang, S.Y.; Zhang, Y.Q.; Zhu, X.M.; Sun, D. Texture evolution and inhomogeneous deformation of polycrystalline Cu based
on crystal plasticity finite element method and particle swarm optimization algorithm. J. Cent. South Univ. 2017, 24, 2747–2756.
[CrossRef]

8. Skippon, T.; Mareau, C.; Daymond, M.R. On the determination of single-crystal plasticity parameters by diffraction: Optimization
of a polycrystalline plasticity model using a genetic algorithm. J. Appl. Crystallogr. 2012, 45, 627–643. [CrossRef]

9. Acar, P.; Ramazani, A.; Sundararaghavan, V. Crystal plasticity modeling and experimental validation with an orientation distribution
function for ti-7al alloy. Metals 2017, 7, 459. [CrossRef]

10. Cauvin, L.; Raghavan, B.; Bouvier, S.; Wang, X.; Meraghni, F. Multi-scale investigation of highly anisotropic zinc alloys using
crystal plasticity and inverse analysis. Mater. Sci. Eng. A 2018, 729, 106–118. [CrossRef]

11. Kapoor, K.; Sangid, M.D. Initializing type-2 residual stresses in crystal plasticity finite element simulations utilizing high-energy
diffraction microscopy data. Mater. Sci. Eng. A 2018, 729, 53–63. [CrossRef]

12. Sedighiani, K.; Diehl, M.; Traka, K.; Roters, F.; Sietsma, J.; Raabe, D. An efficient and robust approach to determine material
parameters of crystal plasticity constitutive laws from macro-scale stress–strain curves. Int. J. Plast. 2020, 134, 102779. [CrossRef]
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