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Abstract: The area of permafrost worldwide accounts for approximately 20% to 25% of land area.
In cold-climate regions of China, which are garnering international attention, the study of low-
temperature and moisture effects on rock mass mechanical properties is of significant importance.
China has a wide area of cold regions. This research can provide a foundation for China’s exploration
activities in such extreme environments. This paper examines the mechanical behavior of rock speci-
mens subjected to various low temperatures and water contents through uniaxial compression tests.
The analysis encompasses failure modes, stress–strain relationships, uniaxial compressive strength
(UCS), and elastic modulus (EM) of these specimens. Findings reveal that at lower temperatures,
the rock specimens’ fracture patterns transition from compressive shear failure to cleavage failure,
reflecting a shift from a plastic–elastic–plastic to a plastic–elastic response. Specifically, saturated
rocks exhibit a 40.8% decrease in UCS and an 11.4% reduction in EM compared to their dry counter-
parts. Additionally, in cold conditions, an increased water content in rocks primarily leads to vertical
cracking. Under such conditions, saturated rocks show a 52.3% decline in UCS and a 15.2% reduction
in EM, relative to their dry state.

Keywords: uniaxial compressive strength; moisture content; low temperature; elastic modulus

1. Introduction

The area of permafrost worldwide accounts for approximately 20% to 25% of land
area. The global permafrost is mainly distributed in the northern hemisphere, especially in
high-altitude areas such as Russia and Canada, as well as China, such as the Qinghai Tibet
Plateau. The area of cold regions in China accounts for about 75% of the national territory.
There are many cold regions in China, which are famous around the world [1].

Frozen rock and frozen soil changes are global issues. As a major country with
permafrost and frozen rock, the study of China’s frozen rock is not only a necessity for
scientific exploration, but also a necessary measure to address the challenges of climate
change and ensure infrastructure security. It is also a necessary path to maintain ecological
balance and sustainable socio-economic development. The study of the characteristics of
frozen rocks in China is of great significance.

As part of its ongoing initiatives under the “Belt and Road” and “Western Devel-
opment” strategies, China has been instrumental in initiating a multitude of projects in
the colder regions such as Xinjiang and Xizang. These efforts, consistent with national
policies [2,3], have led to significant development activities in these areas [4]. However, in
some areas, the rock masses are constantly frozen. Due to the complexity of the geological
environment, there are obvious differences in the internal water content of rocks during
diagenesis. Variations in water content and levels of saturation significantly influence the
physical and mechanical characteristics of rock masses in cold regions [5–8]. Furthermore,
rock masses in these frigid areas are exposed to not only static loads but also dynamic
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influences such as blasting and mechanical construction activities [9,10]. Consequently,
an in-depth analysis of the static mechanical properties of frozen rocks under different
temperatures and saturation levels is vital for the effective management of rock mass
stability in these cold environments. During tunnel excavation and blasting construction in
these cold regions, it is possible to have a better understanding of rock characteristics and
avoid unnecessary geological hazards.

Previous research endeavors have delved into the mechanical behaviors of rock speci-
mens at low temperatures, with a focus on the mechanical attributes of frozen rock. These
studies have primarily utilized methods such as indoor uniaxial compression, shear resistance
evaluation, and Brazilian splitting tests to investigate these properties [11–13]. In particular,
the article of Wang Chao [14] has centered on the analysis of residual deformation. This
research involved subjecting a soil–rock mixture to multiple cycles of freezing and thawing.
Findings from this research indicate that during freeze–thaw cycles, the soil–rock mixture
undergoes repeated processes of frost heaving and thaw-induced contraction. It was observed
that the initial instances of frost heave and thaw shrinkage exhibited significant changes.
However, as the number of freeze–thaw cycles increased, a decrease in residual deformation
was noted. Finally, the residual deformation tends to stabilize. Lv Zhitao [15] conducted a
frost heave test on saturated sandstone, which exhibited open cracks. Investigations have
revealed that in environments where freezing occurs uniformly, the phenomenon of frost
heave in the fissures of highly permeable sandstone is more significant when contrasted with
scenarios of unidirectional freezing. The interplay between the freezing dynamics and the
permeability characteristics of the rocks plays a pivotal role in influencing the alterations in
the water content within these fissures. So, different permeable rocks will produce different
crack and frost heave modes under different freezing conditions. Zhu Chuanqu [16] studied
the strength characteristics and mechanism of coal rock interface freezing through indoor
experiments. A comprehensive set of direct shear experiments was performed on frozen
coal and rock specimens under varying conditions of temperature, moisture content, and
normal stress. Experimental findings indicate that the moisture level significantly affects
the strength at the junction where coal and rock are frozen together. A notable increase in
this strength was observed with rising moisture levels. For instance, during experiments
conducted at a temperature of −10 ◦C, the frozen rock’s strength notably enhanced from
75.46 KPa to 267.42 KPa when moisture levels were elevated from 3% to 9%. Additionally,
in a separate research study, Wang Ting [17] explored the pressure-melting phenomenon in
frozen sandstone. This was done by conducting uniaxial compression tests and concurrently
observing alterations in the electrical resistance within the sandstone. The findings showed
that during the microcrack compaction stage, the electrical resistance of saturated frozen rock
drops rapidly with increasing strain. However, during the elastic deformation and microcrack
propagation stages, the resistance of sandstone decreases more gradually, contrasting notably
with dry rocks. Furthermore, Wang Tingting [18] undertook laboratory-based Brazilian split-
ting tests to assess the tensile characteristics of fractured rock masses in cold environments that
have undergone freezing. The research findings suggest that frozen rock specimens display
characteristic brittle failure properties. There is a gradual decline in the tensile strength of
frozen rock as the dimensions of cracks, both in width and length, increase.

Research has been conducted on the impact of water content on rock mechanical prop-
erties. Uniaxial compression, tensile, and direct shear tests were performed on specimens
with varying moisture contents to analyze water’s weakening effect on rock strength [19–22].
Zhou Kunyou [23] investigated the impact of water content on rock strength through a series
of uniaxial compression and tensile tests. The results indicated that water content signifi-
cantly reduces the mechanical strength of rocks, transitioning their failure mode from a mixed
tensile–shear type to predominantly tensile. Li Bo [24] performed direct shear tests on granite
and sandstone specimens, which exhibited serrated fracture cracks. The rock specimens were
subjected to three moisture conditions: dry, surface wet, and saturated. Findings suggest
that surface moisture only alters the basic friction angle, while saturation leads to a reduction
in both the unconfined compressive strength and basic friction angle of the rock specimens.
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Li Diyuan [25] established two parameters, namely the change in critical saturation and
saturation per unit length, to analyze the rate of decline in rock strength and describe the
distribution of water in cylindrical specimens. Using these two parameters, an analytical
model was developed for calculating the normalized unconfined compressive strength of
rocks with varying saturation levels. This model was applied to a tunnel project located in a
fault zone in Yunnan as a case study. Kang Yongshui [26] focused on the mechanical properties
of rock joints with a high content of clay. The findings from these experiments highlighted
that the moisture content in the clay filler considerably affects the shear strength of the rock
joint. Research has indicated that beyond the plastic limit of moisture content, there exists a
negative correlation between the level of water content and the shear strength observed in
rock joints.

Currently, many scholars have studied the mechanical properties of frozen rocks. Some
scholars have also studied the influence of water content on the mechanical properties of
rocks. However, the mechanical properties of rocks in a frozen state under different water
content conditions are rarely studied by anyone. In cold regions, the mechanical properties
of rocks are related to both low temperature and water content. So, it is necessary to explore
the synergistic effect of low temperature and water content on rocks. Especially at low
temperatures, the influence of different water contents on the mechanical properties of rocks
is important. The influence of different low temperatures on the mechanical properties
of rocks is also important under certain moisture content conditions. This study aims to
evaluate the mechanical behavior of rock specimens subjected to different temperature
and moisture conditions through uniaxial compression tests. This evaluation includes
an examination of various aspects such as failure morphology, stress–strain responses,
UCS, EM, and additional alterations in the rock specimens. This paper focuses on the
influence of water content and low temperature on the mechanical properties of rocks.
Special attention should be paid to the failure modes of rocks with different water contents
at low temperatures.

2. Rock Static Mechanics Test Plan
2.1. Preparation of Rock Specimens

The sandstone specimens used in the experiment were taken from high-altitude areas
in Sichuan. The main type of sandstone is Jurassic terrestrial sedimentary sandstone. These
sandstones are mainly feldspar quartz sandstone and feldspar sandstone. The porosity of
these sandstones is relatively low, generally below 12%. The specimen has a uniform texture
and no obvious defects such as cracks or joints. The diameter of the specimen is 50 mm and
the height is 100 mm. The nonparallelism and non-perpendicularity of each end face of the
specimen are both less than 0.02 mm. The specimen size meets the basic requirements of the
ISRM. To mitigate the effects of heterogeneity in rock specimens on experimental outcomes,
an initial assessment of mass, volume, and longitudinal wave velocity was conducted
for each specimen. Subsequently, specimens exhibiting significant discrepancies in these
physical parameters were excluded from the test series. Representative rock specimens are
depicted in Figure 1.
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2.2. Rock Specimen Processing Schemes with Different Water Contents and Low Temperature
2.2.1. Treatment Plan for Rock Specimens with Different Water Contents

All specimens were divided into a dry group, natural group, water absorption group,
and saturated group. Each identical experiment was conducted three times. The results of
the experiments were averaged.

1. The drying group specimens were dried in an electric drying oven at a temperature of
107 ± 1 ◦C for 48 h. The drying oven is shown in Figure 2.
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Figure 2. Drying oven.

2. The natural group specimens were first dried and then placed outdoors for 48 h,
without any treatment.

3. The water absorption group specimens were first dried and then immersed in water
step by step until submerged. Then, the rock specimens freely absorbed water for
48 h in the water.

4. The saturated specimens were dried first, and then gradually soaked in water until
they were completely submerged. Then, the specimens absorbed water freely in
water for 48 h. The saturation of the rock specimens was achieved using the boiling
method. This process involved placing the specimens in a container of boiling water,
ensuring that the water level remained consistently above the surface of the specimens
throughout the procedure. The boiling time was not less than 6 h. The boiling bucket
is shown in Figure 3.
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The specimens post-drying were assumed to have a moisture content of zero. The
moisture content in rock specimens can be determined by employing the following equation:

w =
m0 − ms

ms
× 100% (1)

where

w—Water content of rock specimens, %;
m0—Total mass of rock specimen after water absorption, g;
ms—Total mass of rock specimen after drying, g.

2.2.2. Treatment Schemes for Rock Specimens at Different Low Temperatures

Rock specimens at different low temperatures were tested using a constant tempera-
ture and humidity test chamber, which is Jinheyuan brand. It is testing equipment used
to simulate things or materials under different environmental conditions. It simulates
different environmental conditions by controlling temperature and humidity for various
tests and studies. When using a programmable constant temperature and humidity test
chamber, users can set different temperature and humidity values as needed to simulate
different environmental conditions. The constant temperature and humidity test chamber
is shown in Figure 4.
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This study primarily investigates the mechanical properties of rock specimens at
various temperatures, specifically at 8 ◦C, 0 ◦C, −5 ◦C, −10 ◦C, −15 ◦C, and −20 ◦C.

To preserve the specific moisture content within each rock specimen with varying
levels of water, every specimen was encased in plastic wrap prior to its placement in a
chamber designed to maintain constant temperature and humidity. The specimens were
then kept in this controlled environment for 24 h at a specific temperature set according to
laboratory standards.

2.3. Rock UCS Test Plan

The static mechanical tests on rock specimens were conducted using a microcomputer-
controlled electronic universal testing machine, model WDW-600E. This testing apparatus
consists of a main unit, a drive motor coupled with a control system, a transmission
mechanism, an integrated electronic machine for measurement and control, along with a
computer equipped with data processing software and various supplementary components.
The testing machine has a maximum force capacity of 600 kN. A depiction of this testing
machine is provided in Figure 5.
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The experiments discussed in this article primarily investigate the static mechanical
properties of sandstone under various temperature conditions. These include analyzing the
behavior of sandstone at both standard and low temperatures with different water content
levels. The methodology for testing UCS in rocks was categorized into three separate
groups, with a cumulative total of 42 experiments conducted. Each specimen was subjected
to axial compression in a deformation-controlled manner until the rock specimen failed.
The loading rate was 0.05 mm/min. Table 1 provides a detailed breakdown of these
experimental groupings.

Table 1. Grouping of UCS tests.

Groups Moisture Condition Temperature (◦C) Test Method Number of Tests

T1-1

Natural

8

Uniaxial
compression

3
T1-2 0 3
T1-3 −5 3
T1-4 −10 3
T1-5 −15 3
T1-6 −20 3

T2-1 Dry

8
Uniaxial

compression

3
T2-2 Natural 3
T2-3 Watered 3
T2-4 Saturated 3

T3-1 Dry

−5
Uniaxial

compression

3
T3-2 Natural 3
T3-3 Watered 3
T3-4 Saturated 3

3. Test Results and Analysis
3.1. Water Content of Rock Specimens in Different States

After drying, placing outdoors, absorbing water, and boiling, the moisture content of
the rock specimens was measured, and the results are shown in Table 2.

Table 2. Water content of rock specimens in various states (unit: g).

Disposal Method Dry Natural Watered Saturated

Quality after drying 463.39 463.39 463.39 463.39
Quality after treatment 463.39 467.06 478.48 486.85

Moisture content 0 0.79% 3.26% 5.06%

The data in the above table were plotted using professional drawing software Origin,
as shown in Figure 6.



Materials 2024, 17, 3399 7 of 18

Materials 2024, 17, x FOR PEER REVIEW 7 of 20 
 

 

content levels. The methodology for testing UCS in rocks was categorized into three sep-
arate groups, with a cumulative total of 42 experiments conducted. Each specimen was 
subjected to axial compression in a deformation-controlled manner until the rock speci-
men failed. The loading rate was 0.05 mm/min. Table 1 provides a detailed breakdown of 
these experimental groupings. 

Table 1. Grouping of UCS tests. 

Groups Moisture Condition Temperature (°C) Test Method Number of Tests 
T1-1 

Natural 

8 

Uniaxial com-
pression 

3 
T1-2 0 3 
T1-3 −5 3 
T1-4 −10 3 
T1-5 −15 3 
T1-6 −20 3 
T2-1 Dry 

8 
Uniaxial com-

pression 

3 
T2-2 Natural 3 
T2-3 Watered 3 
T2-4 Saturated 3 
T3-1 Dry 

−5 
Uniaxial com-

pression 

3 
T3-2 Natural 3 
T3-3 Watered 3 
T3-4 Saturated 3 

3. Test Results and Analysis 
3.1. Water Content of Rock Specimens in Different States 

After drying, placing outdoors, absorbing water, and boiling, the moisture content of 
the rock specimens was measured, and the results are shown in Table 2. 

Table 2. Water content of rock specimens in various states (unit: g). 

Disposal Method Dry Natural Watered Saturated 
Quality after drying 463.39 463.39 463.39 463.39 

Quality after treatment 463.39 467.06 478.48 486.85 
Moisture content 0 0.79% 3.26% 5.06% 

The data in the above table were plotted using professional drawing software Origin, 
as shown in Figure 6. 
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Observations from Figure 6 reveal that the water content in the rock specimens under
natural conditions was measured at 0.79%. When the specimens reached a state of satura-
tion, their water content increased to 5.06%. This change in water content illustrates the
capacity of the rock to absorb water, thereby confirming the importance of examining the
impact of water content on the mechanical properties of rocks.

3.2. Static Mechanical Properties of Sandstone under Different Low-Temperature Conditions

The specimens in their natural state (with a moisture content of 0.79%) were placed
in conditions of ordinary temperature (8 ◦C), 0 ◦C, −5 ◦C, −10 ◦C, −15 ◦C, and −20 ◦C,
respectively. The ordinary temperature was 8 ◦C as the reference temperature, which was
determined according to the average temperature of Xizang in a year. Then, we observed
the macroscopic failure characteristics and UCS characteristics of each specimen.

3.2.1. Macroscopic Failure Characteristics of Rock Specimens

The failure morphology of the specimens under different low-temperature conditions
is shown in Figure 7.
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From Figure 7, it can be seen that under uniaxial compression at ordinary temperature
(8 ◦C), the specimen exhibits complete failure and more cracks. It mainly manifests as
compression shear failure. As the temperature decreases, the number of fracture cracks
in rock specimens gradually decreases. At −20 ◦C, there is only one obvious crack in the
specimen. It manifests as tensile failure (splitting failure).
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3.2.2. Static Strength Characteristics of Rock Specimens

The stress–strain curves of the specimens under different low-temperature conditions
are shown in Figure 8.

Materials 2024, 17, x FOR PEER REVIEW 8 of 19 
 

 

Figure 6. Water content of rocks in different states. 

Observations from Figure 6 reveal that the water content in the rock specimens under 

natural conditions was measured at 0.79%. When the specimens reached a state of satura-

tion, their water content increased to 5.06%. This change in water content illustrates the 

capacity of the rock to absorb water, thereby confirming the importance of examining the 

impact of water content on the mechanical properties of rocks. 

3.2. Static Mechanical Properties of Sandstone under Different Low-Temperature Conditions 

The specimens in their natural state (with a moisture content of 0.79%) were placed 

in conditions of ordinary temperature (8 °C), 0 °C, −5 °C, −10 °C, −15 °C, and −20 °C, re-

spectively. The ordinary temperature was 8 °C as the reference temperature, which was 

determined according to the average temperature of Xizang in a year. Then, we observed 

the macroscopic failure characteristics and UCS characteristics of each specimen. 

3.2.1. Macroscopic Failure Characteristics of Rock Specimens 

The failure morphology of the specimens under different low-temperature condi-

tions is shown in Figure 7. 

      
(a) (b) (c) (d) (e) (f) 

Figure 7. Failure morphology of rock specimens under different temperature conditions. (a) 8 °C; 

(b) 0 °C; (c) −5 °C; (d) −10 °C; (e) −15 °C; (f) −20 °C. 

From Figure 7, it can be seen that under uniaxial compression at ordinary tempera-

ture (8 °C), the specimen exhibits complete failure and more cracks. It mainly manifests as 

compression shear failure. As the temperature decreases, the number of fracture cracks in 

rock specimens gradually decreases. At −20 °C, there is only one obvious crack in the spec-

imen. It manifests as tensile failure (spli�ing failure). 

3.2.2. Static Strength Characteristics of Rock Specimens 

The stress–strain curves of the specimens under different low-temperature condi-

tions are shown in Figure 8. 

   
(a) (b) (c) 

Materials 2024, 17, x FOR PEER REVIEW 9 of 19 
 

 

   
(d) (e) (f) 

Figure 8. Stress–strain curves of the specimens under different temperature conditions. (a) 8 °C; 

(b) 0 °C; (c) −5 °C; (d) −10 °C; (e) −15 °C; (f) −20 °C. 

Observations from Figure 8 indicate that at a standard temperature of 8 °C, the stress–

strain curve initially exhibits an upward bend under low stress. As the stress reaches a 

certain threshold, the curve transitions into a linear trajectory. Eventually, it curves down-

ward, forming a shape reminiscent of an “S”, continuing until the rock fractures. This be-

havior categorizes the rock specimen as a typical plastic–elastic–plastic body. When the 

temperature decreases, the shape of the stress–strain curve undergoes a noticeable altera-

tion. Under low stress, the curve shows a slight upward deflection. As the stress intensi-

fies, the curve becomes linear, maintaining this form up to the point of the rock’s destruc-

tion, indicative of a plastic–elastic nature of the rock specimen. 

In scenarios where the water content of the specimens was at 0.79% (their natural 

state), Table 3 presents the values of compressive strength and EM at various tempera-

tures. The calculation of the EM was done by identifying the linear segment of the stress–

strain curve and using it as the reference tangent. The inclination of this tangent, high-

lighted by a red line in Figure 8, determines the specimen’s EM. 

Table 3. Statistical table of compressive strength and EM of specimens at different temperatures. 

Temperature (°C) 8 0 −5 −10 −15 −20 

UCS (MPa) 62.89 68.52 67.79 68.36 72.70 78.69 

EM (GPa) 7.254 7.352 7.433 7.532 7.637 7.776 

In order to analyze the variation in UCS and EM with temperature changes more 

intuitively, the data in Table 3 were plo�ed using professional Origin drawing software, 

as shown in Figure 9. 

 

Figure 9. Trend of UCS and EM changes. 

Upon examining Figure 9, it can be observed that both the UCS and the EM of rock 

specimens exhibit an increasing trend with decreasing temperature. Remarkably, when 

the temperature was lowered to −20 °C, the UCS of the rock specimen reached 78.69 MPa, 
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Observations from Figure 8 indicate that at a standard temperature of 8 ◦C, the stress–
strain curve initially exhibits an upward bend under low stress. As the stress reaches
a certain threshold, the curve transitions into a linear trajectory. Eventually, it curves
downward, forming a shape reminiscent of an “S”, continuing until the rock fractures. This
behavior categorizes the rock specimen as a typical plastic–elastic–plastic body. When
the temperature decreases, the shape of the stress–strain curve undergoes a noticeable
alteration. Under low stress, the curve shows a slight upward deflection. As the stress
intensifies, the curve becomes linear, maintaining this form up to the point of the rock’s
destruction, indicative of a plastic–elastic nature of the rock specimen.

In scenarios where the water content of the specimens was at 0.79% (their natural
state), Table 3 presents the values of compressive strength and EM at various temperatures.
The calculation of the EM was done by identifying the linear segment of the stress–strain
curve and using it as the reference tangent. The inclination of this tangent, highlighted by a
red line in Figure 8, determines the specimen’s EM.

Table 3. Statistical table of compressive strength and EM of specimens at different temperatures.

Temperature (◦C) 8 0 −5 −10 −15 −20

UCS (MPa) 62.89 68.52 67.79 68.36 72.70 78.69
EM (GPa) 7.254 7.352 7.433 7.532 7.637 7.776

In order to analyze the variation in UCS and EM with temperature changes more
intuitively, the data in Table 3 were plotted using professional Origin drawing software, as
shown in Figure 9.
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Figure 9. Trend of UCS and EM changes.

Upon examining Figure 9, it can be observed that both the UCS and the EM of rock
specimens exhibit an increasing trend with decreasing temperature. Remarkably, when
the temperature was lowered to −20 ◦C, the UCS of the rock specimen reached 78.69 MPa,
while its EM was recorded at 7.776 GPa. It can be observed that at temperatures of 0 ◦C,
−5 ◦C, and −10 ◦C, the UCS of the specimen tends to stabilize around 68 MPa. These data
suggest that a reduction in temperature results in the specimens becoming harder and
more brittle.

3.3. Static Mechanical Properties of Sandstone with Different Water Contents under
Ordinary-Temperature Conditions

Rock specimens in different states, such as a dry state (moisture content of 0), natural
state (moisture content of 0.79%), water absorption state (moisture content of 3.26%), and
saturated state (moisture content of 5.06), were placed under ordinary temperature (8 ◦C)
conditions. Then, we observed the macroscopic failure characteristics and static mechanical
properties of the specimens.

3.3.1. Macroscopic Failure Characteristics of Rock Specimens

The macroscopic failure morphologies of specimens with different moisture contents
at ordinary temperature (8 ◦C) are shown in Figure 10.
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Figure 10. Failure morphology of rock specimens with different water contents. (a) Dry state
(moisture content 0%); (b) Natural state (moisture content 0.79%); (c) Watered state (moisture content
3.26%); (d) Saturated state (moisture content 5.06%).

Observations from Figure 10 indicate that a rock specimen, when completely dry,
with zero moisture content, exhibits fractures that are comparatively regular and fewer in
number. With an increase in moisture levels, the incidence of cracking in the rock specimens
becomes more pronounced. Moreover, the cracks of the rock specimen intersect with each
other, presenting an X-shaped conjugate oblique shear failure. In a saturated state (with a
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water content of 5.06%), the crack propagation of the rock specimen is relatively obvious.
Moreover, at the interface where the surface of the specimen intersects with the crack, some
parts of the fractured rock mass fall off.

3.3.2. Static Strength Characteristics of Rock Specimens

The stress–strain curves of rock specimens with different water contents at ordinary
temperature (8 ◦C) are shown in Figure 11.
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Figure 11. Stress–strain curves of rock specimens with different water contents. (a) Dry state (moisture
content 0%); (b) Natural state (moisture content 0.79%); (c) Watered state (moisture content 3.26%);
(d) Saturated state (moisture content 5.06%).

Observations from Figure 11 indicate that at an ordinary temperature of 8 ◦C, the
stress–strain curves of rock specimens with varying moisture content levels initially bend
upwards under low stress. As the stress intensifies to a certain level, these curves transition
into a linear phase. Further increases in stress lead to a distinct behavior in the rock
specimen in its natural state (with a moisture content of 0.79%), wherein its stress–strain
curve bends downwards, ultimately forming an “S” shape. In contrast, the stress–strain
curves of rock specimens with other moisture content levels remain linear until the point
of destruction.

Table 4 presents the compressive strength and EM of rock specimens with different
moisture levels at a standard temperature of 8 ◦C. The approach to calculate the EM
is consistent with the method described earlier, as depicted by the red line segment in
Figure 11.

Table 4. Statistical table of UCS and EM of rock specimens under different water content conditions.

Moisture Content Dry (0%) Natural (0.79%) Watered (3.26%) Saturated (5.06%)

UCS (MPa) 90.09 62.89 60.26 53.32
EM (GPa) 7.768 7.254 7.130 6.881

The information presented in Table 4 demonstrates a variation in the UCS of the rock
specimens, ranging between 90.09 MPa and 53.32 MPa. This variation underscores the
significant impact that moisture content has on the compressive strength of these specimens.
The EM values for the specimens predominantly cluster around 7 GPa. For a more visual
analysis of how UCS and EM correlate with water content, the information from Table 4
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was graphically represented using advanced Origin drawing software, as demonstrated in
Figure 12.
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Analysis of Figure 12 reveals that both the UCS and the EM of the rock specimens
exhibit a decline as the water content increases. In a dry state (moisture content of 0%), the
UCS of a specimen was recorded at 90.09 MPa, and the EM was measured at 7.768 GPa.
However, when a specimen was fully saturated (moisture content of 5.06%), there was a sig-
nificant reduction in UCS to 53.32 MPa, amounting to a decrease of 40.8%. This observation
indicates the profound impact of water on the strength of the rock. Simultaneously, the EM
of the rock specimen experienced an 11.4% reduction, suggesting an increase in ductility.

3.4. Static Mechanical Properties of Sandstone with Different Water Contents under
Low-Temperature Conditions

Rock specimens in different states, such as a dry state (moisture content of 0), natural
state (moisture content of 0.79%), watered state (moisture content of 3.26%), and saturated
state (moisture content of 5.06), were subjected to low-temperature (−5 ◦C) conditions.
Then, we observed the macroscopic failure characteristics and static strength characteristics
of the rock specimens.

3.4.1. Macroscopic Failure Characteristics of Rock Specimens

The macroscopic failure morphology of specimens with different moisture contents
under low-temperature (−5 ◦C) conditions is shown in Figure 13.
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increases, the number of cracks in the rock specimen increases. At the same time, in both 
dry and natural states, the crack direction is mainly inclined, and the rock specimens were 
mainly subjected to compression shear failure. In both water-absorbing and saturated 
states, the crack direction of the rock specimens is mainly vertical, while the rock speci-
mens were mainly subjected to tensile failure. 
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Figure 13. Failure morphology of rock specimens with different water contents. (a) Dry state
(moisture content 0%); (b) Natural state (moisture content 0.79%); (c) Watered state (moisture content
3.26%); (d) Saturated state (moisture content 5.06%).

From Figure 13, it can be seen that at low temperatures (−5 ◦C), as the water content
increases, the number of cracks in the rock specimen increases. At the same time, in both
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dry and natural states, the crack direction is mainly inclined, and the rock specimens were
mainly subjected to compression shear failure. In both water-absorbing and saturated
states, the crack direction of the rock specimens is mainly vertical, while the rock specimens
were mainly subjected to tensile failure.

3.4.2. Static Strength Characteristics of Rock Specimens

The stress–strain curves of rock specimens with different water contents under-low
temperature (−5 ◦C) conditions are shown in Figure 14.
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Figure 14. Stress–strain curves of rock specimens with different water contents. (a) Dry state (moisture
content 0%); (b) Natural state (moisture content 0.79%); (c) Watered state (moisture content 3.26%);
(d) Saturated state (moisture content 5.06%).

Figure 14 demonstrates that at a low temperature of −5 ◦C, the stress–strain curves
of all rock specimens initially exhibit an upward bend under low stress. As the stress
level increases, these curves become linear. Towards the end of the stress–strain rela-
tionship, the curves of specimens in both the dry state (moisture content of 0%) and the
natural state (moisture content of 0.79%) remain linear up to the point of rock failure.
Conversely, the curves for specimens in water-absorbing states (with a moisture content
of 3.26%) and saturated states (with a moisture content of 5.06%) bend downwards un-
til the destruction of the rock. This pattern suggests that with increasing water content,
the behavior of the rock specimens transitions from a plastic–elastic nature to a more
plastic–elastic–plastic characteristic.

Table 5 displays the compressive strength and EM of rock specimens with varying
water content levels at a low temperature of −5 ◦C. The approach for calculating the EM
was consistent with previously mentioned methods, as exemplified by the red line segment
in Figure 14.

Table 5. Statistical table of compressive strength and EM of rock specimens under different water
content states.

Moisture Content Dry (0%) Natural (0.79%) Watered (3.26%) Saturated (5.06%)

UCS (MPa) 107.85 67.79 58.53 51.48
EM (GPa) 8.155 7.433 7.306 6.920
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Data from Table 5 show that at a low temperature of −5 ◦C, the UCS of rock specimens
varied significantly, ranging from 107.85 MPa to 51.48 MPa. This considerable range in
UCS suggests that at low temperatures, water content significantly influences the strength
characteristics of rocks. The EM of these rock specimens was observed to lie between
8.155 GPa and 6.920 GPa. For a more visual analysis of how the UCS and EM correlate with
water content, the information from Table 5 was graphically represented using advanced
Origin drawing software, as depicted in Figure 15.
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Analysis of Figure 15 reveals that at a low temperature of −5 ◦C, both the UCS and the
EM of rock specimens exhibit a decline as the water content increases. When the specimens
were in a dry state (moisture content of 0%), the UCS was recorded at 107.85 MPa, and
the EM was measured at 8.155 GPa. Conversely, in a saturated state (moisture content at
5.06%), the UCS decreased to 51.48 MPa, showing a reduction of 52.3%. Similarly, the EM
dropped to 6.920 GPa, marking a decrease of 15.2% in comparison to the dry state. These
observations underscore that under low-temperature conditions, the moisture content
significantly impacts the strength and elastic properties of rock specimens.

4. Discussion

In this paper, we divided specimens into three groups for experiments and conducted
a total of 42 experiments. All experimental results are listed in Table A1 in Appendix A. The
scope of our experiments encompassed an investigation into the impact of low temperatures
on the mechanical properties of rock specimens. Additionally, we examined how varying
water contents affect these properties at an ordinary temperature of 8 ◦C, as well as at a low
temperature of −5 ◦C. Each set of tests was analyzed to determine the macroscopic fracture
characteristics and static strength characteristics of the rock specimens. Investigations into
the influence of sub-zero temperatures and moisture levels on the structural integrity of
rock specimens, particularly in terms of crack quantity and shape, remain notably scarce
from other papers. This study’s findings hold considerable value for guiding construction
projects in permafrost zones and hydrous rock formations, especially under conditions
where fissures filled with water are prevalent in rocks in cold climates. The importance
of acknowledging the decrease in the strength and ductility of rock masses under these
circumstances cannot be overstated.

The study conducted by Zhao Yangchun [27] highlights a notable increase in the peak
strength of frozen sandstone with a decrease in temperature, aligning with the outcomes
presented in this research. Observations indicate a positive correlation between lower tem-
peratures and the enhancement of UCS and EM in rock specimens. This strengthening and
increased brittleness of rock specimens can be attributed to the solidification of water within
their pores, resulting in a gradual augmentation of the EM of the pore ice. Consequently,
this process elevates the overall relative EM of the rock. Furthermore, the amplification
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of strength in these frozen rocks can also be linked to the contraction of minerals present
within the rocks, as noted in reference [28]. At the same time, Zhao Yangchun proposed,
“With the temperature decreasing, the non-linear behavior of yield stage weakens”. This
is consistent with our suggestion that as the temperature decreases, the rock specimen
gradually transforms from a plastic–elastic–plastic body to a plastic–elastic body. This is
due to the shrinkage and deformation of the rock skeleton caused by low temperatures,
leading to the closure of some pores [29]. The rock becomes denser. The process of the rock
yielding stage is shortened.

Therefore, through analysis, we can know that the increase in uniaxial compressive
strength and elastic modulus of rocks at low temperatures is mainly due to the solidification
of water in the rocks at low temperatures. Due to the solidification of water, its volume
expands and fills the pores in the rock, as shown in Figure 16. At the same time, the skeleton
and particles of the rock may shrink at low temperatures [30]. The rock becomes denser at
low temperatures, so its strength increases.
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Figure 16. Schematic diagram of mechanical behavior of low-temperature rock specimens. (a) Ordi-
nary temperature; (b) Lower temperature; (c) Low temperature.

In our study, it was observed that both the uniaxial compressive strength (UCS) and
the EM of the rock specimens exhibited a decline as the moisture content increased. This
heightened level of moisture was found to adversely affect the strength of these rock
specimens. At the ordinary temperature, the strength of rocks saturated with water was
reduced by 40.8%, compared to dry rocks. This indicates that the presence of water can
have a deteriorating effect on the mechanical properties and stability of rock masses. The
gradual dissolution of the binding substances within the rock due to water exposure results
in a diminished bonding force among the mineral particles of the rock [31]. This process
ultimately leads to a reduction in the rock’s strength [32]. Tomor AK [33] noted in his
research that there was a significant decrease in the UCS of sandstones when subjected to
varying moisture levels. Specifically, it was observed that Darney stone lost 50% of its UCS
under conditions of air dryness. The findings of Tomor AK corroborate the conclusions
drawn in this study. However, on the basis of his research, this article also adds an analysis
of the influence of water content on the mechanical properties of rocks at low temperatures.
The study observed that the weakening effect of water on rock strength is amplified under
low-temperature conditions, which can be attributed to the simultaneous presence of water,
ice, and rock within the specimen at these temperatures [34]. Each component exhibits
distinct temperature sensitivity, leading to uneven contraction of the rock specimens [35].
This differential response significantly influences the initiation and expansion of new
microcracks [36].

So, an increase in the water content of rocks will lead to a weakening of their strength.
At an ordinary temperature, the water inside the rock will dissolve a portion of the cement-
ing substance to weaken its bonding strength. At low temperatures, various substances
inside rocks will contract or expand in different ways. Uneven shrinkage of rocks can lead
to the expansion of existing cracks or the generation of new cracks. As shown in Figure 17,
with the increase in water content inside the rock, the cement inside the rock is dissolved
and the number of cracks inside the rock also increases.
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Figure 17. Schematic diagram of mechanical behavior of rock specimens with different water contents
under low-temperature conditions. (a) Natural state; (b) Watered state; (c) Saturated state.

This study assessed the mechanical behavior of rocks under varying low-temperature
and moisture conditions. It was observed that lower temperatures generally enhance the
mechanical robustness of rocks while simultaneously increasing their brittleness. Fur-
thermore, the presence of water was found to reduce rock strength, an effect that was
more pronounced in low-temperature environments. The insights and conclusions derived
from this research offer valuable guidance for future studies on the dynamic mechanical
properties of rocks in cold and moist conditions.

5. Conclusions

1. China has a large number of cold regions. It is meaningful to study the mechanical
properties of rocks in cold regions. This article investigates the mechanical behavior
of rock specimens under different low-temperature and water content conditions
through uniaxial compression tests.

2. In natural conditions, rock specimens demonstrate a morphological transformation in
fracture patterns with decreasing temperature, transitioning from compressive shear
failure to a more distinct splitting failure. This shift signifies the rock’s transition
from a combined plastic and elastic–plastic state to a predominantly plastic–elastic
state. Moreover, the UCS and EM of the rocks exhibit a gradual increase as the
temperature decreases.

3. Under standard temperature conditions, an elevation in the moisture content of
rock specimens correlates with an increase in the number of failure cracks. A trend
of decreasing UCS and EM was observed in the rocks as the water content rose.
Compared to their dry state, where the moisture content was zero, the UCS of rocks in
a saturated state experienced a reduction of 40.8%, and their EM decreased by 11.4%.

4. Under low-temperature conditions, as the water content of rock specimens increases,
the direction of rock cracks is mainly vertical. The rock gradually transforms from
a plastic–elastic body to a plastic–elastic–plastic body. The UCS and EM gradually
decrease as the water content increases. Compared to the dry state, the UCS of
saturated rocks decreased by 52.3%, and the EM decreased by 15.2%.

5. Overall, lower temperatures generally enhance the mechanical robustness of rocks
while simultaneously increasing their brittleness. Furthermore, the presence of wa-
ter was found to reduce rock strength, an effect that is more pronounced in low-
temperature environments.

6. This study reveals the static mechanical properties of sandstone under low-temperature
and different water content conditions. The research results can provide reference and
guidance for future research on the dynamic mechanical properties of rocks under
cold and humid conditions.
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Nomenclature

◦C Celsius degree
w Water content of rock specimens
m0 Total mass of rock specimen after water absorption
ms Total mass of rock specimen after drying
UCS Uniaxial compressive strength
EM Elastic modulus
mm Millimeter
g Gram
min Minute
MPa Megapascal
GPa Gigapascal

Appendix A

Table A1. Uniaxial compressive strength test results.

Groups Moisture
Condition

Water
Content Temperature (◦C) Test Method UCS (MPa) EM (GPa)

T1-1

Natural 0.79%

8

Uniaxial
compression

62.89 7.254

T1-2 0 68.52 7.352

T1-3 −5 67.79 7.433

T1-4 −10 68.36 7.532

T1-5 −15 72.70 7.637

T1-6 −20 78.69 7.776

T2-1 Dry 0

8
Uniaxial

compression

90.09 7.768

T2-2 Natural 0.79% 62.89 7.254

T2-3 Watered 3.26% 60.26 7.130

T2-4 Saturated 5.06% 53.32 6.881

T3-1 Dry 0

−5
Uniaxial

compression

107.85 8.155

T3-2 Natural 0.79% 67.79 7.433

T3-3 Watered 3.26% 58.53 7.306

T3-4 Saturated 5.06% 51.48 6.920
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