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Abstract: Laser powder bed-fused Ti6Al4V alloy has numerous applications in biomedical and
aerospace industries due to its high strength-to-weight ratio. The brittle α′-martensite laths confer
both the highest yield and ultimate tensile strengths; however, they result in low elongation. Several
post-process heat treatments must be considered to improve both the ductility behavior and the work-
hardening of as-built Ti6Al4V alloy, especially for aerospace applications. The present paper aims to
evaluate the work-hardening behavior and the ductility of laser powder bed-fused Ti6Al4V alloy
heat-treated below (704 and 740 ◦C) and above (1050 ◦C) the β-transus temperature. Microstructural
analysis was carried out using an optical microscope, while the work-hardening investigations
were based on the fundamentals of mechanical metallurgy. The work-hardening rate of annealed
Ti6Al4V samples is higher than that observed in the solution-heat-treated alloy. The recrystallized
microstructure indeed shows higher work-hardening capacity and lower dynamic recovery. The
Considère criterion demonstrates that all analyzed samples reached necking instability conditions,
and uniform elongations (>7.8%) increased with heat-treatment temperatures.

Keywords: work-hardening rate; strain-hardening; titanium alloy; laser powder bed fusion; mechanical
properties; uniform elongation; work-hardening capacity

1. Introduction

Ti6Al4V is a titanium alloy increasingly used in aerospace and biomedical applications
due to its excellent combination of high strength, corrosion resistance, high fatigue life, and
toughness [1–4]. Due to its high strength-to-weight ratio, Ti6Al4V is undoubtedly used
to manufacture space capsule components, compressor blades, helicopter rotor hubs, and
orthopedic and cranial implants. In this scenario, in which customization and flexibility
are among the main design requirements, the laser powder bed fusion (LPBF) process finds
a wide application area. In fact, the melt and fusion process of the metallic powder in a
layer-by-layer methodology makes it possible to manufacture components with complex
and topology-optimized geometry [5,6]. The LPBF process is also motivated by the absence
of tools and minimal post-processing machining requirements [7].

Ti6Al4V is an α + β alloy where the α-stabilizers (Al, O, N, C) and β-stabilizers (V,
Fe) stabilize the hcp (hexagonal close-packed) α-phase and the bcc (body-centered cubic)
β-phase, respectively, at room temperature. Due to the nonequilibrium solidification
process that occurs during the LPBF process, the as-built microstructure of the Ti6Al4V
samples is composed of a hierarchical structure of needle-like α′-martensite laths arranged
within columnar prior-β grains. In detail, β-grains nucleate directly on the build platform
and grow from the bottom region to the top one, following the several solidified powder
layers (i.e., towards the molten pools). The diffusionless β → α′-martensite transformation
takes place within each molten pool [6,8–10]. Thanks to these microstructural features,
laser powder bed-fused Ti6Al4V alloy shows higher strengths but lower work-hardening
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and ductility than wrought Ti6Al4V alloys, thus limiting its applications [6,11,12]. At
the same time, the fast and localized cycles of heating and cooling caused by the laser–
powder interactions trigger differential expansion and contraction of localized zones of
the manufactured component. This generates stresses and strains that remain within the
components as residual stresses and strains [6,13].

Post-processing heat treatments can improve the ductility of the as-built Ti6Al4V due
to the following reasons [3,6]:

1. Decomposition of the brittle α′-martensite laths into α + β phase during the expo-
sure at temperatures below the β-transus, i.e., during stress relief, annealing, and
sub-transus solution heat treatment (SHT). Ductility improves with increasing heat-
treatment temperatures.

2. Recrystallization of the columnar β-grains during the exposure at solution tempera-
tures (above the β-transus) and the formation of a desired α + β microstructure by
controlling the cooling pathway from the β-region to the room temperature.

For example, Vracken et al. [14] showed that the strain of as-built LPBFed Ti6Al4V
alloy (e = 7 ± 1%) increases by 25% after annealing at 705 ◦C per 3 h, and by 85% in slowly
cooled samples (furnace) from 1020 ◦C. When the solution-heat-treatment temperature
increases up to 1150–1200 ◦C, no ductility enhancement is observed, as summarized in [6].

Focusing on the mechanical strength, both the as-built YS (YS, 980 ÷ 1200 MPa) and
UTS (UTS, 1100 ÷ 1300 MPa) decrease with an increase in the heat-treatment temperature.
For the solution-heat-treated samples, both UTS and YS can be recovered due to the β →
α′-martensite transformation that occurs during a rapid cooling [15].

Work-hardening (i.e., strain-hardening) is closely related to the characterization of
the plastic deformation of metallic materials, as well as strength, deformability, toughness,
and ductility [16–18]. It is fundamentally based on an intricate interaction between several
microstructural features such as grain boundaries, misorientation, dislocation, and crystal
lattice [19,20]. In cubic structures, the strain-hardening behavior is well understood, with
the main hardening mechanism primarily based on the accumulation of a dislocation forest.
On the contrary, the significant plastic anisotropy and the low symmetry characterizing the
hcp (hexagonal close-packed) lattice complicate the characterization of the strain-hardening
behavior [21,22]. For these reasons, the various microstructural features characterizing
the Ti6Al4V alloy and the different lattice structures of both hcp α-phase and bcc (body-
centered cubic) β-phase make the work-hardening analysis meaningful. Several studies
have investigated the work-hardening behavior of cast Ti6Al4V at different strain rates and
high testing temperatures [23–26]. In recent years, few studies have focused on the work-
hardening analysis of additively manufactured Ti6Al4V alloys [7,16,27–29]. De Formanoir
et al. [29] investigated electron beam powder bed-fused Ti6Al4V in annealed (850 ◦C),
sub-transus SHTed (920 ◦C), and hot-isostatic pressing conditions. Jankowski [28] briefly
analyzed the mechanical behavior of additively manufactured Ti6Al4V alloys, considering
only the morphology of the work-hardening curves and the softening coefficient. Muiruri
et al. [27] investigated direct metal laser-sintered Ti6Al4V after a cycle of different heat
treatments. Lastly, Song et al. [7] briefly analyzed the work-hardening behavior of an
LPBFed Ti6Al4V alloy in as-built conditions by comparing it to Ti44 and Ti84 alloys.

To improve the literature review and considering the importance of the work-hardening
behavior in various aerospace applications, the present study aims to evaluate the work-
hardening behavior of a Ti6Al4V alloy laser powder bed-fused in different orientations
and heat-treated below and above the β-transus temperature. Specially, work-hardening
exponent, plastic instability, and work-hardening capacity are investigated, taking into
account the microstructural variations observed after:

1. Annealing heat treatments at 704 and 740 ◦C;
2. Super-transus SHT at 1050 ◦C.

The results presented and discussed in this study build upon the microstructural
investigations previously performed by the authors in [30,31].
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2. Materials and Methods

Gas-atomized Ti6Al4V powder, whose chemical composition is listed in Table 1, was
used to additively manufacture dog-bone test samples.

Table 1. Chemical composition (wt.%) of the gas-atomized Ti64 powder.

Ti Al V Fe C N O

Bal. 6.5 4.1 0.21 0.01 0.01 0.1

Tensile samples were laser powder bed-fused using an SLM®280 machine (SLM:
selective laser melting, SLM Solution, Lübeck, Germany) with different orientations relative
to the build platform (i.e., 0, 45, and 90 ◦C), utilizing the process parameters reported
in [30,31]. Before their removal from the build platform, the samples were heat-treated in a
vacuum furnace at temperatures below (704 ◦C, 740 ◦C) and above (1050 ◦C) the β-transus
(Figure 1) to prevent the possible formation of cracks considering the brittleness of the
as-built microstructure. As shown in Figure 1, samples heat-treated at 704 ◦C and 1050 ◦C
were directly cooled in argon gas (dotted lines) for 60 min. Samples exposed to 740 ◦C
were first furnace-cooled down to 520 ◦C over 90 min and then cooled with argon gas to
room temperature. The annealing heat treatment at 704 ◦C was carried out in accordance
with ASM 2801b standard [32], while that performed at 740 ◦C was developed to further
enhance the anisotropic mechanical behavior of the as-built Ti64 alloy.
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Figure 1. Temperature–time curves of the heat treatments performed at 704 ◦C × 120 min (black line),
740 ◦C × 130 min (red line), and 1050 ◦C × 60 min (blue line).

Microhardness was measured using a Vickers tester machine (VMHT Leica, Wetzlar,
Germany) with a load of 100 gf and a dwell time of 15 s. The microhardness of heat-treated
samples was obtained as the average of 9 indentations arranged in a 3 × 3 matrix, as
discussed in [30].

The microstructure and fracture profiles of the tensile samples were observed through
an inverted microscope (DMi8 Leica, Wetzlar, Germany). The investigated surfaces were
grinded (P80-P4000), polished with silica colloidal suspension, and then chemically etched
with Keller’s reagent. In-depth microstructural analysis was previously performed and
discussed in our earlier works [30,31].

Dog-bone samples, with a gauge length of 30 mm and a cross-sectional area of 36 mm2,
were tensile tested at room temperature using a Zwick Z100 machine (Zwick/Roell, Ulm,
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Germany) at a constant strain rate of 1.6 × 10–3 s–1. Tensile tests were repeated three
times for each heat-treated condition to ensure the reliability of the results. The as-built
mechanical properties were obtained by the literature review. To characterize the cross-
section of each tested sample, two parallel hardness profiles (red dotted lines in Figure 2)
were performed. These profiles extended from the fracture surface to the zone where both
profiles converged to the microhardness of the undeformed sample. The microhardness
profiles were spaced at 100 µm apart.
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Figure 2. Graphical representation of the microhardness profiles performed on the cross-section of
the tested samples. L represents the diameter of the dog-bone samples (L = 6.0 ± 0.1 mm).

To investigate the work-hardening behavior of the heat-treated Ti6Al4V alloy, the
Ludwik–Hollomon equation was used and applied to the plastic flow region. This equation
(Equation (1)) is also known as the power-law hardening equation:

σ = Kεn (1)

where σ is the true stress (MPa), ε is the true strain (-), K is the strength coefficient (MPa),
and n is the strain-hardening exponent (-). By differentiating Equation (1) with respect to
the true elongation

dσ

dε
= n

σ

ε
= θ, (2)

the obtained work-hardening rate (θ) can be used to investigate the ductile effects of the
matrix. If the plastic region is well approximated by the power-law (Equation (1)), the
work-hardening rate (Equation (2)) will intersect the true stress–strain curves at a point
representing the true UTS (σUTS) and the respective strain value (εUTS) [33]. This point
also defines the instability condition that may occur during a tensile test, namely, the onset
of necking. This condition meets the following equivalence [34]:

εUTS = εu = n (3)

For these observations, the power-law equation (Equation (1)) at the UTS point can
lastly be rewritten as follows:

σUTS = Kεn
u = Knn (4)

Through this brief contextualization, the work-hardening rate was also used to in-
vestigate the point at which the necking occurred. Newer studies [35,36] supported these
statements.

To obtain both the strain-hardening exponent and the strength coefficient for each
heat-treated condition, Equation (1) was considered in a logarithmic form:

ln(σ) = nln (ε) + ln(K) (5)

where n represents the slope and K is the y-intercept (i.e., when ε = 1) of the linear
fit (Figure 3a) carried out in the εYS − εUTS range. Due to the morphology of the true
stress–strain curve and to better evaluate the correlation between the plastic region of
the true stress–strain curve and the power-law, both the slope (n) and the y-intercept
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(K) were considered first as constant values, as shown in the single linear fit in Figure 3a
(top row), and second as variable values, as highlighted by the four different linear fits
in Figure 3b (bottom row). Another study [37] considered n and K as variable values
due to the nonlinear morphology of the true stress–strain curve. Figure 3b shows how
the true stress–strain curve (black line) can be approximated to the curves obtained by
Equation (1) (i.e., power-law) so that the instability Considère criterion (Equation (2)) can
be applied. For the discussions made on Equations (2)–(5), first, the true stress–strain curve
is considered from YS to UTS points (namely, in the uniform elongation region). Second,
the blue and red dotted lines in Figure 3b indicate the stress–strain curves obtained using
the power-law equation (Equation (1)) in which the values n and K are considered first as
constant (blue line in the top row of Figure 3a), and then as variable (red line in bottom row
of Figure 3b). By comparing the power-law functions, the best approximation of the plastic
region was evidently provided by the red dotted line, namely, when the n and K values are
considered variable.
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Figure 3. (a) True stress–strain curve plotted into a double-logarithmic graph to obtain the strain-
hardening exponent (n) and the strength coefficient (K) as constant (first row) or variable (second
row) values. (b) Representative true stress–strain curves, limited to the YS to the UTS, obtained by
tensile test (black line), power-law (Equation (1)) where n and K are variable from YS to UTS (red
dotted line), and power-law (Equation (1)) where n and K are constant.

The ratio (R) between the true yield strength (σYS) and ultimate tensile strength (σUTS),

R =
σYS

σUTS
, (6)

was used to investigate the brittleness conferred by the different microstructures. The true
YS was obtained by the intersection between the true stress–strain curve and the offset line
at 0.002 positive true strain from the linear portion. The UTS was obtained by applying the
Considère criterion to the stress–strain curve (Equation (2)).

As previously mentioned, the Considère criterion defines the point in which the
necking instability occurs and the respective UTS (σUTS) value. To obtain the true plastic
strain (εp (-)) characterizing each Ti64 sample, the following integral, evaluated from σYS to
σUTS, was considered:

εp =
∫ σUTS

σYS

dε

dσ
·dσ (7)
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Observing that the derivative
(

dε
dσ

)
is the inverse of the work-hardening rate (Equation

(2)), Equation (7) can be rewritten as follows:

εp =
∫ σUTS

σYS

[θ(σ)]−1·dσ (8)

By considering and integrating the Kocks–Mecking linear relationship [22,38], Equa-
tion (8) confers the following result:

εp =
ln[1 + Cb(1 − R)]

Cb
(9)

where Cb is the softening coefficient, which is related to the dynamic recovery occurring
in Stage III of the work-hardening curve (Figure 4), and R is as expressed in Equation (6).
In detail, the softening coefficient (Cb) represents the slope of the Kocks–Mecking linear
relationship (red dotted line) between the work-hardening and the flow stress [22,38,39].
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3. Results

Figure 5 shows the as-built (Figure 5a) and heat-treated (Figure 5b) microstructures
acquired on the xz-plane of the Ti6Al4V dog-bone samples. The as-built microstructure
(Figure 5a) is characterized by columnar β-grains containing hcp α′-martensite laths (white
arrows in Figure 5a). As investigated in several studies [10,31,40], the LPBF process
promotes, first, the nucleation of the β-grain directly on the build platform and, secondly,
its growth along the build direction, namely, across the several molten pools. For this
reason, columnar β-grains are disposed parallel to the build direction. The high cooling
rate controlling the solidification process of the molten pools induces the diffusionless
β → α′-martensite transformation and forms a cross-hatched structure of α′-martensite
laths (dotted circle in Figure 5a). As deeply studied by Yang et al. [8], the cross-hatched
structure is composed of a twine of several laths disposed perpendicular and/or parallel
to each other. In detail, primary α′-martensite laths always extend across the whole
columnar grain. Secondary, tertiary, and quartic α′-martensite laths, characterized by finer
dimensions, are instead disposed of parallel and/or perpendicular to the primary ones.
As widely investigated in our previous works [30,31], the heat treatments performed at
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temperatures below the β-transus (704 ◦C and 740 ◦C, Figure 1) induced the α′-martensite
→ α + β decomposition due to the diffusion of the β-stabilizer alloying elements (i.e., V, Fe)
from the supersaturated hcp lattice to the α-phase grain boundary. The EBSD observations
in [31] showed the presence of about 3% of the newly formed β-phase and that the newly
formed α-phase retains the same orientation as its progenitor α′-martensite lath. The same
EBSD maps in [31] indicated that the α-phase has an orientation relation with the retained
columnar β-grain (yellow dotted line in Figure 5b).
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Figure 5. Optical micrographs acquired on the xz-plane (parallel to the build direction) of the Ti64
Z-samples in (a) as-built conditions and after the heat treatments at 740 ◦C/120 min (b).

Exposure at 1050 ◦C (Figure 6) recrystallizes the columnar β-grains into equiaxed
grains whose boundaries are formed by the αGB (GB: grain boundary), thereby removing
the microstructural anisotropy conferred by the LPBF process. On the other hand, the
argon cooling from the β-region (Figure 1) conferred another degree of microstructural
anisotropy. In fact, some newly β-equiaxed grains are formed by α + β laths distributed into
a Widmanstätten structure and α + β colonies (Figure 6a), while others consist of globular
or coarsened α-phase (Figure 6a). This microstructural variation is generally conferred by
dissimilar cooling rates affecting the β→ α + β transformation as also supported by the αGB
and β-phase distribution along the grain boundaries (orange dotted lines). Specially, the
β-phase precipitates along the αGB-phase and separates it from the α + β laths or colonies
(Figure 6a) during fast cooling. Conversely, lower cooling rates promote the interconnection
between the αGB-phase and the α laths (Figure 6b). These statements are supported and
well documented in [41,42].

Figure 7 summarizes the mechanical properties trend of the XZ-, Z-, and 45-samples
heat-treated at 704 ◦C (red columns), 740 ◦C (blue columns), and 1050 ◦C (green columns).
Generally, the heat treatments at both 704 ◦C and 740 ◦C reduced the as-built UTS
(σUTS > 1.1 GPa, [6,9,43–45]) and YS (σYS > 950 MPa, [6,9,43–45]) values due to the α′-
martensite → α + β decomposition. Considering that the α′-martensite decomposition
typically occurs above 400 ◦C, the furnace cooling from 740 ◦C to 520 ◦C continues to
increase the amount of the decomposed martensite [6,46]. For this reason, and because of
the coarsening phenomena affecting the α-phase (according to the Hall–Petch law), both
the YS and UTS decrease from the samples annealed at 704 ◦C to those at 740 ◦C (Figure 7,
Table 2). Our previous work [30] showed that increasing the heat-treatment temperatures
from 704 to 740◦C, and varying the cooling pathway, resulted in an increase in grain size
from (540 ± 60) nm to (799 ± 10) nm. For the same findings, UTS and YS values slightly
decreased (Figure 7, Table 2) when the heat-treatment temperature increased from 704 ◦C to
740 ◦C. The highest strength reduction and the anisotropy removal were conferred by the
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SHT at 1050 ◦C per 60 min because of the recrystallized microstructure shown in Figure 6.
Contrary to the expectation, the elongation values did not exhibit an adequate increment
relative to the strength reduction, likely due to the presence of:

1. The fine α + β laths and colonies;
2. The α-case layer (as will later be discussed).
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Figure 6. (a,b) Optical micrographs acquired on the xz-plane (parallel to the build direction) of the
Ti64 Z-samples after the heat treatments at 1050 ◦C/60 min and representing two different zones of
the same sample.
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(XZ, Z, and 45◦) heat-treated at 704 ◦C, 740 ◦C, and 1050 ◦C.
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Table 2. Average of engineering UTS (sUTS), YS (sYS), and elongation (e (%)) values of the heat-treated
XZ-, Z-, and 45-samples.

Samples
sUTS (MPa) sYS (MPa) e (%)

704 ◦C 740 ◦C 1050 ◦C 704 ◦C 740 ◦C 1050 ◦C 704 ◦C 740 ◦C 1050 ◦C

XZ 1059 ± 2 1008 ± 4 909 ± 6 997 ± 21 950 ± 14 820 ± 12 11 ± 2 10 ± 1 12 ± 1
Z 1043 ± 14 1000 ± 8 924 ± 3 974 ± 9 939 ± 10 809 ± 6 11 ± 1 12 ± 1 12 ± 1

45◦ 1022 ± 10 1002 ± 12 930 ± 11 949 ± 22 933 ± 6 810 ± 11 11 ± 1 11 ± 1 13 ± 1

Similar findings were observed in [6,47,48].
Figure 8 shows the work-hardening curves obtained by considering the variable strain-

hardening exponents and applying Equation (2) to the Ti6Al4V samples heat-treated at
704 ◦C (Figure 8a), 740 ◦C (Figure 8b), and 1050 ◦C (Figure 8c). It is important to note
that the work-hardening behavior of a polycrystalline metallic material is closely related
not only to the grain size and distribution, dislocations, and misorientations, but also
to dislocation annihilation, formation of local shear zones, and new sub-grains. These
factors influence the stages of the work-hardening. Each curve presents the same three
distinct stages (Stages I–III). Stage I describes the dislocation multiplication, leading to rapid
decrease in the work-hardening rate, with an increase in plastic strain [49]. Immediately
after this stage, towards the end of the elasto/plastic region, Stage II shows an increase in
the work-hardening rate up to a relative maximum, possibly due to the possible presence
of stacking faults or twins, as investigated in [50–53]. Stage III is dominated by the dynamic
recovery (represented by Cb in Figure 4), where dislocation annihilation occurs. Finally, the
sudden decrease in the work-hardening rate (Stage IV) is not well described in the literature
yet. Muiruri et al. [27] suggested that intense localization of shear described the final part
of the work-hardening curve. Considering the shape of the curves, it can be concluded
that the microstructural variations (Figure 5) resulting from the heat treatments did not
significantly affect the strain-hardening behaviour.

Despite the similarity between the work-hardening curves (Figure 8a,b vs. Figure 8c),
the work-hardening rate, calculated as widely described in [54], decreases as the heat-
treatment temperature increases from 704 ◦C to 1050 ◦C, as listed in Table 3. Simultane-
ously, the orange curve plotted in Figure 8d exhibits a slower work-hardening rate than
those described by the red and black curves in the same Stage II. The smaller number of
dislocations within the lattice structure of the SHTed Ti6Al4V sample may support these
findings. As affirmed in [55], additively manufactured Ti6Al4V alloy heat-treated below
the β-transus (<800 ◦C) showed a higher amount of dislocation compared to that observed
in over-transus SHTed samples. Lastly, in accordance with the expectations, in samples an-
nealed at 704 ◦C and 740 ◦C, the equality between the black and red work-hardening curves
in the first stage indicates that there is no significant variation in dislocation multiplication.

Table 3. Maximum values of work-hardening rate (θmax × 103 (MPa)) obtained by heat-treated
Ti64 samples.

704 ◦C 740 ◦C 1050 ◦C

XZ 3.7 ± 0.2 3.8 ± 0.2 2.5 ± 0.2
Z 3.8 ± 0.1 3.7 ± 0.2 2.6 ± 0.2

45◦ 3.6 ± 0.2 3.8 ± 0.2 2.5 ± 0.2
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704 ◦C (red line), 740 ◦C (blue line), and 1050 ◦C (orange line).

Figure 9a shows the work-hardening capacity of the heat-treated Ti6Al4V samples as
a function of their constant strain-hardening exponent. Work-hardening capacity (WHC) is
defined as follows:

WHC =
σUTS − σy

σy
=

σUTS
σy

− 1 (10)

and represents the ability to accommodate dislocations during a plastic deformation. For
this reason, the SHTed Ti6Al4V samples show a better capacity to store dislocation com-
pared to those heat-treated below the β-transus temperature due to a greater amount of the
bcc β-phase, different grain sizes, and crystal orientations, as supported in [11,31,56,57]. In
fact, the fully lamellar structure of the annealed Ti6Al4V samples limits strain-hardening
ability and negative effects on uniform elongation [29,58,59]. Conversely, the SHTed
Ti6Al4V alloy exhibits a lower degree of elasticity (R obtained from Equation (6) and
shown in Figure 9a) and, thus, a higher capacity for plastic deformation before failure
compared to the annealed alloy. Figure 9b shows the variation of the softening factor,
which represents the capacity to recover dislocation during deformation (Figure 4), in
relation to the true plastic strain (Equation (9)) [53,60–63]. From the plotted results, it can be
concluded that all Ti6Al4V samples analyzed in the present work exhibit higher elasticity
compared to those produced by electron beam powder bed fusion (square-shaped red
symbols, [60,61]), as well as those produced by laser powder bed fusion both in as-built
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(circle-shaped symbols [53,61–63]) and heat-treated (hexagonal-shaped symbols [61,62])
conditions. Specifically, the columnar β-grains that characterize the annealed Ti6Al4V sam-
ples conferred similar true elongation strains to the as-built LPBFed Ti6Al4V samples, but
the decomposed α′-martensite laths may increase both the softening factor and elasticity.
The higher amount of β-phase and the presence of an α-β microstructure, arranged into
colonies or Widmanstätten structure, enhance the true plastic strain at the expense of the
softening factor. Considering that both the as-built EBM and heat-treated LPBF Ti6Al4V
samples exhibit an α + β microstructure within the β-grains, it is possible to conclude that
the mechanical behavior of SHTed Ti6Al4V is more influenced by the α + β structure (a,b)
and the α-case (Figure 10c) than by the morphology of the β-grains.
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Figure 9. (a) WHC versus strain-hardening exponents of the Ti64 samples heat-treated at 704 ◦C,
740 ◦C, and 1050 ◦C. (b) Variation of the softening factor in relation to the true plastic strain of the
samples analyzed in the present work and in [53,60–63].

As highlighted in Figure 10, the main crack appears to propagate indeed along the
boundaries of both the α + β colonies (red arrows in Figure 10a) and the α + β laths (yellow
arrows in Figure 10a), as well as along the boundaries of the coarsened α-phase (white
arrows in Figure 10b). In summary, cracks propagate across the softer bcc β-phase, as
extensively discussed in [6]. Furthermore, mechanical behavior can be also influenced by
the presence of the irregular-shaped lack of fusion (Figure 10d), thoroughly argued in [6].
Lastly, Figure 10e summarizes Figure 10a–d and clearly highlights the cross-sectional area
reduction due to the necking instability conditions that occurred during the tensile test.

Considering that the power-law equation (Equation (1)) effectively describes the
plastic region (see Figure 3b), the Considère criterion can be applied to evaluate the uniform
elongation and the potential neck formation in the Ti6Al4V samples. Each work-hardening
curve was obtained by Equation (2), where the strain-hardening exponents are considered
as constant value (see linear fit in Figure 3a), ensuring the satisfaction of Equations (2)–(4).
Indeed, only work-hardening curves obtained by constant n and K values intersect the true
stress–strain curves at the (σUTS, εUTS) point (Figure 11). Furthermore, these intersections
between the work-hardening curve

(
θ = − dσ

dε

)
and the true stress–strain curves confirm

the onset of the necking instability in all analyzed Ti6Al4V samples, regardless of the
post-processing heat treatments (Figure 11). Focusing on the Ti6Al4V samples annealed
at 704 ◦C (Figure 11a), slight variations in uniform elongation values are observed due to
the different build orientations. A clear increase in uniform elongation was obtained by
increasing the heat-treatment temperatures while maintaining constant build orientation
(red arrow in Figure 11b).
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Figure 10. Fracture profile of a Ti64 samples heat-treated at 1050 °C per 60 min. Panels (a–d) belong 

to the sectioned tensile sample (e) and exhibit (a,b) fracture profile, (c) edge of the sample with α-
Figure 10. Fracture profile of a Ti64 samples heat-treated at 1050 ◦C per 60 min. Panels (a–d) belong
to the sectioned tensile sample (e) and exhibit (a,b) fracture profile, (c) edge of the sample with α-case
layer, and (d) lack-of-fusion pore. Yellow, red, and white arrows indicate the crack pathways along
the boundaries of the α-phases.
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Figure 11. Representative true stress–strain curves and work-hardening rates of (a) XZ-, Z-, and
45-samples heat-treated at 704 ◦C, (b) 45-samples heat-treated at 704 ◦C (black lines), 740 ◦C (blue
lines), and 1050 ◦C (orange lines).

Figure 12 displays the Vickers microhardness profiles (see) of the tested Ti64 samples
after the exposure at 704 ◦C (Figure 12a), 740 ◦C (Figure 12b), and 1050 ◦C (Figure 12c).
Starting from the farthest point of each profile, Vickers microhardness trends increase up
to a maximum value due to the work-hardening in the necking region. From this point,
hardness values decrease up to the closest zone to the fracture profile, probably due to the
presence of several damages that are undetectable through optical microscopy. The high
strain rates characteristic of the closest zone to the fracture profile can induce the formation
of several secondary cracks and tears [27,64,65]. Considering the Vickers microhardness
profiles plotted in Figure 12a,b, it appears that Ti6Al4V samples heat-treated at 740 ◦C
exhibit a slightly larger damaged area compared to those at 740 ◦C (Figure 12a). These
zones are located between the fracture profile and the maximum value of the Vickers profile.
As discussed in Figures 8 and 9a, the highest work-hardening capacity observed in the
SHTed Ti6Al4V samples is also reflected in the greatest variation in hardness between
the maximum and the undeformed region (Figure 12c). In this context, it is important to
note that the undeformed region may still contain a certain amount of strain that is not
detectable through the Vickers profile [64,65].

Lastly, the average microhardness values of the undeformed zones (Figure 12) reflect
the decline in mechanical properties (see Table 2) from the Ti6AlV4 samples annealed at
704 ◦C to those solubilized at 1050 ◦C.

Figure 13 correlates the engineering yield strength (sYS) to the engineering strain (e)
of the heat-treated Ti6Al4V samples analyzed in this study (Table 2) and compares these
values with the LPBF Ti6Al4V and CP-Ti alloys investigated in [6,66–69]. It is important to
note that the YS of Ti6Al4V samples heat-treated at 704 and 740 ◦C is comparable to the
LPBF Ti6Al4V samples in as-built conditions. Both recrystallization phenomena affecting
the columnar β-grains and the argon cooling from the β-region significantly reduce the
YS; thereby, the ASMT standard is not satisfied [67]. Therefore, aging heat treatments in
the 450–600 ◦C range can improve mechanical performance by precipitation of the TiAl3
and Ti3Al phases, as demonstrated in [50]. In contrast, according to the results obtained by
using the Considère criterion (Figure 11), all analyzed samples exhibited excellent uniform
elongations (>7.8%). These values are higher than those exhibited by Ti6Al4V samples
produced by LPBF and powder metallurgy in [7,11,53,70,71], and are comparable to those
shown by wrought Ti64 alloys in [11] with the same strain rate range (10–3 ÷ 10–4 s–1).
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Figure 13. Engineering YS versus engineering strains of the Ti64 samples analyzed in the present
work (colored symbols) and compared with Ti64 and CP-Ti (CP: commercially pure) samples studied
in [6,66–69]. HDH-Ti means hydrogenated–dehydrogenated titanium alloy.

4. Conclusions

An investigation of the strain-hardening and ductility of laser powder bed-fused
Ti6Al4V samples heat-treated below (704 and 740 ◦C) and above (1050 ◦C) the β-transus was
presented in this paper. The following conclusions can be drawn from the presented results:

1. The microstructure of the annealed Ti6Al4V samples exhibits retained columnar β-
grains containing α-phase laths arranged in a cross-hatched structure. When treatment
temperature increases from 704 to 740 ◦C, α-phase width increases by about +30%.

2. The columnar β-grains recrystallize into equiaxed β-grains during the exposure at
1050 ◦C, and subsequent argon cooling forms an α + β microstructure with several
morphologies: (i) colonies, (ii) Widmanstätten structure, and (iii) globular.

3. Due to the rise in heat-treatment temperature, both yield and ultimate tensile strengths
decreased by about—16% and—12%, respectively. However, elongation values did
not show significant improvement. All analyzed samples exhibited excellent uniform
elongations (>7.8%), which increased from Ti64 samples annealed at 704 ◦C to those
solution-heat-treated at 1050 ◦C, along with necking instability.

4. The equality between the uniform elongations obtained by the Considère criterion
and the εUTS indicates that constant n and K values must be considered.

5. Annealed samples show higher σYS/σUTS ratios than those exhibited by the Ti6Al4V
samples with recrystallized microstructure. The consequent lower work-hardening
capacity values promote low work-hardening of the necking region. Thereby, the
recrystallized microstructure shows both lower work-hardening rates in Stage II and
lower softening values (i.e., dynamic recovery). This is reflected in the highest hard-
ness increment from the undeformed region obtained during the plastic deformation.

6. Despite the anisotropy conferred by the build orientations, they did not significantly
influence the work-hardening behavior.

Future works should focus on the work-hardening behavior of aged samples, given
that the tensile strength of solution-heat-treated Ti6Al4V samples must be improved.
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