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Abstract: The growing demand for sustainable materials has significantly increased interest in bio-
composites, which are made from renewable raw materials and have excellent mechanical properties.
The use of machine learning (ML) can improve our understanding of their mechanical behavior while
saving costs and time. In this study, the mechanical behavior of innovative biocomposite sandwich
structures under quasi-static out-of-plane compression was investigated using ML algorithms to
analyze the effects of geometric variations on load-bearing capacities. A comprehensive dataset of
experimental mechanical tests focusing on compression loading was employed, evaluating three ML
models—generalized regression neural networks (GRNN), extreme learning machine (ELM), and
support vector regression (SVR). Performance indicators such as R-squared (R2), mean absolute error
(MAE), and root mean square error (RMSE) were used to compare the models. It was shown that the
GRNN model with an RMSE of 0.0301, an MAE of 0.0177, and R2 of 0.9999 in the training dataset, and
an RMSE of 0.0874, MAE of 0.0489, and R2 of 0.9993 in the testing set had a higher predictive accuracy.
In contrast, the ELM model showed moderate performance, while the SVR model had the lowest
accuracy with RMSE, MAE, and R2 values of 0.5769, 0.3782, and 0.9700 for training, and RMSE, MAE,
and R2 values of 0.5980, 0.3976 and 0.9695 for testing, suggesting that it has limited effectiveness in
predicting the mechanical behavior of the biocomposite structures. The nonlinear load-displacement
behavior, including critical peaks and fluctuations, was effectively captured by the GRNN model
for both the training and test datasets. The progressive improvement in model performance from
SVR to ELM to GRNN was illustrated, highlighting the increasing complexity and capability of
machine learning models in capturing detailed nonlinear relationships. The superior performance
and generalization ability of the GRNN model were confirmed by the Taylor diagram and Williams
plot, with the majority of testing samples falling within the applicability domain, indicating strong
generalization to new, unseen data. The results demonstrate the potential of using advanced ML
models to accurately predict the mechanical behavior of biocomposites, enabling more efficient and
cost-effective development and optimization processes in the field of sustainable materials.

Keywords: machine learning; generalized regression neural networks; extreme learning machine;
support vector regression; biocomposites

1. Introduction

Composite sandwich panels are pivotal across various industries and renowned for
their outstanding mechanical properties, such as a high strength-to-weight ratio and ex-
ceptional rigidity. These panels find critical applications in the aerospace, automotive,
marine, and construction sectors. Extensive research has explored their mechanical behav-
ior through experimental, numerical, and theoretical analyses [1–4]. However, conventional
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methods often fall short in accurately modeling the intricate interactions within composite
materials. This gap has been addressed by the advent of data science and machine learning
(ML) algorithms, which have revolutionized the study and prediction of the mechanical
responses of composite components [5,6]. By leveraging extensive datasets and sophis-
ticated algorithms, researchers can uncover hidden patterns and correlations, enhancing
our understanding and predictive capabilities in the development and optimization of
composite materials. This paper investigates recent advancements in ML applications,
underscoring their transformative role in predicting mechanical properties and optimizing
the design of composite structures for superior performance [7,8]. Despite significant
progress, understanding and predicting the mechanical characteristics of these materi-
als remain challenging due to their complexity. To address these challenges, researchers
have progressively incorporated data science and ML techniques, utilizing vast datasets
and computational resources to deepen our knowledge of the mechanical properties of
composite materials. For instance, Yuan et al. [9] investigated the mechanical properties
of rubber used in shock absorbers for landing gear in new energy electric aircraft. Their
integration of artificial neural networks (ANNs) with self-adaptive particle swarm opti-
mization demonstrated superior prediction accuracy, highlighting the potential of ML in
constitutive modeling. Similarly, Wang et al. [10] tackled the challenges of predicting the
mechanical properties of braided textile composites, showing the potential of ANNs-based
feedforward backpropagation (FFBP) algorithms in supporting the design of composites
for enhanced energy absorption. Zhang et al. [11] explored the mechanical properties of
composites made from polypropylene (PP) and waste ground rubber tire powder (WGRT),
optimizing the formulations using a hybrid ANN–genetic algorithm technique, which
underscored the effectiveness of ML-driven approaches in commercial composite formu-
lation. In damage prediction, Osa-uwagboe et al. [12] proposed an ML model to predict
damage behavior in E-glass fiber-reinforced plastics under out-of-plane loading, utilizing
regression algorithms and acoustic signal monitoring to develop an autonomous optimiza-
tion model for composite structures. Viotti and Gomes [13] identified 3D delamination
in sandwich composite structures using ML to detect and parameterize damage, empha-
sizing the importance of automated structural health monitoring techniques. Material
optimization was further addressed by Takagi et al. [14], who proposed an ML-based ap-
proach to optimize the geometric arrangement of cellular materials to enhance mechanical
performance, demonstrating accurate predictions and the benefits of ML in material devel-
opment. Singh et al. [15] integrated finite element (FE) simulations and a genetic algorithm
(GA) to optimize braided beam structures within the spaceframe chassis of rail vehicles,
showcasing the advantages of combining FE simulations and GA for component-level
optimization while ensuring overall structural performance. Zhang et al. [16] developed a
computational framework integrating ML and multi-objective optimization for designing
space-deployable bistable composite structures, highlighting the significant influence of
ply angle on structural behavior. Li et al. [17] developed an interpretable ML model to
elucidate the relationship between microstructure and properties of UD-CFRP composites
with microvoids, demonstrating the effectiveness of materials informatics in understanding
structure–property relationships. Zhao et al. [18] introduced a highly efficient ML-based
multiscale modeling strategy for predicting CFRP properties, promising to accelerate com-
posite material design and development cycles. Li et al. [19] investigated thermal activation
effects on cement paste and utilized ML techniques to predict the compressive strength of
TA-modified cement mortar, offering insights into optimal curing conditions for cement-
based materials. Zhang et al. [20] analyzed foam concrete samples using ML models to
predict compressive strength, providing valuable insights for construction applications.
Wang et al. [21] examined hardness variations in multilayer composites through experi-
mental methods and ML, demonstrating accurate predictions and applicability to other
systems. Ferdousi et al. [22] explored 3D printable lightweight hybrid composites, show-
ing the potential for predictive modeling using conventional statistics and convolutional
neural network (CNN)-driven image analysis. Jiang et al. [23] introduced a multi-objective
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optimization method using CNNs to streamline the design of digital composite struc-
tures, enabling unique properties such as shape morphing and programmable deformation.
Sharma et al. [24] employed ML to develop a novel PEEK composite with improved tri-
bological and mechanical properties for biomedical applications. Hao et al. [25] proposed
a multi-instance multi-label framework to evaluate ultimate tensile strength and the rela-
tionships between microstructure and properties in ternary metal composites, integrating
finite element simulations and ML techniques. Karathanasopoulos et al. [26] investigated
displacement and stress fields in orthotropic composite beams with variable stiffness using
ML and explainable artificial intelligence, emphasizing the nonlinear effects of orthotropy
and material gradation on mechanical response. These studies collectively highlight the
transformative potential of ML and data science in advancing materials science and en-
gineering. Through computational tools and extensive data sets, researchers are driving
the design and optimization of materials, leading to innovation in various industries. In
this research, ML algorithms are used to study the mechanical behavior of biocomposite
sandwich structures under quasi-static out-of-plane compression. The predictive capability
of ML offers significant advantages: Predicting new sample results without physical testing
saves time and resources; accurate predictions enable rapid design iterations and material
formulations, accelerating development cycles; and less physical testing reduces testing
costs. Consequently, ML models efficiently analyze the effects of geometric variations on
load-bearing capacity, streamlining the research and development process and demonstrat-
ing their critical role in optimizing biocomposite sandwich structures. Specifically, in this
research, we utilize generalized regression neural networks (GRNN), extreme learning
machines (ELM), and support vector regression (SVR) to develop predictive models. The
performance of these models is evaluated using a range of metrics to ensure robustness
and reliability. Furthermore, advanced visualization tools such as Taylor diagrams and
Williams plots are employed to assess model accuracy and generalization ability. These
tools effectively capture the non-linearity of the load-displacement behavior inherent in bio-
based cellular composite sandwich structures, providing a comprehensive understanding
of their mechanical performance.

2. Experimental Methodology

This study employs machine learning techniques to forecast the mechanical proper-
ties of environmentally friendly composite panels subjected to quasi-static out-of-plane
compression. The database utilized in this research is derived from the author’s previously
published works [27,28]. Based on this, bio-based sandwich structures were prepared and
tested, with oak tree cupules (OTCs) bonded onto balsa wood and categorized by geomet-
ric characteristics such as height, thickness, and diameter. Different core configurations
with varying numbers of OTCs were also examined. Experimental methods assessed the
compressive strength influenced by these geometric parameters, and the resulting data was
analyzed to predict the compressive performance of the structures. Figure 1 depicts the
manufactured sample, panel features, the quasi-static out-of-plane testing, and schematic
diagrams of various core configurations. The geometrical characteristics for each specimen
shown in Figure 1 are detailed in Table 1. In Table 1, the parameters n, Hc, tc, Dc, Ht, and Mt
denote critical dimensions and quantities pertinent to the biocomposite sandwich structures
under investigation. Specifically, n indicates the number of cupules, Hc represents the outer
height of the cupules, tc refers to the thickness of the cupules, and Dc specifies the outer
diameter of the cupules. Additionally, Ht denotes the total height of the sandwich panel,
while Mt corresponds to the total weight of the specimens.
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Figure 1. Manufacturing and compressive testing of sandwich panels (data utilized in this ML
investigation).

Table 1. Geometrical dimensions of specimens.

Specimen
No. n Hc (mm) tc

(mm)
Dc

(mm) Ht (mm) Mt
(g)

Cupule
Type

A-01 16 30.5 3 19.5 40.5 54.29 Only A
A-02 9 30.5 3 19.5 40.5 29.81 Only A
A-03 4 30.5 3 19.5 40.5 13.47 Only A
A-04 9 30.5 3 19.5 40.5 34.89 Aoutter + Cinner
B-01 16 26.5 3 19.5 36.5 34.18 Only B
B-02 9 26.5 3 19.5 36.5 21.43 Only B
B-03 4 26.5 3 19.5 36.5 9.53 Only B
B-04 9 26.5 3 19.5 36.5 25.49 Boutter + Cinner
C-01 16 17 2 12.5 27 12 Only C
C-02 9 17 2 12.5 27 7.92 Only C
C-03 4 17 2 12.5 27 3.47 Only C

3. Workflow of ML Analysis

Figure 2 illustrates the workflow employed in this study. Initially, the experimental
test data was segmented into training and test datasets. Then, three ML algorithms were
applied to predict the compressive load. Subsequent analysis included capturing the
nonlinear load-displacement behavior and using Taylor diagrams and Williams plots to
evaluate model accuracy and generalization ability.
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Figure 2. Workflow of utilizing ML to predict the mechanical behavior of bio-based sandwich
structures.

3.1. Database Overview

Table 2 provides statistical summaries of key parameters for composite sandwich
panels used in the ML analysis. It contains measured values such as the displacement (mm),
the number of cupules (n), the height of the outer cupule (Hoc), the diameter of the outer
cupule (Doc), the thickness of the outer cupule (toc), the height of inner cupule (Hic), the
diameter of the inner cupule (Dic), the thickness of the inner cupule (tic), the weight of the
sandwich panel (Mt, in grams), the total height of the panel (Ht), the length of the facing
layer (LBalsa, in mm), and the compressive load (kN). Each parameter is summarized with
counts (2122 samples), means, standard deviations, and ranges (minimum to maximum).
For example, the average displacement was 7.7 mm with a standard deviation of 4.7 mm.
The number of cupules ranged from 4 to 16. The outer cupule’s height and diameter
averaged 26.5 mm and 18.2 mm, respectively. The weight and compressive load showed
considerable variability, averaging 24.1 g and 3.3 kN, respectively. This summary highlights
the diversity in panel characteristics, which is essential for robust ML model training and
performance evaluation.

Figure 3 illustrates the frequency distributions of the various parameters in the
database. For the displacement, the figure shows a relatively uniform distribution with a
slight decrease in frequency at higher values. The histograms for n and Hoc indicate a few
distinct values with the highest frequencies, indicating specific standard dimensions used
in most panels. The histograms for Doc and Hic show that the majority of samples have
values clustered at the higher end of their respective ranges. For Dic and toc, prominent
peaks indicate that most panels have a minimum inner cupule diameter and moderate
thickness. The histogram for Mt has a broad distribution of panel masses, with several
peaks indicating different construction specifications. The histograms for Ht and LBalsa
histograms show clear clusters at certain heights and lengths, indicating standardized sizes.
Finally, the load histogram shows a right-skewed distribution, indicating that most panels
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can withstand lower compressive loads, with fewer panels enduring higher loads. These
distributions help to understand the common geometric configurations and mechanical
properties of composite sandwich panels and provide important information for ML model
training and prediction.

Table 2. An overview of the database.

Displacement
(mm) n Hoc

(mm)
Doc

(mm)
toc

(mm)
Hic

(mm)
Dic

(mm)
tic

(mm) Mt (g) Ht
(mm)

LBalsa
(mm)

Load
(kN)

count 2122 2122 2122 2122 2122 2122 2122 2122 2122 2122 2122 2122
mean 7.7 9.4 26.5 18.2 2.8 3.5 2.6 0.4 24.1 36.5 55.4 3.3

std 4.7 4.4 4.9 2.7 0.4 6.9 5.0 0.8 14.4 4.9 16.0 3.4
min 0.0 4.0 17.0 12.5 2.0 0.0 0.0 0.0 3.5 27.0 25.0 0.0
25% 3.7 4.0 26.5 19.5 3.0 0.0 0.0 0.0 12.0 36.5 40.0 0.6
50% 7.4 9.0 26.5 19.5 3.0 0.0 0.0 0.0 25.5 36.5 60.0 2.0
75% 11.4 16.0 30.5 19.5 3.0 0.0 0.0 0.0 34.2 40.5 80.0 5.1
max 17.5 16.0 30.5 19.5 3.0 17.0 12.5 2.0 54.3 40.5 80.0 15.6
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3.2. Model Development
3.2.1. Generalized Regression Neural Network

Generalized regression neural networks (GRNN) are a type of artificial neural network
used mainly for function approximation and prediction tasks. GRNNs are based on kernel
regression techniques and use a radial basis function (RBF) network structure [29,30]. The
structure of a generalized regression neural network (GRNN) comprises four layers: input
layer, pattern layer, summation layer, and output layer (see Figure 4). The main feature of
GRNNs is that they do not require iterative training, making them faster to train compared
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to traditional backpropagation neural networks. The RBF used in GRNNs is typically
Gaussian, defined by the following formula:

φ(x) = exp
(
−∥x − µ∥

2σ2

)
(1)

where µ is the center of the RBF, σ is the spread parameter, and x is the input vector. GRNNs
are particularly effective in modeling nonlinear systems and processing noisy data due to
their robustness.
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3.2.2. Extreme Learning Machine

The learning algorithm known as extreme learning machine (ELM) is specifically
crafted for single hidden layer feedforward neural networks. The architecture of an ELM
includes an input layer, a single hidden layer, and an output layer (as illustrated in Figure 5).
In contrast to conventional neural network training techniques, weights and biases for
the hidden layer neurons in ELM are randomly allocated, and the output weights are
computed analytically. This approach significantly reduces the training time and ensures
good generalization performance. ELM’s key advantage is its speed and simplicity The
ELM algorithm is known for its efficiency in training and robustness in handling different
types of data [31–33].
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3.2.3. Support Vector Regression

Support vector regression (SVR) extends the capabilities of support vector machines
to handle regression tasks. In the architecture of SVR, a kernel function is employed to
transform input data into a higher-dimensional space where a linear regression model can
be formulated. SVR operates by identifying a hyperplane that optimally fits the data while
preserving a margin of tolerance defined by a parameter ϵ. This process relies on support
vectors, a subset of the training data, to delineate this hyperplane [34,35]. The mathematical
formulation of SVR aims to minimize the following objective function:

minw,b,ξ,ξ*
1
2
∥w∥2 + C

n

∑
i=1

(
ξi + ξ*

i

)
(2)

subject to:
yi − (w·φ(xi) + b) ≤ ε+ ξi (3)

(w·φ(xi) + b)− yi ≤ ϵ+ ξ*
i (4)

ξi, ξ*
i ≥ 0 (5)

The kernel function is denoted as φ(x), while w and b represent the model parameters.
Slack variables ξi and ξ*

i are introduced, and C serves as a regularization parameter
governing the balance between the regression function’s smoothness and the extent to
which deviations exceeding ε are permissible.
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3.3. Hyperparameter Tuning and Optimization

In this research, the covariance matrix adaptation evolution strategy (CMA-ES) was
used to fine-tune hyperparameters for ML algorithms. The idea behind CMA-ES is based on
evolutionary algorithms, which mimic the process of natural selection to solve complex op-
timization problems [36]. CMA-ES is particularly adept at dealing with high-dimensional,
non-linear, and multimodal optimization problems, making it a powerful tool for hyper-
parameter tuning. Unlike conventional grid search or random search methods, CMA-ES
adapts the covariance matrix of a multivariate normal distribution to sample candidate
solutions, thereby efficiently exploring and exploiting the search space. This adaptive
mechanism allows CMA-ES to focus on promising regions of the search space and con-
verge more effectively to optimal or near-optimal solutions more effectively. By applying
CMA-ES to fine-tune the hyperparameters of GRNN, ELM, and SVR, we were able to sys-
tematically adjust the parameters to enhance their predictive performance. This approach
led to significant improvements in the accuracy and generalization capabilities of these
models and proves the effectiveness of CMA-ES in optimizing ML algorithms for various
regression tasks.

3.4. ML Evaluation Metrics

To assess and compare the performance of each algorithm, three metric measurements
were employed: R-squared (R2), mean absolute error (MAE), and root mean square error
(RMSE). R2 gauges the extent to which the regression predictions approximate the actual
data points, indicating the proportion of variance in the dependent variable that can be
predicted by the independent variables. Meanwhile, MAE quantifies the average magnitude
of errors in a set of predictions, irrespective of their direction, providing insight into the
absolute disparities between predicted and actual values. In contrast, RMSE offers a more
sensitive evaluation of larger errors by first squaring the differences before averaging them
and then taking the square root, thereby offering a more comprehensive perspective on
the model’s predictive accuracy. By employing these metrics, we ensured a thorough and
robust evaluation and comparison of the performance of the GRNN, ELM, and SVR models
regarding their predictive capabilities. The equations for the three performance factors are
explained below:

R2 = 1 −

n
∑

i=1

(
Loadi − Load*

i

)2

n
∑

i=1

(
Load*

i − Load
)2 (6)
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(
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i

)2
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1
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∑
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∣∣∣Loadi − Load*
i

∣∣∣ (8)

where n is the number of experimental data points, Loadi represents the predicted load
values, Load*

i indicates the measured load values, and Load is the average load value.

4. Results and Discussion

In this study, we utilized three different ML algorithms to predict the load-displacement
behavior of biocomposite oak sandwich panels. We split the data into 80% for training
and 20% for testing. Using CMA-ES, we fine-tuned the algorithms, and the best hyper-
parameters are listed in Table 3. The evaluation of algorithms, summarized in Table 4,
demonstrates that the GRNN model outperforms both the ELM and SVR models. The
GRNN model showed superior performance with an RMSE of 0.0301, an MAE of 0.0177,
and an R2 of 0.9999 in the training set, and an RMSE of 0.0874, an MAE of 0.0489, and an R2

of 0.9993 in the testing set, indicating near-perfect predictive accuracy and generalizability.
The ELM model also performed well with RMSE, MAE, and R2 values for training of 0.2428,
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0.1690, and 0.9946, and RMSE, MAE, and R2 values for testing of 0.2637, 0.1810, and 0.9940,
showing slightly higher error rates and lower R2 values compared to GRNN, suggesting
that it is robust but slightly less powerful. The SVR model had the lowest performance,
with training RMSE, MAE, and R2 values of 0.5769, 0.3782, and 0.9700, and test RMSE,
MAE, and R2 values of 0.5980, 0.3976, and 0.9695, indicating that it is less accurate and
reliable than GRNN and ELM. The comparative analysis highlights that GRNN is the most
accurate and reliable model for this application, followed by ELM, with SVR being the
least effective. The near-perfect R2 values for the GRNN model suggest it can capture the
intricacies of the material behavior very well, making it the preferred choice for predicting
the load-displacement behavior of biocomposite sandwich panels made from oak.

Table 3. Best hyperparameters.

Model Hyperparameter Value

SVR
C 995.37
ε 0.3591

ELM
Number of neurons 484
Activation function Tanh

GRNN σ 0.00275

Table 4. Summary of evaluation.

Model
Training Dataset Test Dataset

RMSE MAE R2 RMSE MAE R2

GRNN 0.0301 0.0177 0.9999 0.0874 0.0489 0.9993
ELM 0.2428 0.1690 0.9946 0.2637 0.1810 0.9940
SVR 0.5769 0.3782 0.9700 0.5980 0.3976 0.9695

4.1. Load-Displacement Behavior Prediction

The capability of the three models to predict load-displacement behavior is illustrated
in load-displacement Figures 6–10 for both training and test sets. Figures 6 and 7 show that
the GRNN model effectively captures the nonlinear load-displacement behavior, including
the peaks and fluctuations that represent critical points in the structural performance of
the biocomposite panels, for both training and test datasets. GRNN’s architecture, which
includes a highly adaptive neural network structure, allows it to handle complex and non-
linear relationships. This is reflected in its near-perfect predictions. The model accurately
predicts the sharp increases in load followed by peaks and subsequent drops, which is
essential for understanding the failure points and load-bearing capacity of the material.
This ability is especially pronounced in nonlinear regions where other models struggle.

Figures 8 and 9 show that while the ELM model has a robust ability to capture general
trends and patterns, it also has some deviations, especially around the peak load points,
for both training and test datasets. The performance of the ELM model is consistent,
following the initial elastic region and nonlinear behavior up to the peak load, with slight
discrepancies in the peak and post-peak region. Despite these discrepancies, the ELM
model remains a reliable option for predicting load-displacement behavior. Due to its
simpler architecture compared to GRNN, it is less computationally intensive, although this
comes at the cost of some precision in capturing complex behaviors.
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Figure 6. Load-displacement behavior for actual and GRNN predictions on the training dataset of
ample groups A (a), B (b), and C (c).

Figures 10 and 11 for SVR show that although the SVR model provides a reasonable
approximation of load-displacement behavior, it has lower precision compared to GRNN
and ELM models for both the training and test datasets. The SVR model captures the
general trend and slope of the load-displacement curves but struggles to accurately predict
sharp peaks and subsequent drops, which are critical to understanding the structural
performance of the material. The deviations are more pronounced than with the ELM
model, highlighting the limitation of SVR in accuracy at critical points.
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The samples of group C, which shows a rather linear behavior, can be predicted well
with all three models. The linear relationship between load and displacement is simple
for these specimens and represents only minimal complexity. However, when it comes to
nonlinear behavior and complex upwings and downwings, the GRNN model excels in its
ability to effectively capture complicated patterns and nonlinear relationships. The ELM
model also performs well but has slight deviations at critical points, while the SVR model,
although reasonable, has the highest degree of inaccuracy among the three models. The
complexity of the GRNN model’s architecture, which includes a highly adaptive neural
network structure, allows it to handle more complex relationships in the data compared
to the simpler architectures of ELM and SVR. The ability of GRNN to generalize from
the training data to new, unseen data makes it the preferred model for applications that
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require high precision. In contrast, ELM and SVR, while easier to implement and less
computationally intensive, are better suited for applications where general trends are
sufficient and extreme precision is not critical.

Materials 2024, 17, x FOR PEER REVIEW 13 of 24 
 

 

  
(a) (b) 

 
(c) 

Figure 8. Load-displacement behavior for actual and ELM predictions on the training dataset. (a) 
Group A, (b) Group B, (c) Group C. 
Figure 8. Load-displacement behavior for actual and ELM predictions on the training dataset.
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From an evolutionary perspective, these models can be seen as progressively advanced
versions of each other. SVR, a traditional ML method, provides a basis for understanding
linear and some nonlinear relationships. ELM introduces a single-layer feedforward neural
network that improves the model’s ability to learn more complex patterns with shorter
training times. GRNN, the most advanced of the three models, uses a more sophisticated
neural network architecture that can capture highly nonlinear and complex behavior and
shows superior performance in both the training and testing phases. The figures highlight
the superior performance of the GRNN model in both the training and testing phases and
illustrate its robustness and accuracy in modeling the complex load-displacement behavior
of oak biocomposite sandwich panels. This development from SVR to ELM to GRNN
illustrates the increasing complexity and ability of ML models to capture detailed and
nonlinear relationships in data.
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(a) Group A, (b) Group B, (c) Group C.
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4.2. Prediction of Load-Displacement Behavior

The cross plots illustrate the predictive capabilities of the GRNN, ELM, and SVR
models by comparing the actual and predicted load values for both training and test
datasets. In Figure 12a,b, the GRNN model shows outstanding performance, with the
predicted load values closely matching the actual values for both the training and test
datasets. Figure 12c,d shows the performance of the ELM model. While it accurately
predicts the load values for the training data, the scatter is somewhat more pronounced
compared to GRNN. The test data shows larger deviations from the diagonal line, indicating
a decrease in accuracy. Despite these minor discrepancies, ELM remains a strong performer,
albeit not as robust as GRNN, especially in more complicated load-displacement scenarios.
Figure 12e,f illustrates the results of the SVR model. The training data shows a reasonable
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fit, but the deviations from the diagonal line are more pronounced. The test data reveals
even greater scatter, highlighting the difficulties of SVR in generalizing and accurately
capturing the complex, nonlinear behavior of the load-displacement relationship.
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Figure 12. Cross-plots for (a) GRNN (train), (b) GRNN (test), (c) ELM (train), (d) ELM (test), (e) SVR
(train), and (f) SVR (test).

A Taylor diagram is a powerful graphical tool for evaluating the performance of
predictive models. It displays three statistics simultaneously: The R2 value (which indicates
the accuracy of the prediction), the standard deviation (which indicates the dispersion or
variability), and the RMSE (which reflects the difference between predicted and observed
values). This comprehensive visualization enables an intuitive comparison of how well
the different models replicate the observed data. For the training phase (Figure 13a), the
Taylor diagram shows that the GRNN model (orange circle) is closest to the observed data
point (black star). This proximity indicates that the GRNN model achieves the highest
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correlation and the most accurate standard deviation, reflecting excellent agreement with
the training data. The ELM model (blue square) also performs well but with slightly lower
accuracy compared to GRNN. The SVR model (green diamond) is furthest away from the
observed data, indicating a lower correlation and a higher standard deviation. For the test
data (Figure 13b), the Taylor diagram confirms that GRNN is closest to the observed data,
demonstrating its superior generalization ability. Although the ELM model is still accurate,
it shows a slight decrease in accuracy compared to GRNN. The SVR model shows the
largest deviations, indicating the lowest predictive performance among the three models.
These results highlight the superior ability of GRNN to model the load-displacement
behavior of biocomposite sandwich panels, followed by ELM, with SVR showing the
lowest accuracy. The Taylor diagram effectively illustrates the progressive improvement in
model performance from SVR to ELM to GRNN.
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The area under the curve (AUC) is a metric used for evaluating the performance of
models and, while traditionally applied to classification models, it can also be adapted for
regression models. In this context, AUC measures the area under the curve on a plot of
accuracy versus deviation. A higher AUC value indicates better performance of the model,
as it signifies a greater ability to predict continuous outcomes accurately. In the training
phase (Figure 14a), the AUC values show the superior performance of the GRNN model
with an AUC value of 0.966. This high value indicates excellent accuracy and predictive
ability. The ELM model follows with a respectable AUC value of 0.880, showing good
performance but not reaching the precision of GRNN. The SVR model has the lowest AUC
at 0.814, reflecting its comparatively lower accuracy in the training phase. In the test dataset
(Figure 14b), the AUC values further confirm the hierarchy observed in the training phase.
GRNN achieves the highest AUC value of 0.962, underlining its robust generalization
ability. The ELM model achieves good performance with an AUC value of 0.840, which is
slightly lower than in the training phase, but still reliable. The SVR model continues to have
the lowest accuracy with an AUC of 0.747, indicating its difficulty in generalizing to unseen
data. These quantitative results of the AUC metrics highlight the better performance of
the GRNN model in capturing the load-displacement behavior of biocomposite sandwich
panels. The ELM model, while effective, falls short of the precision of GRNN, and the SVR
model with the lowest AUC values shows the least effectiveness in both the training and
testing phases. This comprehensive analysis confirms GRNN as the most accurate and
reliable model for this application, followed by ELM and then SVR.
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A Williams plot is a diagnostic tool used to evaluate the applicability domain (AD)
of a predictive model. It plots the leverage values on the x-axis against the standardized
residuals on the y-axis. the leverage values show the influence of the individual data points
on the model, while the standardized residuals reflect the prediction errors. Points that lie
within the limits of ±3 standardized residuals and below a certain leverage threshold are
considered to be within the AD of the model, which means that the prediction of the model
for these points is reliable. In Figure 15, the Williams plot for the GRNN model shows the
standardized residuals versus the leverage values for both the training and test datasets.
The green dashed line represents the leverage limit, and the purple dashed lines indicate
the boundaries for the standardized residuals. The plot shows that 98.05% of the training
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samples fall within the applicability domain. This high percentage demonstrates that the
GRNN model has learned effectively from the training data, with most points showing
low leverage and residuals within the acceptable range. The few points outside these
limits indicate minimal outliers that have a negligible impact on the overall performance
of the model. Similarly, 97.43% of the testing samples are within the applicability domain,
indicating a strong generalization of the GRNN model to new, unseen data. The majority
of the test data points also exhibit low leverage and standardized residuals within the
acceptable range, confirming the reliability of the model’s predictions. The Williams plot
highlights the superior performance of the GRNN model, with a high percentage of data
points within the applicability domain for both the training and test datasets. This confirms
the robustness and accuracy of the GRNN model in predicting the load-displacement
behavior of biocomposite sandwich panels.
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Figure 15. Williams plot illustrating the performance of GRNN.

Figure 16 shows the error between the predicted and actual load. In the training
set, the errors are predominantly in the range of −0.5 to 0.5, indicating a high degree of
accuracy and a good fit, as the errors are symmetrically distributed around zero, showing
no significant bias. The test set exhibits a similar error range of −0.5 to 0.5, with slightly
more variability compared to the training set, which could be attributed to the unseen data
in the test set. These low and symmetric error ranges in both sets highlight the strong
predictive performance and robust generalization capabilities of the model.
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Figure 17 presents the relative error for the training set, showing that the relative
errors are mainly in the range of −0.5 to 0.5, with the higher errors concentrated at lower
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displacements. This trend indicates that while the model performs well overall, its accuracy
decreases when it predicts smaller displacements. In the test phase, the relative errors
are also generally in the range of −0.5 to 0.5, with few peaks of up to 1.0, again mainly
at smaller displacements. The decrease in relative error with increasing displacement
shows that the accuracy of the model increases with larger displacements. Taken together,
these plots confirm that most predictions are very accurate in both the training and testing
phases, highlighting the effectiveness of the GRNN model in predicting load-displacement
behavior. Despite some increase in error for the test set, the overall performance remains
strong, highlighting the reliability and robustness of the GRNN model.
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5. Conclusions 
This study investigated the mechanical behavior of biocomposite sandwich struc-

tures under quasi-static out-of-plane compression using ML algorithms to predict load-
displacement behavior. A comprehensive dataset of experimental mechanical tests focus-
ing on compressive loading was used to evaluate three ML models: GRNN, ELM, and 
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indicating better performance compared to the other models. 

• The Williams plot indicated a high percentage of data points within the application 
range for the GRNN model, confirming its robustness and accuracy in predicting 
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Figure 17. Relative error distribution for the GRNN model.

5. Conclusions

This study investigated the mechanical behavior of biocomposite sandwich struc-
tures under quasi-static out-of-plane compression using ML algorithms to predict load-
displacement behavior. A comprehensive dataset of experimental mechanical tests focusing
on compressive loading was used to evaluate three ML models: GRNN, ELM, and SVR,
using performance metrics such as R2, MAE, and RMSE. The data was split 80% for training
and 20% for testing, with the optimal hyperparameters for each model, determined using
CMA-ES. The main results can be summarized as follows:

• The GRNN model showed a high predictive accuracy with a high R2 value, a low
MAE and RMSE value, and a good generalization that effectively captures the complex
nonlinear load-shift behavior.

• The SVR model was less powerful and showed less accurate predictions with a
lower R2 value, a higher MAE and RMSE, and difficulties in predicting strong peaks
and fluctuations.

• The ELM model captured general trends and patterns well but had some accuracy issues
with load peaks, making it more suitable for general rather than detailed predictions.

• The Taylor diagrams showed that the GRNN model had the highest correlation and the
most accurate standard deviation and therefore performed better than the other models.

• The GRNN model had the highest AUC values for both the training and test data,
indicating better performance compared to the other models.

• The Williams plot indicated a high percentage of data points within the application
range for the GRNN model, confirming its robustness and accuracy in predicting
load-displacement behavior and its reliability for practical applications.

This study demonstrates the crucial role of ML in understanding and optimizing
the mechanical behavior of biocomposites, resulting in lower costs, less time, and faster
design and laboratory processes. Through the use of GRNN algorithms, the analysis of
biocomposite sandwich structures under quasi-static compression can minimize the need
for extensive physical testing and enable precise optimization of material properties.
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