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Abstract: This paper provides a comprehensive review of recent advancements in computational
methods for modeling, simulation, and optimization of complex systems in materials engineering,
mechanical engineering, and energy systems. We identified key trends and highlighted the integration
of artificial intelligence (AI) with traditional computational methods. Some of the cited works were
previously published within the topic: “Computational Methods: Modeling, Simulations, and
Optimization of Complex Systems”; thus, this article compiles the latest reports from this field. The
work presents various contemporary applications of advanced computational algorithms, including
AI methods. It also introduces proposals for novel strategies in materials production and optimization
methods within the energy systems domain. It is essential to optimize the properties of materials used
in energy. Our findings demonstrate significant improvements in accuracy and efficiency, offering
valuable insights for researchers and practitioners. This review contributes to the field by synthesizing
state-of-the-art developments and suggesting directions for future research, underscoring the critical
role of these methods in advancing engineering and technological solutions.

Keywords: artificial intelligence; machine learning; modeling; simulation; optimization; complex
systems; material engineering; energy systems

1. Introduction

In recent years, an intense increase in interest in artificial intelligence and compu-
tational methods has been observed. Their main goal is to create and identify systems
incorporating or exhibiting intelligence, including human and animal behavior. They
connect with other fields, e.g., mathematics, neuroscience, epistemology, mental health
studies, and language studies, as well as informatics. Hence, artificial intelligence (AI),
including machine learning (ML) are increasingly wide applications for complex systems.

Since this paper reviews recent developments in artificial intelligence and compu-
tational methods focusing on the modeling, simulations, and optimization of complex
systems in materials science, we should start by discussing emerging trends in AI, as now
we can conduct virtual simulations that provide us with a depiction of the information
landscape based on current knowledge.

In their article, Gill et al. [1] presented the latest studies and possible future trends in
cloud computing, AI/ML, and quantum computing. They further explored the hurdles
and possibilities in utilizing AI, including ML, within advanced computing frameworks,
such as fog, edge, serverless, and quantum environments, as well as cloud computing
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architectures. In paper [2], the authors reviewed fog computing and machine learning,
covering theories, practical uses, obstacles, and unresolved questions.

An innovative method for creating neuromorphic electronic devices with extremely
low energy usageis provided in [3]. The authors highlighted that these devices can repli-
cate typical biological synaptic functions, such as excitatory postsynaptic currents, short-
and long-term plasticity, and the process of “learning”, using vertical organic field-effect
transistor-based optoelectronic synaptic devices.

Artificial intelligence can also be used to design electromagnetic materials. In pa-
per [4], the authors presented, among other things, the potential applications of negative
permittivity materials (considered a supernormal property) in dielectric capacitors and
electromagnetic shielding. The authors of article [4] offered guidance for fabricating flexible
materials with negative permittivity.

They presented results of preparing the flexible cementite/ferro ferric oxide/silicon
dioxide and carbon nanofibers, exhibiting weak and low-frequency dispersion with nega-
tive permittivity, fabricated via electrospinning and high-temperature carbonization. Jiaqi
Jiang et al. [5] discuss utilizing convolutional neural networks and recurrent neural net-
works in photonic devices. They pointed out that trained deep neural networks can serve
as high-speed surrogate electromagnetic solvers.

A review of various AI-based techniques utilized in intestinal endoscopy to detect
colonic polyps can be found in [6]. The authors stated that AI-based platforms have
achieved clinically acceptable diagnostic efficiency in the automated diagnosis of polyps.

In the paper [7], Svítek explored the expanded concept of information systems, in-
corporating pure quantum principles utilizing wave probability functions analogous to
electrical circuits and quantum physics. The key parameter addressed was the manage-
ment of information flux and information richness, ensuring equilibrium. According to Tao
et al. [8], the effectiveness of feature extraction is crucial in speech emotion recognition. The
authors introduced a multi-stream convolutional recurrent neural network utilizing the at-
tention mechanism (MSCRNN-A). It enabled the extraction of discriminative, affect-salient
features from speech signals and improved speech emotion recognition.

Jonathan Schmid et al. [9] discussed ML algorithms for crystal structure prediction. The
authors underlined the high potential of integrated ML techniques with other numerical
methods, including molecular dynamics and global structural prediction, for material
science tasks. Valentin Stanev et al. [10] discussed AI models used in quantum materials.
Moreover, they proposed a real-time closed-loop idea for autonomous systems in materials
research and optimization.

The dynamic development of artificial intelligence and other computational methods
makes it necessary to organize the latest achievements in this paper. The review seeks
to integrate research on advancements in complex systems modeling, simulations, and
optimization challenges. It collects current and timely papers on artificial intelligence
and other computational methods. The paper considers optimization techniques and
algorithms, new strategies in advanced computing, and AI approaches, providing potential
research directions in different fields, especially in materials engineering, presented in
detail in the following chapters of the manuscript (Figure 1).

Therefore, the review aims to synthesize state-of-the-art developments in compu-
tational methods, identify the most effective algorithms for specific applications, and
advocate for integrating AI with traditional methods to accelerate scientific and technologi-
cal progress.
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Figure 1. Scheme of approach utilizing a combination of artificial intelligence and computational
methods for complex system modeling, optimization, and simulations.

2. Methodology

As modern data processing systems gain greater computational power, new possibili-
ties arise for the modeling, simulation, and optimization of complex systems and devices.
In various scientific and technological fields, comprehensive and advanced models can be
developed using challenging, resource-intensive, and time-consuming techniques. By inte-
grating AI algorithms with computational strategies, including numerical and alternative
methods, it becomes feasible to perform parallel analyses and address sophisticated and
interdisciplinary issues.

The papers discussed in this review are selected based on the performance and effec-
tiveness of the methods and approaches considered, providing a better focus on specific
problems that can be useful for readers.

The central axis of the paper is the broad research area of papers published on the
Topic “Artificial Intelligence and Computational Methods: Modeling, Simulations, and
Optimization of Complex Systems”, which covers 74 published papers.

To ensure a robust and systematic review, we employed a structured literature search
strategy. We searched several reputable databases, including IEEE Xplore, ScienceDirect,
SpringerLink, and Google Scholar. Our search utilized specific keywords such as “artificial
intelligence, “machine learning”, “modelling”, “simulation”, “optimization”, “complex
systems”, “material engineering”, “energy systems”. Using the aforementioned keywords
and databases, the most relevant paper were identified. These articles were screened based
on their relevance to our research objective, narrowing the selection. A detailed review
of the selected papers was conducted, focusing on their methodologies, findings, and
contributions to the field.

Such a vast amount of material resulted in a wide range of topics discussed, which is
an absolute value of the presented review.

3. Advanced Computational Methods for System Analysis and Prediction

Advanced computational techniques are divided into several categories, including
classification techniques, which are not always independent of one another and can be
used not only in the classification tasks. Some of them are listed throughout the paper.
However, it is important to emphasize that each category is characterized by a different
methodological approach.

Machine learning (ML) is considered a data-driven approach. ML algorithms are
designed to learn patterns and make predictions based on data. On the other hand,
numerical simulation term is encompassed within the broader category of mathematical
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modeling and numerical methods. Mathematical modeling involves the formulation of
mathematical models of real-world systems or processes, while numerical methods refer to
a range of computational techniques used to approximate solutions to these mathematical
models, especially when analytical solutions are intractable.

Computational methods for system analysis and prediction refer to sophisticated
techniques and approaches used in computational science to analyze complex systems and
make predictions based on the available data. These methods often involve using advanced
mathematical models, algorithms, and computational tools. They are used to simulate,
explore, and predict the behavior of intricate systems in various domains, such as material
science, engineering, physics, biology, and finance.

Key aspects and techniques of advanced computational techniques for system analysis
and prediction are as follows:

• Mathematical modeling and numerical methods: This includes using differential
equations to describe various systems and employing numerical methods to solve
these equations numerically. For example, agent-based modeling represents individual
entities (agents) and their interactions to simulate the entire system’s behavior [11,12].

• Numerical simulation: Techniques such as Finite Element Analysis (FEA) are widely
used in engineering tasks to analyze and predict the behavior of structures and ma-
terials under various conditions. Similarly, Computational Fluid Dynamics (CFD) is
applied to simulate the flow of fluids and predict their interaction with solid bound-
aries [13–15].

• Machine learning and artificial intelligence: These algorithms are trained on historical
data to predict future events or trends. Machine learning can be seen as both a data-
driven approach and an optimization technique, and it is also included under the
broader umbrella of artificial intelligence. Deep learning models, such as neural
networks, are used for complex pattern recognition and prediction tasks, forming a
subset of artificial intelligence [16–19].

• Optimization techniques: These often use genetic algorithms inspired by natural
selection to solve optimization problems where the search space is very extensive [20].

• Data-driven approaches: Techniques like big data analytics are used for analyzing
large datasets to extract meaningful patterns and trends for prediction purposes. Data
assimilation integrates observational data into models to improve their accuracy over
time [21,22].

• Complex systems theory: This includes the study of nonlinear dynamics, which inves-
tigates how dynamic systems respond to initial states with high sensitivity, leading
to seemingly random results. Network theory, used for analyzing the interactions
and dependencies among components in a system represented as a network, is an-
other branch of complex systems theory. These principles are crucial in mechanical
engineering applications, such as the development of soft sensors for predicting tem-
perature fields in rotary kilns and the implementation of image recognition systems
for temperature control in industrial processes [23,24].

• Uncertainty quantification: Methods such as Monte Carlo simulation generate ran-
dom samples to estimate the probability distribution of uncertain parameters, while
Bayesian methods incorporate prior knowledge and update predictions based on new
data [25,26].

• High-performance computing (HPC): This leverages the power of supercomputers
and parallel processing to handle large-scale simulations and analyses [27–29].

Some very interesting examples of research using different techniques of advanced
computational methods for system analysis and prediction are presented in the following
paragraphs. They include an extensive learning framework utilizing the sparrow search
algorithm, a hybrid-flash butterfly optimization algorithm, an attention-based isolation
forest approach, and others.
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3.1. The Sparrow Search Algorithm

An analysis of predicting network interface flow utilizing a comprehensive learning
system based on the sparrow search algorithm was conducted, as discussed in [30]. In
addition to various metrics used for assessment, a moving average (1—mean absolute
percentage error) was also employed as an additional evaluation indicator. The smaller
the first four errors and the higher the moving error, the better. This means that while
the mean squared error, the root mean squared error, the mean absolute error, and the
mean absolute percentage error are closer to zero, and the moving error is closer to 100%, it
signifies enhanced model prediction accuracy.

To streamline the intricate manual parameter tuning process and achieve optimal
combinations of hyperparameters, the authors utilized novel search techniques to fine-tune
the shrinkage coefficient (r) and regularisation coefficient (λ) in the expansive learning
framework. This aimed to improve the model’s predictive precision. Subsequently, a
model was constructed using a broad approach to learning for predicting traffic patterns.
Specifically, the traffic flow values from the interval [t − 1, t] were utilized as key indicators
for predicting traffic at time t + 1. The parameters obtained earlier were integrated into the
network for training the prediction model for network traffic. Finally, model performance
was evaluated through training on two publicly available network flow datasets and precise
traffic data from an enterprise cloud platform switch interface. A comparative analysis
was performed across different methodologies, including long short-term memory, among
others. The authors of [30] presented the experimental findings from a core network traffic
dataset in European cities in Table 1. SSA-BLS and SCN demonstrated the lowest MSE
and RMSE values among the models evaluated, signifying superior prediction accuracy.
The SSA-BLS model, in particular, achieved an MSE of 0.0159 and an RMSE of 0.1261,
outperforming other models like ELM and LSTM, which had considerably higher error
rates. Furthermore, SSA-BLS sustained a high mean accuracy of 97.06%, highlighting its
effectiveness in predicting network traffic. Traditional models, such as ELM and LSTM,
perform inferior to more advanced models like SSA-BLS and SCN.

Table 1. Experimental results of a core network traffic dataset in European cities [30].

Mean
Squared

Error

Root Mean
Squared

Error

Mean
Absolute

Error

Mean
Absolute

Percentage Error
Moving Average

Sparrow Search Algorithm Broad
Learning System (SSA-BLS) 0.0159 0.1261 0.0937 0.0294 97.0572%

Stochastic Configuration
Networks (SCN) 0.0155 0.1244 0.0935 0.0296 97.0434%

Extreme Learning Machine (ELM) 0.1395 0.3686 0.2711 0.0780 92.1975%

Long Short-Term Memory (LSTM) 0.0781 0.2502 0.1885 0.0518 94.8246%

The experiments revealed that this approach demonstrated higher prediction accuracy
than alternative methods, achieving moving averages of 97% for a primary urban network
traffic dataset (Table 1), 98% for a dataset from the UK academic backbone network, and
99% for traffic observed on an enterprise cloud platform switch interface.

3.2. Hybrid-Flash Butterfly Optimization Algorithm

An interesting optimization approach was described in [31], employing a hybrid-flash
butterfly optimization algorithm (HFBOA) tailored for addressing engineering-constrained
optimization challenges. The butterfly optimization algorithm (BOA) traditionally focuses
solely on the smell perception rule, rendering it susceptible to local optimum traps. In
contrast, the HFBOA introduces an additional operator, namely the color perception rule,
aiming to align the algorithm with the natural foraging behaviors of butterflies. Further-
more, the HFBOA incorporated an updated strategy for control parameter adjustment
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through logistic mapping, enhancing its global optimization capabilities. The method’s
efficiency was evaluated using twelve benchmark functions, with comparative experi-
ments indicating that the HFBOA exhibited faster convergence and greater stability in
addressing numerical optimization challenges compared to other advanced optimization
techniques. Moreover, the HFBOA successfully addressed a variety of engineering opti-
mization tasks. Simulation results confirmed its effectiveness in solving complex real-world
engineering challenges.

3.3. Curriculum Reinforcement Learning

With the ongoing advancement of reinforcement learning techniques in intelligent
systems, incorporating adaptive learning strategies could potentially boost algorithmic
effectiveness and optimize learning processes. This integration is particularly beneficial
across varying difficulty levels. Many existing automatic curriculum learning algorithms
rely on expert experience and a single network for curriculum ranking, leading to chal-
lenges in accurately ranking curriculum tasks and achieving swift convergence. Therefore,
an examination of reinforcement learning methodologies utilizing robust validation tech-
niques was presented in [32], addressing advanced computational methods for system
analysis. The authors introduce a curriculum reinforcement learning technique to estimate
task curricula’ relative difficulty scores. Drawing inspiration from the human notion of
advancing from simple to complex in educational learning, the technique splits automated
educational progression into two phases: an educational challenge evaluation phase and
an educational arrangement phase. This strategy enables enhanced ordering of educational
tasks through concurrent instruction of the teaching model and mutual assessment of the
complexity of task examples. The reinforcement learning method based on automated
curriculum learning offers the benefits of rapid solution speed and robust model general-
ization, making it particularly effective for addressing optimization problems in industrial
settings. Additionally, it can introduce new strategies and concepts for tackling combina-
torial optimization challenges. In conclusion, using automatic curriculum learning with
K-Fold cross-validation improves the training speed of the Multi-Agent Deep Deterministic
Policy Gradient (MADDPG) algorithm. Furthermore, it demonstrated a degree of gener-
alizability for multi-agent deep reinforcement learning algorithms that utilize the replay
buffer mechanism.

3.4. Attention-Based Isolation Forrest

The application of advanced computational methods for anomaly prediction was
effectively investigated in [33]. The authors introduced a novel adaptation of the isolation
forest as the Attention-Based Isolation Forest (ABIForest) to address the anomaly detection
challenge. This modification integrated an attention mechanism, specifically the Nadaraya–
Watson regression, into the isolation forest framework to enhance anomaly detection
solutions. The core concept behind this enhancement involved assigning attention weights
to individual paths within the tree structure. Using Huber’s contamination model was
recommended for specifying these focus magnitudes and their associated characteristics.
Subsequently, the focus magnitudes rely linearly on adjustable focus characteristics, opti-
mized through resolution of a conventional linear or quadratic optimization issue. Notably,
ABIForest represented the initial modification of the isolation forest that straightforwardly
incorporates an attention mechanism without resorting to gradient-based algorithms.

3.5. Clustering-Based Redundancy Identification

Wu et al. used a different approach [34]. The authors adopted a distinct strategy,
suggesting model pruning based on structural redundancy. They argued that recognizing
functionally similar filters is crucial and introduced a model pruning centers on clustering-
based redundancy detection. A corresponding iterative pruning scheme was proposed to
address the issue of prolonged compression periods resulting from excessive fine-tuning.
Thorough testing confirmed the efficacy of their compression approach. Detailed evalua-
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tions across various network architectures and datasets demonstrate the robustness of the
framework put forward by the authors.

The above-described applications of computational algorithms and AI methods pri-
marily motivate the expansion of practical implementation areas of these advanced tools.
Such areas could include the management of geothermal energy systems or the modeling
of chaotic processes, which are addressed in the following sections of the review paper.

3.6. The Gradient-Boosted Regression Tree for Geothermal Heat Flow

A very interesting prediction analysis concerning terrestrial heat flow using a machine
learning method was featured in [35], leveraging a variety of geological and geophysical
data sources. Geothermal heat flow is a crucial parameter in exploring geothermal energy.
The cost often becomes a barrier when obtaining dense heat flow measurements across a
study area. Nevertheless, expanding the few and scattered measurements of heat flow is
imperative for understanding the regional geothermal landscape. Therefore, the research
holds significance in generating a dependable map of terrestrial heat flow, laying the
groundwork for future geothermal resource development. The gradient-boosted regression
Tree (GBRT) prediction model was employed to address the challenge of insufficient heat
flow observations. The model incorporated 12 geological and geophysical features to
train sample data, thereby considering the geological and geophysical characteristics of
the region. The result of the carried-out research was a robust GBRT prediction model.
Performance evaluation involved comparing the GBRT method with kriging interpolation,
as well as other interpolation techniques, through an analysis of prediction performance.
The authors randomly separated 379 geodetic heat flow samples from the North China
Craton, utilizing 80% for training and the remaining 20% for validation, and applied
the previously mentioned methods for prediction. Subsequently, the outcomes were
evaluated against the observed values in the validation set. The linear correlation analysis
between the validation set’s heat flow measurements and the predicted values from the four
methods showed that the average absolute errors for the GBRT, the kriging interpolation,
the minimum curvature interpolation, and the 3D interpolation methods were 10.10, 10.59,
11.01 and 12.52, respectively. The lowest error characterizes the GBRT method, and the 3D
interpolation gains the highest error of all the analyzed methods. The normalized mean
square error was 0.22, 0.23, 0.24, and 0.30, respectively, indicating similar error values
behavior for the analyzed methods. Therefore, the GBRT exhibited the highest accuracy
among the four methods, whereas the 3D interpolation demonstrated the lowest. The
new prediction model produced a heat flow map at a 0.25◦ × 0.25◦ resolution, offering
a more detailed and accurate depiction of terrestrial heat flow distribution compared
to interpolation results. Its reliability in obtaining precise results in areas with limited
and irregularly distributed heat flow observations was proven, contributing to a more
comprehensive understanding of geothermal conditions.

3.7. Support Vector Methods

Incorporating artificial intelligence into mechanical materials marks a pioneering
approach that brings about a revolutionary shift in the predictive modeling process. This
integration signifies a technological advancement and heralds a transformative paradigm,
fundamentally reshaping the landscape of predictive modeling in mechanical materials.
By leveraging the potential of artificial intelligence, specifically through machine learning
algorithms like linear regression (LIR) and support vector regression (SVR), it becomes
possible to discern intricate relationships among a diverse range of variables precisely. This
technological advancement enables precise prediction of mechanical properties, thereby
optimizing the engineering material design process [36]. This approach was employed
in the work by Ward et al. [37]. Their methodology utilizes a chemically diverse set of
attributes, convincingly illustrated to be well-suited for describing a broad spectrum of
properties. Furthermore, they introduce an innovative approach to partitioning the dataset
into clusters of similar materials, thereby enhancing predictive accuracy. This dual-pronged
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strategy highlights the versatility of the chosen attributes in capturing diverse properties.
It underscores the significance of their novel data partitioning method in improving the
precision of predictions for a wide range of materials. Progress in AI-based methods,
data acquisition, and management techniques manifests in many ways. For example, Li
and Liu [38] proposed a predictive strategy that guides investment and decision-making
processes based on time-series data analysis. The authors concluded that the support-
vector-machine-based (SVM) method provided the best prediction performance using
easily accessible data. Additional values of the proposed approach include its capacity to
impact future developments and its ability to shed light on market trends.

3.8. Solution for Modeling Chaotic Behavior

Many researchers apply machine learning to predict chaotic time series, as it has posed
a persistent challenge in recent decades. A very interesting research in this area is presented
in [39], where a hybrid approach has been devised, integrating the Hankel Alternative
View Of Koopman (HAVOK) analysis with machine learning (HAVOK-ML) to enhance the
accuracy of chaotic time series predictions. HAVOK-ML employs a closed linear model
reconstruction to simulate the time series, effectively facilitating the prediction process.
Through HAVOK analysis, chaotic dynamics are deconstructed into intermittently forced
linear systems, and machine learning is utilized to estimate the external intermittently
forcing term. Evaluations of prediction performance affirm that the proposed method
exhibits superior forecasting capabilities compared to other prediction methods. Hu and
Mao [40] introduced the Global Recurrence Plot (GRP)-based Generative Adversarial
Network (GAN) and the Long Short-Term Memory (LSTM) combination method, named
GRP-LSTM-GAN, for forecasting rotary kiln temperatures. They developed a GRP model
to convert 1D chaotic time series into 2D images, capturing global and local features. This
resulted in the creation of a GRP-LSTM-GAN prediction model that outperforms existing
methods in terms of prediction accuracy. The comparison of methods is given in Table 2.

Table 2. Comparison of Sintering Temperature prediction methods to the combined GRP-LSTM-
GAN method.

Method Short Overview of Method Characteristics

A thermal model of a rotary kiln [1]
Predicts heat transfer, temperature distribution in bed and
refractory wall, considers dynamic interactions in kiln
environment.

Modeling of a soft temperature field
sensor in a rotary kiln [41]

Predicts temperature distribution using computational
fluid dynamics and multilayer perceptrons, utilizes air
temperature, speed, and material mass flow as input data.

Dynamic feature method of a series
of blurry flame images [42]

Accurately segments flame regions from blurry images,
extracts luminous and dynamic features to address rapid
temperature fluctuations.

Generative Adversarial Networks
(GAN) [43]

Captures data distributions through unsupervised
learning, generates realistic synthetic data, applied in
image analysis, video processing, and
language comprehension.

Global Recurrence Plot (GRP) [44]
Visualizes recurring patterns in data, enhances
understanding of data relationships in signal processing
and time-frequency analysis.

Long Short-Term Memory
(LSTM) [45]

Integrates mechanisms for long-term information
retention in machine learning applications, overcomes
training difficulties in sequential data analysis.

GRP-LSTM-GAN method [40]
Transforms time series into images, maximizing the
utilization of temporal data to enhance temperature
prediction using LSTM-enhanced GAN models.
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The experiments demonstrated that this approach enhances the convergence speed
of the model and generates more lifelike GRPs. Furthermore, relationship between the
input variables was examined. The strongest link with coal usage occurred with a 178-unit
delay in the temperature data. This indicates that the model achieved its best predictive
accuracy for temperature with a 178-time unit lag, using both coal usage and temperature
information. Sintering temperature (ST) in rotary kilns is a fundamental system parameter,
playing a pivotal and widespread role in controlling the sintering process. It significantly
influences production quality and energy consumption, making it a crucial factor in sinter-
ing technology. Consequently, investigating sintering temperature holds great value for
industrial applications [46].

Geng et al. [47] employed a dual-population-based evolutionary algorithm designed to
handle constrained many-objective problems, known as DP-NSGA-III. Compared to exist-
ing Constrained Many-Objective Evolutionary Algorithms (CMaOEAs) [48], DP-NSGA-III
evolves through the exchange of offspring between two populations. The primary obstacle
in dealing with Constrained Many-Objective Optimization Problems (CMaOPs) lies in
finding a balance between feasible and infeasible solutions. An ε-constraint handling
approach was devised with NSGA-III, aiming to leverage the strengths of excellent in-
feasible solutions within the primary population. The method is graphically presented
in Figure 2. The authors demonstrated the effectiveness of the suggested algorithm in
efficiently resolving CMaOPs.
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Enhancing materials’ strength and energy absorption properties is crucial to devel-
oping materials technology [49]. The introduction of the pelican optimization algorithm
(POA) has been refined by Mei et al. [50], who utilized the Latin hypercube sampling (LHS)
method and the Chaotic mapping (CM) techniques to enhance the random forest (RF) model
for forecasting the seismic properties of an innovative seismic rubber-concrete material.
The findings from the conducted research suggest that predicting strength is remarkably
accurate for rubber, whereas cement proves to be a reliable material when forecasting en-
ergy absorption properties. This study indicates that using intelligent models for assessing
the seismic performance of materials represents a practical and simplified methodology.

These achievements in using artificial intelligence and computational algorithms to
optimize, model, and predict complex systems confirm their application potential. The
further increase in available computer computing power encourages the search for new
computational algorithms, such as gene expression programming.
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3.9. Gene Expression Programming

One example of the use of gene expression algorithms in materials science is the design
of materials with specific mechanical properties. Predictive models have been developed
to effectively estimate the shear strength of an exterior reinforced concrete joint. The main
factors considered when establishing the strength were the geometry of the beam and
column, the material properties of concrete and steel, longitudinal and shear reinforcement,
and axial loads on the column. Another factor in favor of using gene expression algorithms
in the study of material strength was the need to improve the accuracy of shear strength
predictions in reinforced concrete joints. This is because the structural failure of beam-
column connections has been identified as a major cause of building collapses during
earthquakes. Gene expression programming (GEP) is a widely used method capable of
handling input data across various domains. GEP encodes chromosomes as linear and
nonlinear sequences with varying dimensions and configurations. This characteristic of
GEP enhances its efficiency compared to other methods like genetic programming and
evolutionary strategies [51–53]. GEP functions by creating models from supplied data
without being limited to a specific domain. The main difference between GEP and genetic
algorithms (GA) is the type of chromosome representation. GEP includes a linear string of
fixed length and a multidimensional branching framework with various potential sizes and
configurations. In GAs, “chromosome” refers only to a linear string of characters of constant
length. In contrast, in genetic programming (GP), “chromosomes” refers to non-linear
entities of different sizes and shapes. GEP identifies the top candidates from the initial
population to discover optimal solutions. Notably, increasing the number of genes and
chromosomes in GEP can result in complex functions ideally matched to their outcomes.
Thus, one must balance obtaining a straightforward mathematical representation with
limiting the number of genes and chromosomes to achieve the desired level of accuracy.
For the research, an extensive database of 256 experiments was compiled to estimate the
shear capacity of exterior reinforced concrete joints subjected to cyclic loading. Among
these, 156 experiments involved shear reinforcement, while 100 did not. A random subset
of 256 experiments was chosen as calibration data to refine the models; the rest were used
for validation. Early studies have shown that the shear strength of the joint is proportional
to the compressive strength of concrete and the shear reinforcement per joint but inversely
proportional to the joint aspect ratio. The gene expression algorithm used in the study
showed a very high coefficient of determination R2, which was 0.94 for the unreinforced
exterior joint and 0.93 for the reinforced joints. This is an increase compared to other models
cited in the study from the work of [54–57]. The shear strength values were 0.55–0.88 for
the unreinforced exterior joint, depending on the model used. An increase was also noted
for the reinforced joints, as the range of previous models was 0.39–0.89. Figure 3 shows the
flowchart demonstrating the model selection in gene expression programming.

Finally, fuzzy logic and neuro-fuzzy methods are compelling approaches that effec-
tively characterize material properties, structures, and behaviors across various complex
systems [58–60]. These AI-driven techniques remain vital in tasks related to classification
and prediction, showcasing their enduring value and relevance in the field.

The unprecedented development of AI algorithms and computational methods allows
for advanced micro and nanoscale material analyses. It enables the modeling of innovative
materials based on a set of desired properties or characteristics of the environment in which
a given material works.
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4. Advanced Computational Methods for Material Modification and Property Prediction

In today’s dynamically evolving world of science and technology, integrating ad-
vanced materials science with artificial intelligence and computational methods unlocks
vast opportunities. This combination allows for designing materials with unique properties.
Additionally, it expands the scope of artificial intelligence for modeling, simulation, and
optimizing complex systems.

4.1. Application of Advanced Computational Methods in the Development of Composite Materials
4.1.1. Composite Shells

Composite shells are recognized for their efficient use of materials and customized
material properties [61]. However, the performance of composite materials relies heavily
on the precise choice of distinct factors. These factors encompass the balance between
matrix and reinforcement, as well as the orientation of reinforcements, significantly influ-
encing the mechanical characteristics of such materials. The production and optimization
of composites pose a significant challenge for computational techniques. Therefore, the
work attempted to optimize composite shells using artificial neural networks as a surrogate
model to traditional computational methods such as the finite element method. The main
problem associated with performing optimization calculations is many input parameters.
The presented surrogate models appear to be a good solution. Models based on neural
networks have coped with problems requiring 17 parameters with high accuracy. The per-
formance of individual neural network surrogate models was assessed against ensembles
composed of five neural networks. The objective was to ascertain which approach yields
more dependable outcomes. While single deep neural network models exhibited diverse
performance, ensembles of deep neural networks were effective in determining the optimal
outcome without requiring extensive verification. The optimization process highlighted the
efficiency of model ensembles, the significance of identifying mode shapes, and a successful
balance between computational resources and optimization performance [61]. It is also
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important to mention that artificial intelligence methods can optimize materials and process
parameters [62] in intensifying mass and heat transfer [63,64].

4.1.2. Liquid Composites

The situation is similar in the process of forming liquid composites. In this case, the
search for new solutions is driven by the complexity of evaluating them. Prototyping
physical composites is costly, and the complexity of simulating the phenomena is a de-
manding computational problem. One way to accelerate calculations related to composite
optimization is presented. The authors [65] emphasize that a critical aspect of optimiza-
tion processes is identifying issues associated with modeling composite manufacturing
processes in advance. This is important for resource utilization and minimizing the cost
of producing a working model. The selection and accuracy of the appropriate quality
of calculations are also essential in composite manufacturing while maintaining a low
computational cost. Economical approaches that prioritize efficiency over precision can
be implemented with minimal risk during the initial stages of optimization. Meanwhile,
slight inaccuracies can be rectified as the process advances [65].

4.1.3. Nanocomposite Membranes

The paper [66] presents the optimization of the elastic modulus for polymeric nanocom-
posite membranes. The mechanical characteristics of polymeric membranes play a pivotal
role in ensuring their success and durability in water treatment technologies. Achieving
optimal mechanical properties in membrane fabrication involves a balance among various
factors such as material composition, additives, processing conditions, porosity, and other
variables. Several variables that need to be optimized demand detailed experimental and
computational investigations. The authors employed the design of experiments (DOEs)
technique to streamline the process and reduce the number of experiments required for
optimal membrane fabrication conditions. This involved using a validated framework with
a computational model to predict elastic behavior. The research focused on optimizing the
elastic modulus of polymeric membranes using DOE, combining computational modeling
and experimental validation. The target was to determine the optimal storage modulus
for polymeric nano-filled membranes at an operating temperature of 35 ◦C, employing a
three-factor–three-level problem in the Taguchi DOE. The experiment scheme obtained
from Taguchi DOE guided the prediction of the storage modulus, facilitating the fabrica-
tion of the polymeric nano-filled membrane with the optimum modulus. The predicted
results indicated that the combination of polyether sulfone (PES) reinforced with 0.3 wt.%
halloysite nanotubes (HNTs) yielded the optimum modulus. The fabricated PES/0.3 wt.%
HNT membrane aligned well with the predicted modulus, showing a percentage error of
only 3%.

4.2. Functionally Graded Materials

Kazemzadeh-Parsi et al. [67] employed the model reduction technique of Proper
Generalized Decomposition (PGD) for analyzing thermo-elasticity in Functionally Graded
Materials (FGMs). This method eliminates the need for repetitive simulations in conducting
parametric analyses, thereby overcoming the challenges posed by high dimensionality and
resolving problems involving numerous parameters. In contrast, conventional grid-based
approaches falter due to computational expenses. FGM proves highly valuable in space-
related technologies, especially when components endure extreme thermal conditions. In
this study, the authors explored material gradation in single, dual, and triple directions.
Additionally, they utilized the resolution of 3D heat transfer equations and the theory of
elasticity equations to achieve a precise temperature distribution and account for all shear
deformations. The crucial role of parametric analysis in designing such materials guided
this decision. This approach is presented in Figure 4.
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Figure 4. A simplified scheme of a layered composite plate with FGM.

Furthermore, the investigation incorporated variations in material properties across
multiple directions to align with the latest advancements in the additive manufactur-
ing of FGM materials. The inception of the PGD approach aimed to address transient
issues through space-time decomposition, steering clear of conventional incremental time-
stepping methodologies.

The authors of the paper [67] provide a solution that could effectively solve problems
associated with many dimensions. In contrast to traditional composite materials, FGMs
do not generate such high interphase stresses, which makes them less prone to failure
than previous solutions [68]. This feature makes FGMs an ideal choice in harsh thermal
environments. It allows for the presence of a part with a pure metallic phase in one
place to provide strength and a pure ceramic phase in another place for high-temperature
resistance. The authors argue that the PGD (Proper Generalized Decomposition) technique
effectively eliminates the problem associated with the curse of dimensionality. It eliminates
the need for repeated simulations to conduct parametric analysis. Thermoelastic analyses
are critical in producing special-purpose materials, including space materials. Future
research directions will focus on the possibility of calculating the exact physical properties
of these materials, not only for FGM plates. The authors plan to extend their calculations
to FGM panels with convex shapes. Other methods of using artificial neural network
models in composite-related problems are also worth mentioning. These materials find
wide applications in materials engineering in various sectors of its operation [69,70].

4.3. Properties and Structures Prediction of Fluoro Perovskites

Habib et al. [71] calculated the physical properties of fluoro perovskites XZnF3 (X = Al,
Cs, Ga, In). Using full-potential linearised augmented plane waves (FP-LAPW) enabled the
determination of various material properties, including structural, elastic, electronic, and
optical characteristics. To consider the influence of exchange and correlation potentials, the
generalized gradient approximation (GGA) was employed during the optimization process.
During the study, the values of the Poisson ratio, Cauchy pressure, and Pugh ratio were
also calculated (Figure 5). The FP-LAPW approach under the generalized gradient approxi-
mation was utilized in [71,72]. The authors modeled the structural characteristics using
the Birch-Murnaghan equation of state by fitting the energy-volume relationship of the
crystal unit cell. The characteristics of the electrons were examined with the GGA method
at specific symmetry points within the first Brillouin zone. In an actual system, electron
density is distributed unevenly, unlike in an ideal free electron gas. As a result, a gradient
correction to the charge density, referred to as the generalized gradient approximation, was
introduced. The authors contend that GGA has been remarkably effective in improving
both the efficiency and accuracy of electronic structure calculations and has emerged as the
most widely used computational method in multielectron systems [71].
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The text presents the importance of elastic constants (Cij) in describing the mechanical
properties of compounds. These constants characterize the deformation of a material
under stress, as well as the stability of the structure. In the case of compounds with a
cubic structure, three constants are sufficient to describe the elastic properties: C11, C12,
and C44 (Figure 6). The measured values of the constant C44 indicate that the compound
CsZnF3 may be stiffer than the remaining compounds. The researchers also determined the
compounds’ elastic anisotropy factor, which is essential in applied sciences and engineering.
All compounds studied had plastic properties due to a Poisson’s ratio higher than 0.26 [71].
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4.4. The Predicting of Fiber Properties

Predicting material properties and structures constitutes the basic applications of
artificial intelligence in materials engineering. The paper’s authors [73] present using
artificial neural networks (ANN) to predict the diameter of nanofibers produced in the
electrospinning process. Metrics corresponding to various ANN architectures depend on
the number of hidden neurons and layers (Table 3). The materials used in the study were
polyvinyl alcohol (PVA) solution, PVA/chitosan, and PVA/aloe vera. Additionally, gelatine
type A (GT)/alpha-tocopherol (α-TOC), PVA/olive oil (OO), PVA/orange essential oil
(OEO), and PVA/anise oil emulsions were used. It is worth noting that attempts to predict
the diameter of fibers produced in the electrospinning process have been analyzed earlier.
For example, Lakshmi Narayana et al. [74] used neural networks to predict the diameter of
3D melt-electrospun polycaprolactone fibers.

Table 3. Matrics of ANN used to predict the diameter of nanofibers [73].

One Hidden Layer Two Hidden Layer Three Hidden Layer

Number of neurons 8 10 8-16 8-20 8-16-3 8-16-5

R2
Training 0.97 0.97 0.98 0.98 0.99 0.98

Test 0.82 0.80 0.86 0.88 0.92 0.93
Validation 0.96 0.97 0.98 0.97 0.97 0.96

MMSE
Training 0.03 0.03 0.02 0.02 0.02 0.02

Test 0.08 0.10 0.06 0.09 0.04 0.03
Validation 0.04 0.03 0.03 0.03 0.03 0.03

The present study [73] used a multilayer neural network with a sigmoidal (logistic)
activation function in the intermediate layers and a linear activation function for the
output. The network underwent training with the Levenberg–Marquardt backpropagation
algorithm. The dataset was partitioned into three groups: training (70%), validation (15%),
and testing (15%). The network’s input layer had four neurons, one for each of the four
electrospinning variables (flow rate, voltage, viscosity, and conductivity). The output layer
comprised one neuron, representing the electrospun nanofiber’s diameter. The authors
tested several neural network configurations, varying the number of neurons in the hidden
layer and the number of hidden layers. Table 3 presents the best network configurations
presented in the study. The authors confirm that the results regarding the number of
neurons in the network are consistent with other studies of this type. However, they cite
a study [75] in which the optimal configurations were those with a single hidden layer
containing 20 neurons. Therefore, utilizing such a configuration may seem intriguing
when comparing two similar networks. Nevertheless, this comparison was not provided.
The optimal configuration was a network with three hidden layers of the 8-16-3 topology.
This configuration had the lowest minimum mean squared error (MMSE) and the highest
coefficient of determination R2 between the predicted and experimental fiber diameters.
The results of this study show that artificial neural networks can be used to accurately
predict the diameter of nanofibers produced in the electrospinning process. The findings
of this study provide further evidence of the effectiveness of artificial neural networks in
predicting material properties.

The artificial intelligence model presented in the study [53] for predicting the shear
strength of reinforced concrete structures has been extended to include the tensile strength
of steel fibers, which is often omitted in empirical models. This property strongly influences
the formation of cracks in the concrete matrix and, therefore, affects the shear strength
of the beam. The study and the inclusion of tensile strength as another factor improving
the ability to predict shear strength is important since the study [52] has shown that the
tensile strength of steel fibers can be increased by enhancing the impact resistance and
shear strength of reinforced concrete beams. This is another argument in favor of its
inclusion in the computational model. During the model’s development, 488 experiments
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were conducted to assess the shear capacity of steel fiber-reinforced concrete beams, with
190 of these experiments used for model validation. The research findings indicated that a
higher span-to-depth ratio, greater effective depth, and larger aggregate diameter lead to a
reduction in the beam’s shear strength. However, an increase in the compressive strength
of concrete, reinforcement ratio, fiber volume, and fiber tensile strength increases the shear
strength of steel fiber-reinforced concrete beams. The authors point to the accuracy and
correctness of the proposed model, as the values obtained from the statistical analysis are
very close to the reference values. In particular, the coefficient of determination R2 of 0.97 is
close to the reference value of 1.00, indicating the model’s high reliability [51].

Many available AI algorithms and advanced computational models create new re-
search areas. It defines the development prospects of these tools, and their analysis is
carried out in the next section.

5. Emerging Strategies in Advanced Computing and AI: Exploring Future
Research Directions

The observed intensive development of computation techniques, including artificial
intelligence methods, provides new concepts and tools in data analysis and optimiza-
tion [76]. In the traditional approach, novel materials are invented via experimentation,
theory, or computation [77]. Data-driven materials science is also accessible as an alter-
native time-consuming and expensive experimental method [78–80]. The manageable
data are collected in data setups, and artificial intelligence-based approaches discover
new materials. A significant contribution to understanding the status, challenges, and
perspectives of data-driven material science is the study by Himanen et al. [81]. This study
emphasizes the critical role of selecting optimal candidate materials and the development
of improved or novel materials based on machine learning methods. The authors pro-
vided some examples of such successfully synthesized novel components. They listed new
molecules for organic light-emitting diodes (OLEDs) [82], polymer dielectrics for electro-
static energy storage [83], novel 12 gallides as Heusler structures [84], NiTi-based shape
memory alloys with small thermal dissipation [85], lead-free piezoelectrics [86] and metallic
glasses [87] and high-entropy alloys [88] for structural applications requiring hardness and
corrosion resistance.

Badini et al. [36] reported the possibility of discovering new mechanisms beyond
intuition in materials science. The authors drew attention to alternative AI models, e.g.,
reinforcement learning, to obtain an accurate model from an unidentified data domain.
Such an approach allows building a model to learn a biological design strategy via several
training steps. A finite element method was listed as an example to calculate mechani-
cal properties as “reward values” for the algorithm to find materials with high fracture
toughness. Fuzzy logic-based systems should also be listed here. Since this approach
allows for the formalization of an empirical problem using experience rather than strict
knowledge of the process, the methods run intuitively and have the potential to overcome
the shortcomings of traditional approaches [89–91].

The basic methods for examining material properties using AI techniques are dis-
cussed by Wei et al. [92]. The summary of current machine learning methods applications
in materials science, as well as the improvements that are necessary for wide-ranging
applications, are also discussed in the study. Big data is accessible in materials science,
allowing the development of AI methods. The machine learning workflow comprises
data selection, feature engineering, modeling, and validation. Supervised, unsupervised,
semi-supervised, and reinforcement learning are basic machine learning methods used in
materials science. The authors also listed three essential applications of AI-based methods
in materials science: material property analysis, discovering new materials, and quantum
chemistry. Degradation detection, nanomaterials analysis, and molecular property predic-
tion are listed within the first category. Discovering new materials covers structure-oriented
design, element-oriented design, inverse design, and drug design. The authors empha-
sized that insufficient material data is challenging for ML applications in materials science.
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They provided an example where a small data set size of 4000 samples was sufficient to
train a deep-learning model with acceptable performance [92,93]. The pivotal role of data
acquired in developing a model is emphasized in [94]. The authors proposed an intelligent
generation method of advanced structures. The abundant topology optimization models
obtained for different parameters can serve as a base for developing outstanding models
for creating deep learning datasets.

5.1. Utilizing Transfer Learning in Material Science

Hu et al. [95] proposed a pivotal approach for deciphering intricate interactions be-
tween materials and systems. A cutting-edge Network Representation Learning framework
considered a dynamic structure and vertex attribute fusion network embedding allowed
the inherent limitations of traditional Network Representation Learning methods to be over-
come. Contemporary data mining approaches have also proven effective in understanding
and forecasting the properties of materials. A critical aspect of the materials discovery
process involves identifying which material(s) will exhibit desirable properties. Experi-
mentation and density functional theory computations are often costly and time-intensive
for many material properties. This makes it challenging to construct accurate predictive
models using conventional data mining methods due to limited data availability. Therefore,
enhanced predictive analytics on diverse materials datasets is presented in [96]. The authors
introduced a framework for predicting material properties that utilize structural informa-
tion. This framework employed a graph neural network-based architecture and incorpo-
rated deep transfer learning techniques. This significantly enhanced the model’s predictive
capabilities across diverse materials, including 3D/2D, inorganic/organic, and computa-
tional/experimental data. Through evaluation in cross-property and cross-materials class
scenarios across 115 datasets, the authors found that transfer learning models outperformed
those trained from scratch in 104 cases, approximately 90%, with additional performance
benefits for extrapolation challenges. The proposed framework held broad applicability in
expediting materials discovery within materials science.

5.2. Ensemble Models

Zhu et al. [97] considered the issue of reactive power optimization of distribution
networks. It was noticed that conventional reactive power optimization methods of distri-
bution networks either need much calculation time or have limited accuracy. In response
to the problems discussed, a novel data-driven approach was proposed in this paper. This
approach simultaneously improves accuracy and reduces calculation time for reactive
power optimization using ensemble learning. The K-fold cross-validation was used to
train multiple sub-models, which were merged to obtain high-quality optimization results
through the proposed ensemble framework. Therefore, to analyze the impact of the sub-
model order on the proposed method performance, 15 cases with different rankings were
set, and each case was repeated 30 times. The mean loss functions (i.e., MSE) of the test set
have been shown in Table 4.

Comparing the obtained results of loss functions of Case 6, Case 13, Case 14, and Case
15, it is visible that multiple different sub-models were more conducive to improving the
performance of the ensemble model than multiple identical sub-models. The authors of the
work also pointed out that calculation time is one of the essential metrics used to evaluate
performance. Suitable dispatching strategies should be achieved within 60 s. Therefore,
the presented results proved that the authors’ proposed method’s calculation time is much
lower than the traditional heuristic methods, such as the genetic algorithm. For single
reactive power optimization of the modified IEEE 69-bus radial distribution network, the
online time consumptions of the ensemble model, GA, CNN, MLP, LightGBM, and CBR
were 0.23 s, 64.77 s, 0.08 s, 0.06 s, 0.09 s, and 4.37 s, respectively [97]. The advancement of
materials science in electronic component design and optimization can be found in [98].
The authors discussed the size reduction tasks with explicit and implicit formulations.
Both implicit and explicit techniques effectively control design constraints and achieve
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miniaturization. Implicit methods are noted for their conceptual simplicity and ease of im-
plementation, often resulting in slightly better miniaturization rates. According to the study,
explicit methods offer more precise control over design constraints. Applying ensemble
learning frameworks for multiple machine learning models can be leveraged in alternative
methodologies. Krzywanski et al. [99] used the automated machine learning approach
(AutoML) to predict the performance of adsorption chillers, using various adsorbents in
adsorption cooling and desalination systems of different construction. The DataRobot
platform was a highly efficient tool for AI applications compared to traditional ANN-based
applications in similar tasks [100].

Table 4. Results of ensemble models with different orders [97].

No. of Case Order of Sub-Models MSE (p.u.)

1 CNN, MLP, LightGBM 0.0185
2 CNN, LightGBM, MLP 0.0203
3 MLP, CNN, LightGBM 0.0191
4 MLP, LightGBM, CNN 0.0194
5 LightGBM, CNN, MLP 0.0180
6 LightGBM, MLP, CNN 0.0157
7 CNN, LightGBM, LightGBM 0.0177
8 CNN, MLP, MLP 0.0191
9 MLP, CNN, CNN 0.0175
10 MLP, LightGBM, LightGBM 0.0176
11 LightGBM, MLP, MLP 0.0191
12 LightGBM, CNN, CNN 0.0168
13 CNN, CNN, CNN 0.0179
14 MLP, MLP, MLP 0.0181

15 LightGBM, LightGBM,
LightGBM 0.0188

CNN—convolutional neural network, MLP—multi-layer perceptron LightGBM—light gradient boosting machine.

5.3. Material Genome Technology

Artificial intelligence and machine learning are undoubtedly facilitating the devel-
opment of materials engineering in biomedical engineering. Traditionally, creating new
biomedical materials is based on trial and error, which can be costly and time-consuming.
material genome technology (MGT) is a method that can address the issue of repeatedly
creating new materials. To date, this technology has been applied to the research and
development of metal, inorganic, non-metallic, polymeric, and composite biomedical ma-
terials. The MGT initiative establishes the relationship between composition, processing,
microstructure, and performance to facilitate materials research and development. Estab-
lishing such a correlation can assist in advancing and improving new materials. This is
necessary due to the ever-increasing demands on materials. Obtaining comprehensive data
on materials can shorten the time and reduce the cost of materials development. One of
the pillars of this approach is the use of well-prepared and reliable databases. The authors
of [101] argue that extracting useful information from vast data is difficult. According
to them, an optimal materials repository ought to accommodate extensive data storage,
maintain data in a uniform manner, and offer convenient access and stored by users. An-
other important factor from the perspective of MGT is the use of high-throughput tools.
High-throughput synthesis and characterization of materials involve the preparation and
analysis of samples with varied structures or components simultaneously and in significant
volumes over a short timeframe. These expedited experiments contribute to enhancing data
precision and reproducibility on a larger scale. Ultimately, these processes can expedite
the development of materials repositories, validate the precision of theoretical models,
and explore novel materials [102]. The MGT approach also uses materials computation
methods. The issues related to the relationships between materials manufacturing methods,
their structure, components, and properties can be too complex for researchers to discover.
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Predictive models can help to identify dependencies in exceptionally complex structures.
In addition, existing computational methods related to optimizing the composition of
materials [103] or predicting their properties [104] will undoubtedly become valuable tools,
as evidenced by their growing popularity. The authors highlight the potential of the MGT
method in developing biomedical, smart, and superconducting materials. By leveraging AI
methods and well-maintained large databases, this method can accelerate activities such as
optimizing or searching for new biomedical materials with desired properties. The MGT
method is a holistic approach that integrates experimental data, calculations, and modeling
with materials science.

5.4. Quantum Computing

Huber et al. [105] introduced a notable strategy. They showed how creating standard-
ized workflow interfaces that automatically calculate material properties can significantly
ease interoperability and cross-verification processes. These researchers have proposed
guidelines for creating reusable, code-independent process interfaces designed to compute
specific material properties. This approach has been applied to eleven quantum engines
for calculating a range of material properties. The authors established a unified workflow
interface to optimize solid-state structures and molecular geometries to demonstrate the
discussed concept. This interface is implemented across eleven quantum codes, includ-
ing ABINIT, BigDFT, CASTEP, CP2K, FLEUR, Gaussian, NWChem, ORCA, Quantum
ESPRESSO, SIESTA, VASP [105].

Optimization techniques and algorithms constitute a novel, useful tool for improving
energy systems. Due to global aspiration to a net-zero emission economy, we are moving
away from energy-intensive systems in various brands, replacing them with renewable
energy sources or looking for ways to optimize conventional systems thoroughly. These
activities are carried out by implementing advanced numerical methods, AI algorithms,
and technologies for creating and analyzing digital twins. Examples of such applications
are examined in the next section of the review paper.

6. Optimization Techniques and Algorithms in Energy Systems

The most complex optimization tools are artificial intelligence methods, whose ef-
fectiveness depends on available databases and computing power [106]. The simulation
results showed that the time of calculation was lower than traditional heuristic methods.
Additionally, the proposed attitude outperformed popular baselines such as light gradient
boosting machines, convolutional neural networks and multi-layer perceptron. The simula-
tion and optimization model of the power flow into AC-DC hybrid microgrids operating
for different generation–consumption scenarios has been developed [107] using LabVIEW
software. The application proposed by the authors was assembled using a multiple-input
multiple-output model. This model was built using blocks containing simplified models of
photovoltaic modules, wind turbines, battery arrays, and power loads. Simulations were
performed using 250 W commercial solar panels, 300 W permanent magnet generator wind
turbines, and 12 V batteries with a capacity of 100 Ah. The implementation of simplified
models for solar panels, wind turbines, batteries, and loads, combined with binary logic
to manage the microgrid operation, significantly reduced the computational cost of the
simulation. Thanks to the use of average power as both an input and output variable,
ease of control and reconfiguration of microgrids was achieved. The usefulness of the
developed model in analyzing efficiency for different configurations of the same microgrid
architecture and the possibility of extending it by integrating additional elements has been
proven. A machine learning method for generating the stochastic load forecasts required by
electric utilities for the evolving electrical distribution system has been introduced in [108].
The optimization analyses conducted by the authors constitute a response to the expected
more significant variation in electrical load in the coming years due to the increasing
popularity of electric vehicles, photovoltaics, and energy storage systems. Distribution
of these solutions will vary by area and the financial capacity of customers, and if not
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identified early and managed by electric utilities, it could result in power dependability
and protection issues.

The range of technologies used in the energy industry is extensive. They involve fuel
combustion, raw material processing, waste management, or energy conversion. They are
often combined systems to increase their energy efficiency. Moreover, their complexity and
multi-threaded management process require advanced optimization and predictive meth-
ods to maintain long-term operation [109,110]. One innovative technology implemented
in sustainable energy is fluidization. Its effectiveness is confirmed by implementations in
other industrial sectors, but research on optimizing fluidized processes is ongoing. Padhi R.
et al. [111] conducted experiments and numerical simulations aimed at determining the
pressure within the bed, its thermal expansibility, and the fluctuations occurring within
it. Following modern industry trends, multiphase fluidized beds appear to be one of the
most promising devices in the fields of materials engineering, chemical, petrochemical, and
pharmaceutical industries. In recent years, fluidization technology has also been utilized
for drying, cooling, heating, and freezing food products [112]. A mathematical model of a
fluidized bed dryer was developed in [113]. Multi-criteria optimization methods without
preferences were applied, and a set of Pareto-optimal solutions was evaluated. The authors
provided a detailed example of drying potato slices, demonstrating the efficiency and
effectiveness of the proposed optimization approach.

The energy industry requires modeling fuel combustion processes, but their com-
plexity makes it difficult to model them using traditional mathematical methods. Ma,
YP. et al. [114] proposed a hyper-parameter self-optimized broad learning system using
a sparrow search algorithm to model the thermal efficiency of a circulation fluidized bed
boiler (CFBB) and the NOx and SO2 emissions concentration. The system can be considered
an extension of a more fundamental approach, as shown, e.g., in [115]. The developed
broad learning system (BLS) is a novel neural network algorithm performing well in multi-
dimensional feature learning. However, its disadvantage is that several hyper-parameters
are set in a wide range, so the optimal combination is challenging. A sparrow search
algorithm (SSA) to select the optimal hyper-parameters combination of the broad learn-
ing system, namely SSA-BLS, has been utilized in the paper. Ten benchmark regression
datasets were applied to prove the effectiveness of SSA-BLS. Experimental results showed
that the authors obtained good regression accuracy and model stability using SSA-BLS.
The developed SSA-BLS algorithm has also been implemented to model the combustion
process parameters of a 330 MW circulating fluidized bed boiler.

Greenhouse gas emissions were also modeled in [116]. Considering various technolo-
gies, the authors used an innovative approach based on fuzzy logic, one of the leading
artificial intelligence methods, for predicting CO2, CO, NOx, and SO2 concentrations in
coal and biomass combustion exhaust gases. The predictive simulations for different
combustion environments were discussed in the paper under a wide range of operating
parameters. Good agreement between the predicted emissions and experimental results has
been proven in the paper, as confirmed by the maximum relative error between measured
and predicted emissions under 8%. Therefore, the proposed method constitutes a quick and
easy-to-run technique and a complementary tool compared to the experimental procedures.
The most important effect of the conducted simulations is developing a fuzzy logic-based
model of gaseous emissions from the advanced combustion of solid fuels that scientists and
engineers can effectively implement to simulate and optimize coal and biomass combustion
processes. Optimization of CFBB key control parameters based on artificial intelligence
has also been conducted [117]. The authors of the paper noted that during the coal-fired
circulating fluidized bed unit’s involvement in the power grid’s peak regulation process,
the thermal automatic control system aids the operator in adjusting the mode. This system
focuses on contamination control and ignores the economy, suggesting that the unit’s oper-
ating performance maintains a vast potential for deep mining. Machine learning algorithms
were used for optimization. The high-dimensional and coupling-related data character-
istics of CFBB put forward more demanding requirements for combustion optimization
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analysis and open-loop guidance operation. Therefore, the authors proposed a combustion
optimization method implementing neighborhood rough set machine learning. The paper
showed that the developed method first reduces the control parameters affecting multi-
objective combustion optimization using the neighborhood rough set algorithm, which
fully considers the correlation of each variable combination. Then, it establishes a multi-
objective combustion optimization prediction model by combining the online calculation of
boiler thermal efficiency. Finally, the proposed algorithm optimized the control parameter
settings for the boiler combustion system. The results demonstrated that this innovative
method reduced the number of control commands required for combustion optimization
adjustment from 26 to 11. In [118], an optimal scheduling method for complex integrated
energy systems has been proposed. The developed method implements a heuristic algo-
rithm to maximize energy, environment, and economy indices and optimize the system
operation plan. The method described in the paper uses k-means combined with box plots
(Imk-means) to improve the convergence speed of the heuristic algorithm by forming its
initial conditions. The authors conducted a case study to validate the developed method’s
effectiveness. The results show that the proposed algorithm can decrease the running
time by up to 89.29% at the most and 72.68% on average, compared with the traditional
genetic algorithm. Sorption technology has the potential to provide high energy density
thermal storage units with negligible losses and environmentally friendly refrigeration and
desalination systems. However, significant experimental and computational advancements
are necessary to unlock such green technologies’ full potential and model and improve
their performance efficiently at the system scale.

The work of Scapino L. et al. [119] explores the development, application, and capa-
bilities of neural network models to predict the performance of a sorption thermal energy
storage system. Two neural network architectures were proposed to dynamically predict
the state of charge, outlet temperature, and consequently, the thermal power output of a
sorption storage reactor. Each neural network architecture was evaluated in 32 different
configurations for the two operating modes, with a systematic training procedure used to
identify the optimal configuration for each architecture and operating mode. Datasets of
hydration (H) and dehydration (D) modes and the number of simulations are presented in
Table 5 [119].

Table 5. Datasets of hydration (H) and dehydration (D) modes and the number of simulations.

Mode Dataset Parameters Min Step Max No. of
Simulations

Hydration

Training
Tin 10 5 45

64
Cin 0.300 0.05 0.65

Validation
Tin 12.5 5 42.5

49
Cin 0.325 0.05 0.62

Dehydration

Training
Tin 70 10 150

72
Cin 0.20 0.05 0.55

Validation
Tin 75 10 145

56
Cin 0.225 0.05 0.525

Tin—temperature at the inlet [◦C], Cin—sorbate concentration at the inlet [mol/m3].

The authors indicated that the proposed model could accurately replicate and predict
the dynamic behavior of the thermal energy storage system with mean squared error
estimators below 2 × 10−3. Krzywanski [120] presented a general approach to optimizing
the adsorption chiller’s heat exchanger system using a bio-inspired AI algorithm. The
author implemented genetic algorithms and artificial neural networks for optimization
analyses. The developed model was validated against the desired data on a large falling
film evaporator. A broad range of operating conditions and geometric configurations were
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considered in the study. The results show that the total heat transfer rate of the evaporator,
predicted by the model, is in good agreement with the desired data, and the maximum error
is lower than +/− 3%. The modeling studies conducted in the works mentioned above,
validated based on the experimental data sets, confirm the possibility of using practical
artificial intelligence algorithms as advanced techniques for optimizing energy systems.

On the other side, Grabowska et al. [121] carried out interesting comparative studies of
the thermal properties of coated and fixed beds of adsorption chillers. The CFD approach
with conjugate heat transfer analysis allowed temperature distribution in the adsorbent
bed to be determined as the essential input parameter. Besides these advanced simulation
techniques, some interesting simple approaches can also be found in materials science.

The authors of [122] performed dynamic multi-objective optimization in brazier-type
gasification and carbonization furnaces. With distinctive porous structure and prolonged
carbon sequestration characteristics, biochar has demonstrated its potential to enhance soil
fertility, mitigate carbon emissions, and augment soil carbon sequestration. Despite these
benefits, the widespread adoption of biochar technology has been hindered by challenges
such as the intricate structure, long transportation distances for resources, and high costs.
Addressing these issues, a brazier-type gasification and carbonization furnace has been
developed within [122] to conduct dry distillation and anaerobic carbonization, achieving
a high carbonization rate under elevated temperature conditions.

To improve operational and maintenance efficiency, the authors present the operation
of the brazier-type gasification and carbonization furnace as a dynamic multi-objective
optimization problem (DMOP). Initially, an analysis of dynamic factors in the furnace’s
operational process was performed, considering aspects such as equipment capacity, oper-
ating conditions, and the biomass processed by the furnace. Subsequently, biochar yield
and carbon monoxide emissions were selected as dynamic objectives, and the DMOP was
formally modeled. Lastly, three dynamic multi-objective evolutionary algorithms were
employed to solve the optimization problem, thereby validating the efficiency of the dy-
namic optimization approach in the context of gasification and carbonization furnaces.
Table 6 summarizes the key strategies and potential research directions, providing a struc-
tured overview of advanced computing and AI methods and their application in various
research areas.

Table 6. Key strategies and potential research directions in advanced computing and AI methods.

Author and Year Reference Strategy Potential Research Direction

Gnatowski et al., 2022 [123] Computer simulations of injection
processes Improvement of manufacturing process quality

Qiu et al., 2023 [101] Materials Genome Technology in
biomedical materials

Rapid prediction and optimization of material
properties

Badini et al., 2023 [36] AI in materials design Discovery of materials with high fracture
toughness

Ward et al., 2016 [37]
Machine learning framework for
predicting properties of inorganic

materials

Enhancing predictive accuracy through dataset
partitioning

Goswami et al., 2023 [124] AI in Material Engineering Acceleration of drug development

Surmiak et al., 2020 [102]
High-throughput characterization of

perovskite solar cells for rapid
combinatorial screening

Developing fully automated, high-throughput
characterization techniques for perovskite solar
cells to expedite the research and development
process.

Wang et al., 2021 [103]
Using hierarchical structures at multiple

scales to simultaneously enhance the
strength and plasticity of steel

Application of high-throughput methods and big
data for rapid material design.
Solutions for industrial-scale steel manufacturing
with hierarchical structures, including advanced
technologies like additive manufacturing.
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Table 6. Cont.

Author and Year Reference Strategy Potential Research Direction

Kheiri et al., 2020 [104] COMSOL Multiphysics simulations Optimization and prediction of material properties

Zhu et al., 2022 [97] Data-driven approach for reactive
power optimization

Improvement of calculation time and accuracy in
power optimization

Gupta et al., 2024 [96] Deep transfer learning for predictive
analytics on materials datasets Expediting materials discovery across diverse data

Krzywanski et al., 2023 [76] Technological and modeling progress in
green engineering

Sustainable development and energy materials
engineering

Krzywanski et al., 2010 [77] Modelling of solid fuel combustion Emissions reduction in fluidized bed boilers

Gnatowski et al., 2022;
Kijo-Kleczkowska et al., 2023;
Grabowska et al., 2021

[78–80] Thermomechanical properties analysis
and waste combustion research

Mercury emissions and heat transfer adsorption
bed optimization

Himanen et al., 2019 [81] Data-driven materials science Development of novel materials via AI-based
methods

Gómez-Bombarelli et al., 2016;
Mannodi-Kanakkithodi et al.,
2016; Oliynyk et al., 2016; Xue
et al., 2016; Ren et al., 2024;
Wen et al., 2019

[82–87] Machine learning for material discovery Synthesis of novel components for various
applications

Wei et al., 2019 [92] Machine learning in materials science Broadening applications of AI in material property
analysis

Raccuglia et al., 2016 [93] Use of failed experiments in
ML-assisted materials discovery Efficient data utilization for materials discovery

Li and Liu, 2022 [38] Predictive strategy based on time-series
data analysis Investment and decision-making in market trends

Hu et al., 2022 [95] Network Representation Learning for
materials and systems Deciphering complex interactions within materials

Roussel et al., 2022 [125] Sensor fusion for occupancy estimation Enhancement of predictive performance in
complex environments

Pietrenko-Dabrowska et al.,
2022 [98] Optimization-based circuit

miniaturization Control of design constraints and miniaturization

Vivekanandan et al., 2023 [99] Reinforcement learning for job
scheduling

Resource allocation and efficiency in
manufacturing

Algarni & Sheldon, 2023 [126] Recommendation systems for course
selection Energy saving and efficiency in education

Wang et al., 2021 [94] Innovative structure generation Creation of deep learning datasets from topology
optimization

Aamir et al., 2020 [89] Fuzzy logic in multi-hole drilling
optimization Process parameter optimization in manufacturing

Krzywanski et al., 2020 [90] Fuzzy logic in fluidized bed jet milling Optimization of mass and particle size

Otwinowski et al., 2022 [91] An AI fuzzy logic-based system for air
classification Improvement of classification processes

Gaspar-Cunha et al., 2022 [127] Optimization in polymer processing Application of AI approaches in polymer
technologies

Ongar et al., 2023 [128] 3D mathematical modeling in boiler
design Reduction in NOx emissions in boiler operation

The above-discussed results confirm that AI has great potential to support modern
initiatives in the energy sector.

7. Conclusions

The article aimed to assemble the latest literary reports on modeling, simulations,
and optimization. Within the scope of the topic, research extending beyond the domain
of complex systems was published, encompassing works from materials engineering and
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energy systems. Consequently, a decision was made to incorporate these works within the
purview of the review presented.

The apparent multitude of applications of various methods, techniques, and algo-
rithms confirms that we possess an enormous base of tools capable of accelerating research
progress. The work demonstrates the utilization of well-established algorithms, their
various modifications, and those whose potential we are just beginning to explore. The
abundance of these tools and their usage across diverse, often uncorrelated domains sug-
gests a new research direction: the necessity of systematizing knowledge regarding which
modern algorithms perform best in specific fields. Creating a series of literature reviews
on the progress, development, available algorithm modifications, and their application’s
effectiveness in a given domain would facilitate further work with advanced computa-
tional methods.

The new strategies and described cases indicate the necessity of building large and
widely accessible material databases, as data fuels modern algorithms. Therefore, it seems
reasonable to conclude that the broadly understood Internet of Things should permanently
establish itself in every branch of engineering. Undoubtedly, the creation of databases
will not only facilitate the design and prototyping of new materials but will also con-
tribute to better environmental protection by reducing the amount of wasted resources on
failed experiments. In this case, the success of design processes may depend on adopted
methodologies such as material genome technology.

Despite the global trend towards utilizing artificial intelligence algorithms and ma-
chine learning, it is crucial not to overlook well-established computational methods such
as numerical simulations. These methods remain effective, and when combined with the
aforementioned artificial intelligence, they can continue to provide high-quality data to
numerous research teams.

The findings of this study, clearly indicate the need for integrating traditional com-
putational methods with artificial intelligence algorithms. This integration opens new
avenues for development, enabling the acquisition of high-quality data and supporting
research teams in various domains of science and technology. These observations point to
the potential for significant acceleration of scientific and technological progress, facilitating
better understanding and more effective utilization of advanced computational methods.

Finally, progress in modeling, simulations, and optimization of complex systems
should also aim to solve ecological and economic aspects. This is very important due
to increasingly restrictive legal and environmental regulations and the need for rational
waste management.
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55. Bakir, P.G.; Boduroğlu, H.M. A New Design Equation for Predicting the Joint Shear Strength of Monotonically Loaded Exterior

Beam-Column Joints. Eng. Struct. 2002, 24, 1105–1117. [CrossRef]
56. Kim, J.; LaFave, J.M.; Song, J. Joint Shear Behaviour of Reinforced Concrete Beam–Column Connections. Mag. Concr. Res. 2009,

61, 119–132. [CrossRef]
57. Lynn, A.C.; Moehle, J.P.; Mahin, S.A.; Holmes, W.T. Seismic Evaluation of Existing Reinforced Concrete Building Columns. Earthq.

Spectra 1996, 12, 715–739. [CrossRef]
58. Krzywanski, J.; Wesolowska, M.; Blaszczuk, A.; Majchrzak, A.; Komorowski, M.; Nowak, W. Fuzzy Logic and Bed-to-Wall Heat

Transfer in a Large-Scale CFBC. Int. J. Numer. Methods Heat Fluid Flow 2018, 28, 254–266. [CrossRef]

https://doi.org/10.1016/j.prime.2023.100404
https://doi.org/10.3390/e24040478
https://doi.org/10.3390/e24040525
https://doi.org/10.3390/e24121787
https://doi.org/10.3390/a16010019
https://doi.org/10.3390/e25010009
https://doi.org/10.3390/en16041620
https://doi.org/10.3390/ma16175927
https://doi.org/10.1038/npjcompumats.2016.28
https://doi.org/10.3390/e24050711
https://doi.org/10.3390/e24030408
https://www.ncbi.nlm.nih.gov/pubmed/35327919
https://doi.org/10.3390/e25010052
https://doi.org/10.1109/JSEN.2021.3116937
https://doi.org/10.1109/TII.2015.2500891
https://doi.org/10.3390/min10110958
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/j.applthermaleng.2022.119637
https://doi.org/10.3390/e25010013
https://www.ncbi.nlm.nih.gov/pubmed/36673153
https://doi.org/10.1016/j.ins.2023.119260
https://doi.org/10.1016/j.matdes.2017.10.002
https://doi.org/10.3390/ma16031286
https://www.ncbi.nlm.nih.gov/pubmed/36770291
https://doi.org/10.3390/ma15113758
https://www.ncbi.nlm.nih.gov/pubmed/35683054
https://doi.org/10.3390/ma15207076
https://doi.org/10.1016/j.jobe.2021.102727
https://doi.org/10.14359/12807
https://doi.org/10.1016/S0141-0296(02)00038-X
https://doi.org/10.1680/macr.2008.00068
https://doi.org/10.1193/1.1585907
https://doi.org/10.1108/HFF-09-2017-0357


Materials 2024, 17, 3521 27 of 29
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