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Abstract: Time-dependent second-harmonic generation (TD-SHG) is an emerging sensitive and fast
method to qualitatively evaluate the interface quality of the oxide/Si heterostructures, which is
closely related to the interfacial electric field. Here, the TD-SHG is used to explore the interface
quality of atomic layer deposited HfO2 films on Si substrates. The critical SHG parameters, such as
the initial SHG signal and characteristic time constant, are compared with the fixed charge density
(Qox) and the interface state density (Dit) extracted from the conventional electrical characterization
method. It reveals that the initial SHG signal linearly decreases with the increase in Qox, while Dit

is linearly correlated to the characteristic time constant. It verifies that the TD-SHG is a sensitive
and fast method, as well as simple and noncontact, for evaluating the interface quality of oxide/Si
heterostructures, which may facilitate the in-line semiconductor test.

Keywords: time-dependent second-harmonic generation; HfO2 film; fixed charge density; interface
state density; capacitance–voltage/conductance–voltage

1. Introduction

To meet the requirements of semiconductor device integration, the size of metal-
oxide-semiconductor field effect transistor (MOSFET) continues to shrink, approaching
the physical limitation [1,2]. A key issue is that the performance of the MOSFET is closely
related to the quality of the interface between the semiconductor and the oxide layer [3–6].
Although the traditional electrical characterization methods, such as voltage–capacitance
method (C–V) [7–9], conductance method (G–V) [10], Terman method [11], etc., can ac-
curately identify the interface quality, they are invasive (requiring preparation of specific
electronic devices) [2,7,12–15], resulting in irreversible damage to devices or wafers, and
the characterization is unable to provide real-time feedback [16]. Alternatively, the optical
characterization is an efficient and noninvasive method to detect the interface quality,
which may have great potential application in the in-line test during the functional device
fabrications [17,18].

Since van Driel revealed the ability of time-dependent second-harmonic generation
(TD-SHG) to detect the interfacial bonding in the Si wafer [17], the TD-SHG technique has
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been widely explored for disclosing the charge trapping/detrapping as well as the carrier
transport properties at the interface [19–22]. Recently, the noncontact TD-SHG method was
reported to characterize the charge trapping in high-k dielectric structures, considering
the inversion symmetry breaking at the interface [21,23–25]. Generally, the separation
of carriers at the interface due to the laser illumination induces a quasi-static interfacial
electric field E(t), which determines the intensity of second-harmonic signal (I2ω). It can be
expressed by the following equation [26,27]:

I2ω(t) ∝
∣∣∣χ(2)

inter f ace + χ(3)| [Edc + E(t)]|
∣∣∣2 I2

ω (1)

Here, I2ω(t), χ2
inter f ace, χ3, and Iω are the intensity of SHG, the second-order nonlinear

susceptibility at the interface, the third-order nonlinear susceptibility, and the intensity of
incident laser, respectively. In addition, the TD-SHG was used to study the dopant type
and dopant density of the materials as well as the fixed charges. Although various studies
have been conducted, there is a lack of comprehensive study of the correlation between the
signal of SHG and the interface quality [25,28,29].

In this study, the atomic layer deposited HfO2/n-Si films were chosen as a protype to
investigate the correlation between TD-SHG and interface quality of oxide/Si heterostruc-
tures. The HfO2 films display a good insulating character with a low leaky current with an
applied voltage. It was found that the TD-SHG monotonically increases with the evolution
of time. It reveals that the initial SHG signal linearly decreases with the increase in fixed
charge density (Qox), while the interface state density (Dit) is linearly correlated to the
characteristic time constant. It indicates that the TD-SHG technique is a sensitive and fast
method for assessing the interface quality of oxide/Si heterostructures, which provides an
effective means for online interface quality detection.

2. Materials and Methods

Various thicknesses of HfO2 thin films (5–20 nm) were deposited on the n-type Si(001)
substrates (resistivities of 1–30 Ω·cm) via the atomic layer deposition technique. The
square metal electrodes (Au (80 nm)/Ti (5 nm)) with different pad sizes were prepared
by the conventional photolithography, followed by the e-beam evaporation process. The
crystalline structure of HfO2 thin films was investigated by the X-ray diffraction (XRD,
model D8 ADVANCE, Bruker, Germany). The surface morphology of the HfO2 film was
measured by atomic force microscopy (AFM, model AFM5500M, Tokyo, Japan). The J–V
characteristics were tested in a home-build setup with a Keithley (Cleveland, OH, USA)
2636B source measure meter controlled by a program. The C–V and G–V measurements
were carried out using a Keysight (Santa Rosa, Ca, USA) E4980A precision LCR meter. The
positive voltage is always defined as a voltage applied on the top Au electrode. The TD-
SHG was performed using an Aspirer 3000 system (Beijing, China) with the laser of 780 nm
(repetition frequency 80 MHz, pulse width 150 fs). The incident P-polarized laser (780 nm)
illuminates on the sample at 45◦. The generated second-harmonic signal (λ = 390 nm) was
collected. The TD-SHG experiment was performed after the maximum direction of the
SHG pattern was determined according to the rotation-anisotropy SHG results to provide a
standard process of charge evolution. All the TD-SHG measurements in our experiments
were conducted at room temperature with a dark environment.

3. Results

Figure 1a displays the typical XRD pattern of the HfO2 film grown on a Si substrate.
Clear diffraction peaks from HfO2 film located at 43.2◦ (121) and 50.4◦ (202) are observed.
Figure 1b shows the typical atomic force microscopy image of the HfO2 film (20 nm), which
is scanned over the area of 4 µm × 4 µm. The surface roughness of the as-deposited HfO2
thin film is 0.43 nm, indicating the uniform and smooth surface of the HfO2 film. The
current–voltage curves (J–V) of the samples with different thickness measured at room
temperature are shown in Figure 1c. Clearly, the HfO2 films reveal a low current density
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(~nA level), indicating a high quality of HfO2 film. The current–voltage relation can be
well characterized by the Schottky emission (SE) [30–32]:

JSE = A∗T2exp

[
−q

(
φB −

√
qE/4πε0εr

)
kBT

]
(2)

Here, A∗, T, kB, E, φB, ε0, and εr are the Richardson constant 120 A/(cm2·K2), the
absolute temperature, the Boltzmann constant, the electric field, the Schottky barrier height,
the vacuum dielectric constant, and the relative dielectric constants, respectively. The
current can be well fitted by the SE, relation as shown in Figure 1d. The extracted Schottky
barrier heights are around 0.80 eV, irrespective of the HfO2 thickness (Table 1), verifying
the high quality of the HfO2 film.
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Figure 1. (a) The typical XRD pattern of as-deposited HfO2 film on Si substrate. (b) The typical
atomic force microscopy image of 20 nm HfO2 film. (c) The current density vs. the applied voltage
(J–V curve) for various thickness of HfO2 films. (d) The Schottky emission (SE) fitting of J–V curve.

Table 1. The HfO2 thickness dependent of extracted parameters including the flat band voltage, qφB,
the Qox, and the Dit.

Sample qφB (V) Vfb (V) Qox (×1011 cm−2) Dit (×1012 eV−1cm−2)

5 nm 0.80 0.43 1.43 3.09
10 nm 0.79 0.60 1.96 2.08
15 nm 0.88 0.51 2.74 3.81
20 nm −0.82 0.63 2.39 4.31

In order to reveal the interface quality of the HfO2/Si interface, the conventional
electrical characterization with the metal electrodes was conducted. The series resistance
correction (SRC) model is used to correct the measured capacitance–voltage (C–V) and
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conductance–voltage (G–V) [33–36]. The corrected C–V and G–V are displayed in Figure 2.
A clear C–V hysteresis is observed at the positive bias, corroborating the existence of the
border traps near the interface. The capacitance at +3 V does not saturate at the accu-
mulation region, indicating the existence of carrier trapping. The extracted fixed charge
(Qox) increases from 1.43 × 1011 cm−2 (5 nm) to 2.74 × 1011 cm−2 (15 nm) (Table 1) [26,30].
Generally, a conductance peak appears when sweeping the frequency at a certain volt-
age, corresponding to the maximum energy loss due to the interface traps resonation.
Clearly, the G/ω peak moves to the high-voltage position with the increase in frequency,
accompanying the increase in the peak magnitude. Therefore, the interface state density
can be quantitively calculated by the relation Dit ≈ 2.5

Aq

(
GP
ω

)
max

, where A and q are the
electrode area (50 µm × 50 µm) and the element charge. Additionally, the distribution
of Dit as a function of energetic position (∆E) in the upper region of Si band gap can be
roughly estimated using the full interface state model. The energetic position is the energy
difference between the trap energy level (Et) and the majority carrier band edge energy
level (EC or EV), which can be calculated by the following equation [31]:

∆E = EC − Et =
kBT

q
× ln

(
σvthDdos

ω

)
(3)
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Figure 2. (a) The corrected C–V curves for typical 20 nm HfO2 film with various frequency ranging
from 1 kHz to 500 kHz. (b) The corrected G–V curves for typical 20 nm HfO2 film. (c) The relation
between the extracted Dit and the energy level (EC − Et), and (d) the applied voltage dependent of
Dit with various thickness of HfO2 films.

Here, ∆E is the difference between the trap energy level (Et) and the majority carrier
band edge energy level (EC or EV). σ, vth, and Ddos, are the trap capture cross-section
(1.0 × 1015 cm−2), the average hot carrier rate (1.6 × 107 cm·s−1), and the effective conduc-
tion band density of states (2.8 × 1019 cm−3) [37]. The extracted ∆E and Dit are displayed
in Figure 2c, which reveals a comparatively low Dit near the Si conduction band/far from
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the Si conduction band. A Dit peak is found at around 0.31 eV regardless of HfO2 thickness,
namely, the Dit values of 3.09 × 1012 eV−1cm−2 (5 nm), 2.08 × 1012 eV−1cm−2 (10 nm),
3.81 × 1012 eV−1cm−2 (15 nm), and 4.39 × 1012 eV−1cm−2 (20 nm). In addition, the applied
voltage dependent Dit is displayed in Figure 2d. The values of Dit near the flat band voltage
are 4.03 × 1012 eV−1cm−2 (5 nm), 2.89 × 1012 eV−1cm−2 (10 nm), 4.52 × 1012 eV−1cm−2

(15 nm), and 5.26 × 1012 eV−1cm−2 (20 nm). It seems that there is a correlation between
the voltage of Dit peak position and flat band voltage, which need to be explored in future.
Additionally, the interface state density obtained from both conductivity and capacitance
methods show a consistent trend, indicating that the HfO2/Si interface is a good protype
for the TD-SHG study.

Generally, the time-dependent second-harmonic generation (TD-SHG) signal can be
used to comprehensively understand the laser-induced electron transport dynamics in
the oxide/Si systems [38]. A schematic of laser-induced electron transport/transfer, as
well as the generation of SHG, is displayed in Figure 3a. In this case, the internal electric
field Edc forms due to the existence of the fixed charges before the laser illumination,
corresponding to the SHG signal at the initial state. After the laser illumination, electrons in
Si are excited/transferred into the HfO2 film, while the holes remain in Si. Correspondingly,
the laser-induced electric field contributes to the SHG signal. Continuous laser illumination
could generate photoexcited electrons that become trapped at the border and interface trap
states, dominating the interfacial electric field and SHG signal. In this scenario, the TD-SHG
is used to effectively identify the time evolution of the interfacial electric field, which can be
closely correlated to the interface traps. In the HfO2/Si system, the interfacial electric field
arises from the laser-induced multiphoton excitation (Figure 3b). Figure 3c displays the
laser power dependency of TD-SHG. The TD-SHG with a low power (≤150 mW) shows a
monotonically increase in SHG signal, which tends to saturate in a short time. It indicates
that the interface electric field increases with the continued increase in laser irradiation, and,
subsequently, the laser-induced captured electrons reach a balance with the recombination
of electrons and holes at the interface. The SHG signal is significantly enhanced with the
increase in laser power, considering the greatly increased possibility of more electrons
excitation under high laser power. When a laser with a power of 300 mW irradiates on
the 15 nm HfO2/Si sample, the SHG signal rises quickly (<0.5 s), following a slight decay
with the evolution of time. This may be related to the transfer process of electrons from the
oxide back to the Si substrate, resulting in the subsequent decay SHG signal.

The collected TD-SHG data can be well fitted by the following equation [20,26,39]:√
I2ω(t) ∝ χ

(2)
inter f ace + χ(3)E0e−

t
τ1 − χ(3)E1

(
1 − e−

t
τ2

)
(4)

where E0 and E1 are the electric field induced by the fixed charge QOX and the electric field
induced by interface charge traps, respectively. χ2

inter f ace, χ3, τ1, and τ2 are the second-order
nonlinear susceptibility at the interface, the third-order nonlinear susceptibility, and the
trapping time constant (τi) corresponding to the fast (τ1) and slow (τ2) trapping process.
This equation is sufficient to depict the dynamic process of the laser-induced interfacial
electric field. The exacted 1/τ2 under various laser power is displayed in Figure 3d.
The electron trapping rate 1/τ2 linearly increases with the increase in power density,
which yields the relation 1/τ2 ∝ (Iω)

n (n represents the number of photons involved in
multiphoton absorption) [40,41]. Here, the fitted n is 2.16 ± 0.18, indicating that a two-
photon absorption is needed to excite the electrons from the valence band (VB) of Si to the
conduction band (CB) of HfO2. It is consistent with the laser excitation energy of 1.59 eV
(780 nm) and band offset 3.14–3.72 eV between the Si and HfO2, namely, the two-photon
excitation process.
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Figure 3. (a) The schematic of second-harmonic generation for HfO2/Si. (b) The corresponding
schematic energy diagram. (c) The TD-SHG signals under different laser power for a typical 15 nm
HfO2 film. The corresponding fitting lines are shown in black. (d) The laser intensity dependence of
extracted time constant τ2.

In order to evaluate the ability of TD-SHG to reveal the quality of the oxide/semicon-
ductor interface, the relation between the critical time constant of TD-SHG and the fixed
charge density/interface state density was studied. Figure 4a displays the typical TD-SHG
signal with the laser illumination power of 200 mW for various thickness of HfO2 films
(5–20 nm). Obviously, the TD-SHG shows a monotonical increase with the time. A fast
increase in SHG signal in ~1 s is followed by a slow saturation in 5 s. The saturated SHG
signal increases with the HfO2 thickness except for the 5 nm film, considering that the
electrons can easily transfer/tunnel through the thin HfO2 film. The initial point of the SHG
signal increases with the HfO2 thickness. Commonly, the initial interfacial electric field E0
is closely related to the fixed charge density Qox (calculated from the conventional C–V
method) through the Gauss relation EQox = Qox/(εSi × q), where εSi and q are the dielectric
constant of Si and the element charge, respectively. It is natural to connect the initial SHG
signal with the initial interfacial electric field, namely, the fixed charge density. Accordingly,
the initial interfacial electric field dependent on the square root of SHG signal is plotted in
Figure 4b. A linear relation is revealed between EQox and

√
ISHG, indicating that it can be

used to explain the observed phenomenon. The substrate used in the experiment is n-type
silicon substrate (resistivity of 1–30 Ω·cm), and, as such, the fixed charge density is lower
than the ionized donor density; hence, a larger Qox density will result in a smaller initial
SHG intensity. It confirms that the TD-SHG can be efficiently used to evaluate the fixed
charge density in the HfO2/Si films.
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Figure 4. (a) The TD-SHG signal under 200 mW for various thickness of HfO2 films. (b) The relation
between the electric field from the fixed charge density from C–V and the initial SHG intensity. (c) The
relation between the extracted time constant τ2 from TD-SHG and the extracted interface state density
from C–V/G–V.

The TD-SHG is an emerging method used to evaluate the quality of a semiconductor,
which is closely related to the electron dynamics including the electron excitation, transport,
and trapping/detrapping. In this scenario, the laser irradiation could generate a time-
dependent quasistatic electric field, which can be significantly affected by the interface
state density considering the dynamic process. Therefore, the characteristic parameter τ2
can be connected to the interface state density. The characteristic parameter τ2 is extracted
for various thickness of HfO2 films according to Equation (4). Figure 4c displays the
relation between the extracted τ2 and the calculated Dit (conventional C–V and G–V
methods). Clearly, the linear relation between Dit and τ2 is revealed. A small τ2 means a
fast trapping/detrapping rate to reach a balance, corresponding to a large interface state
density at the interface. The experimental results verify that the TD-SHG is a simple and
fast method for extracting the important semiconductor parameters such as Qox, Dit, etc.,
which may facilitate the in-line semiconductor monitoring.

4. Conclusions

In this study, the TD-SHG method was employed to qualitatively characterize the
interface states in the HfO2/Si films, which are compared with the traditional electrical
methods. The electric-field-induced SHG signal indicates that the initial SHG intensity
correlates with the electrostatic field strength induced by fixed charges in the oxide layer,
as revealed by conventional C–V measurements. Furthermore, the evolution of the SHG
signal over time varies with the Dit extracted from C–V and G–V measurements. The
higher Dit is associated with a fast SHG evolution, while the lower value corresponds to a
slow SHG evolution. This confirms the feasibility of using SHG to probe the quality of the
HfO2/Si interface. This study validates that TD-SHG is a sensitive and rapid method to
assess the interface quality in the oxide/Si heterojunctions, which could be beneficial for
in-line testing in semiconductor fabrication.
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