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Abstract: Continuous fiber-reinforced composites are increasingly used in industry for their superior
specific modulus and strength. The curing process-induced deformation (PID) has been a critical
problem during manufacturing, which always exhibits dispersed values even if the curing process
curve and structural parameters remain consistent. This work conducted probability prediction of
PID for V-shape composite structures based on the FEM method and data mining. A sequential
coupling thermal–chemical–mechanical coupling FE model is established in ABAQUS. The prediction
accuracy of the included angle between two sides is verified by the experimental results. Material
parameter uncertainties are considered for V-shape structures with different radii and thicknesses.
Based on the dataset from the FE model, a decision tree is established and trained to analyze the
sensitivity and to predict the probability distribution of PID. The results show that PID increases
with the coefficients of thermal expansion in the in-plane perpendicular fiber direction and out-of-
plane normal direction. The data-mining method is accurate enough for the PID prediction, and its
efficiency provides an additional calculation option in engineering applications.

Keywords: continuous fiber-reinforced composites; curing process-induced deformation; finite
element analysis (FEA); data-mining

1. Introduction

Carbon fiber-reinforced thermosetting polymer composites (CFRPs) have been widely
used in aerospace, automotive, and marine industries due to their excellent specific stiffness
and modulus properties [1–3]. The curing process-induced deformation (PID) has been a
significant challenge for these structures as dimensional deviations introduced assembly
gaps and led to stress concentration at joints [4–6]. The PID is normally caused by curing
reaction, anisotropic thermal expansion coefficients, and chemical shrinkage. It is more
serious for composite structures with complex geometry.

Many researchers have studied the deformation mechanism and value of PID by exper-
imental and numerical methods, in which the numerical method exhibited its advantage in
dealing with such highly nonlinear problems [7–15]. The curing process numerical model
requires a thermal–chemical–mechanical multi-physics analysis, including two critical
aspects: thermal–chemical analysis and thermal–mechanical analysis. In the thermal–
chemical analysis, the transient heat transfer and temperature field within composite
structures are calculated by the curing kinetics model [7–10]. Most curing kinetic models
are established in empirical form. For example, Lee et al. [10] fitted the curing rate as a
function of temperature and degree of cure (DoC) using experimental data from a differen-
tial scanning calorimeter (DSC) and analyzed the curing behavior of rein. Xiao et al. [11]
analyzed the rheological properties of the polymer system to determine a reasonable print-
ing temperature; the nonlinear integral method was applied to establish the model-free
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kinetics (MFK) of the resin system; reasonable curing process parameters were deter-
mined by analyzing the predicted curing degree curves. Based on the thermal–chemical
analysis, temperature-dependent mechanical parameters of composite structures can be
calculated [12–14]. The cure-hardening instantaneous linear elasticity (CHILE) model pro-
posed by Bogetti et al. [15] was one of the most commonly used equations to incorporate
temperature and modulus by a semi-empirical function. Al-Dhaheri et al. [8,16] and Luo
et al. [17] used the model to describe the strain–stress relationship in the curing process, and
the simulation results showed good prediction accuracy compared to experimental results.

As the total coupling thermal–chemical–mechanical model is difficult to realize in finite
element simulation, a sequential coupling method is developed by the researchers [9,18,19].
The temperature field is obtained in thermal–chemical coupling model, and then the
temperature-dependent mechanical response is calculated. Although the sequential cou-
pling method improves efficiency, it is still time-consuming due to variables updating.
Many researchers attempted to predict the mechanical behavior of composite structures
during the curing process based on the machine learning method. Stamopoulos et al. [20]
designed unidirectional composite panels under different autoclave pressures and estab-
lished the relationship between autoclave pressure and composite porosity as well as
mechanical properties using artificial neural networks. Luo et al. [21] conducted thermo-
mechanical coupling finite element analysis on the curing process of asymmetrically laid
carbon/epoxy composite materials. Based on the obtained dataset, an artificial neural
network for the rapid prediction of curing-induced deformations in different layups of
composite materials was established. Aleksendrić et al. [22] integrated genetic algorithms
for the optimization of curing regimes, contributing to the formulation of well-suited cur-
ing protocols in practical production. Hui et al. [23] used machine learning to replace the
general cure kinetics model, finding the relationships between cure kinetics parameters
and improving the prediction accuracy of curing behavior.

The objective of this study is to establish an accurate and efficient method for the
probability prediction of curing process-induced deformation for V-shape thick composite
structures based on sequential coupling multi-field FE method and data mining. Firstly, a
sequential coupling of thermo-chemo-mechanical behaviors and the deformation analysis of
composites were conducted to acquire the dataset, in which uncertainty material parameters
were considered. Then, the parameter sensitivity of PID was analyzed, and probability
prediction of curing process-induced deformation for V-shape thick composite structures
was achieved. In the end, the prediction accuracy ML-based model was validated, and the
distribution of PID for V-shape composite structures was analyzed.

2. Governing Equations for Curing Process

The curing process can be divided into three stages based on changes in modulus.
In the first stage, the resin is in a liquid or gel-like state with low viscosity; although the
chemical reaction and curing process has begun, the material is not yet significantly rigid,
and composite materials exhibit a small degree of curing and modulus. In the second stage,
the resin transitions from a flexible or viscous state to a more rigid state. Concurrently,
curing shrinkage deformation occurs, indicating that the material undergoes volumetric
contraction. The composite continues to exhibit an increasing degree of curing and modulus.
In the final stage, the resin reaches a high degree of cure, and its mechanical properties
stabilize. The modulus remains constant, and no further cure shrinkage occurs, suggesting
the resin has achieved its final form and the curing process is nearly complete. This study
focuses on the changes in modulus during the second and third stages.

2.1. Heat Transfer

The temperature field in composite structures is described by the Transient Fourier
anisotropic heat conduction process as follows:

ρcCc
.
T = ∇(k∇T) +

.
Q (1)
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in which ρc, Cc, and
.
T represent the the density of the composite materials, the specific heat

capacity of composite materials, and the heating rate in the curing process, respectively. k
and

.
Q represent the anisotropic thermal conductivity of composite materials and curing

heat generation rate, respectively.

2.2. Cure Kinetics

The heat generation rate of composite material is affected by the rein-curing reaction
rate and can be described by the phenomenological kinetic model as follows:

.
Q =

.
α
(

1 − c f

)
ρr HR (2)

in which
.
α is the curing rate; HR is the total exotherm during the resin curing reaction; cf

and ρr are the fiber volume fraction and rein density, respectively.
As the reaction kinetics exhibit different behavior at different stages of the curing

process, the reaction rate throughout the entire process cannot be described by a single
and simple kinetic model. According to the experimental observation in the previous
research [24], the curing rate changed with the degree of curing; the kinetic equation of
bismaleimide resin thermosetting rein can be written by a stage function as

.
α =

{
(J1 + J2α)(1 − α)(0.47 − α) α ≤ 0.3
J3(1 − α) α > 0.3

(3)

in which Ji = Aiexp(−∆Ei/RT). α is the degree of curing for composite; Ai, ∆Ei, and R
are the pre-exponential factor, the activation energies of the autocatalytic model, and the
universal gas constant, respectively.

2.3. Constitute Model

When numerically analyzing the curing process-induced deformation of composite
structures, it is critical to describe the Jacobian matrix as it represents the ratio of stress
increment to strain increment during each step. In this study, CHILE(α) proposed by Bogetti
is used to describe the relationship between rein modulus and degree of curing as [15]:

Em =

{
Em

e
1000 α < αc1

(1−αmod)Em
e

1000 + αmodEm
e α ≥ αc1

, Gm =
Em

2(1 + υm)
(4)

in which Em and Gm are the rein elastic modulus and rein shear modulus, respectively; Em
e

is the fully cured elastic modulus of rein; αc1 is the degree of curing at the glass transition
point and is set as 0.57 in this study; αmod was assumed to be the DoC value.

After obtaining the modulus of rein, the mechanical constants for composite materials
can be calculated by the rule of mixture, as follows:

Ec
1 = E f

1 c f + Em
(

1 − c f

)
, Ec

2 =
E f

2 Em(
1 − c f

)
E f

2 + c f Em
, Gc

12 =
GmG f

12

Gmc f + G f
12

(
1 − c f

) , υc
12 = c f υ

f
12 +

(
1 − c f

)
υm

Various approaches have been proposed to predict the strain–stress relationships of
composite structures. In this study, a semi-empirical model has been widely used due to
its rapid computational speed, robust convergence, low computational demand, and high
simulation accuracy when compared to physical-based and phenomenological–numerical
models. The thermo-mechanical constitute model for composites in the local coordinate
system can be written as an increment formula:

∆σ = [C]
(

∆ε− ∆εE
)

(5)
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in which σ and ε are the stress and strain matrix, respectively; C is the stiffness matrix; εE is
the expansional strain.

The expansional strain is decomposed into thermal component and chemical compo-
nent as

∆εE = ∆εth + ∆εsh (6)

in which εth and εsh are the thermal and chemical shrinkage strains, respectively.
Assuming the composite lamina is unidirectional and transversely isotropic, the

Equations (1) and (2) can be rewritten as

∆σ11
∆σ22
∆σ33
∆σ23
∆σ31
∆σ12

 =



C11 C12 C13
C21 C22 C23
C31 C32 C33

G23
G31

G12





∆ε11 − ∆εth
11 − ∆εsh

11
∆ε22 − ∆εth

22 − ∆εsh
22

∆ε33 − ∆εth
33 − ∆εsh

33
∆ε23
∆ε31
∆ε12


in which the terms in the stiffness matrix are calculated by the anisotropic modulus,
as follows:

C11 = 1−ν23ν32
A E1, C12 = C21= C13 = C31 = ν31+ν21ν23

A E1, C22 = 1−ν13ν31
A E2,

C23 = C32 = ν32+ν12ν31
A E2, C66 = G12, A = 1 − ν12ν21 − ν23ν32 − ν13ν31 − 2ν21ν32ν13.

The thermal strain can be calculated by the coefficients of thermal expansion and
temperature increment, as follows:

∆εth =

∆εth
11

∆εth
22

∆εth
33

 =

a1
a2
a3

∆T (7)

in which α11, α22, and α33 are the coefficients of thermal expansion for different directions.
Curing shrinkage can be simplified as a temperature load aroused by the curing

reaction of thermoset resin in the finite element simulation, as follows:

∆εsh =

∆εsh
11

∆εsh
22

∆εsh
33

 =

b1
b2
b3

∆Tsh (8)

in which ∆Tsh is the equivalent temperature difference.

3. Data Mining Algorithms

It is unrealistic to obtain the dataset for data mining through numerous experiments.
Data mining that can discover patterns and knowledge within a dataset by statistics,
machine learning, and data analysis methods is used in this study. Data mining models
progressively reveal latent structures and relationships in the data, uncovering patterns
and trends relevant to the objectives, thereby facilitating predictive analytics. Decision trees
are a commonly employed data mining method for agent modeling and decision-making.
They utilize a tree-like structure to represent a series of decision rules for classifying or
regressing input data. Key features of decision trees include their tree-like structure, nodes,
and branches. Each node represents a specific test or decision rule for the input data,
while each branch indicates different outcomes under the test conditions. The construction
process of a decision tree involves selecting optimal features and corresponding split points
to achieve the best data classification or regression performance at each node.

3.1. Decision Tree Algorithms

In this study, based on the hierarchical structure of neural network characteristics
of decision trees, we built decision trees to realize sensitivity analysis and probability
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prediction. Figure 1 shows the schematic diagram of a decision tree. Nodes serve to
represent the various states or options. In the construction of the decision tree, decision-
making processes are realized through the assessment of optimal attributes associated with
options. The quantification of the purity of sample categories within the node options
is measured by information entropy. Assuming that the proportion of class k samples in
dataset D is pk(k = 1, 2, · · · , |y|), the information entropy of D is defined as

Ent(D) = −∑y
k=1 pklog2 pk (9)
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When the proportion pk approaches 0 or 1, the information entropy tends to 0 because
the sample set tends to be pure. When pk is close to 0.5, the information entropy reaches
the maximum, indicating the highest uncertainty of the data. The decision tree is employed
for computing the contribution of input parameters.

To assess the input parameter contributions, a dataset comprising nine input parame-
ters and corresponding decision outcomes was collected. This dataset was used to train
a decision tree model, partitioned into training and testing sets. The decision tree was
constructed using the training set, ensuring that the model considered the contribution of
each input parameter during the tree-building process. Each of the nine input parameters
was introduced at various nodes of the decision tree, particularly decision and leaf nodes,
where they could influence decision outcomes differently. An analysis was conducted
to determine the impact of each input parameter across different nodes of the decision
tree. The objective was to ascertain the direction (positive or negative) and the relative
magnitude of each parameter’s contribution to the decision-making process.

3.2. Implementation of Decision Tree

The decision tree algorithm was implemented by Python and Scikit-learn libraries.
Figure 2 shows how the model trains and predicts. Firstly, the input dataset was normalized
and standardized for converting the input data. Secondly, the input dataset was divided
into two parts, a training set and a test set, each accounting for 70% and 30%. Then, the
training process of the decision tree was conducted until the R2 value between the predicted
value and simulation value was less than the threshold value.
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4. Results and Discussion
4.1. Finite Element Modeling
4.1.1. Implement of Multi-Field Finite Element Model

The sequential thermal–chemical–mechanical coupling model was implemented using
ABAQUS FE software 2017. This model consists of three main modules: geometry, chemical
heat transfer, and stress analysis. In the geometry module, a V-shape composite structure
with a 60◦ corner angle and 8 mm corner radius was defined (Figure 3a). The model
was discretized into 24 layers, each with a thickness of 0.125 mm, resulting in a total of
103,680 elements. The chemical heat transfer module simulated temperature and degree of
cure (DoC) distributions. The temperature field obtained for each increment served as input
for the stress analysis module, where strain/displacement distributions of the composite
structure were calculated. Within the chemical heat transfer module, the element type
used was an eight-node linear heat transfer brick (DC3D8), with temperature boundary
conditions applied. Subsequently, in the stress analysis module, an eight-node linear brick
element (C3D8) was utilized to prevent shear self-locking phenomena.
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4.1.2. FE Model Validation

The V-shaped structure with T700 carbon fiber and QY9611 bismaleimide resin was
cured in an autoclave. After the curing process was completed, the angular rebound
deformation of the composite V-shape specimens was measured using a protractor with
a graduation value of 2 min (Figure 4a,b) [25]. In the finite element model, the deflection
angle was calculated using the tangent of the deformation and the side length. The curing-
induced deformation from experimental and simulation results are compared in Table 1.
The maximum error between simulation and experimental results was 7%, which indicated
that the model was accurate enough to build datasets for training the decision tree model.
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Table 1. Experimental and numerical results comparison for V-shaped composite parts.

Part ID Thickness Radius ∆θexp ∆θsim Error

Sample (a) 1 8 2.15 2.00 7%
Sample (b) 3 8 1.81 1.89 4.4%

4.2. Probability Prediction of Curing Process-Induced Deformation
4.2.1. Uncertain Material Parameter Qualifications

With the established FE model, the deformation of composite structures can be cal-
culated under the given material parameters in Equations (1)–(8). These parameters were
divided into three categories: thermal expansion coefficients, chemical shrinkage coef-
ficients, and mechanical performance parameters. Normally, they were obtained from
specimen experiments or set based on the engineers’ experience [25,26]. Uncertain factors
such as material suppliers, testing resources, or testing errors are inevitable to cause the
parameter value fluctuation. In order to quantify this phenomenon, statistical methods
were used, and probability distribution functions (PDF) were established. For composite
structures, the PDF of mechanical parameters followed a Gaussian distribution [24]. As-
sumed thermal expansion coefficients and chemical shrinkage coefficients also followed
the Gaussian distribution; material parameters used for the FE model in this study were
listed in Table 2 [25].

Table 2. Statistical properties of input uncertain parameters.

Sq. Parameters Unit Lower Limit Upper Limit Mean Value SD

Thermal expansion P1 a1 /◦C 0.7 × 10−6 1.3 × 10−6 1.0 × 10−6 0.1 × 10−6

P2 a2 = a3 /◦C 79.1 × 10−6 94.9 × 10−6 85.3 × 10−6 3.5 × 10−6

Chemical shrinkage P3 b1 / 0.7 × 10−4 2.8 × 10−4 1.67 × 10−4 0.4 × 10−4

P4 b2 = b3 / 6.2 × 10−4 11.7 × 10−4 8.81 × 10−4 1 × 10−4

Mechanical
parameters (Glassy)

P5 E1 GPa 119.9 139.7 130 8.5
P6 E2 = E3 MPa 155.9 173.3 165 10.2
P7 G12 = G13 MPa 33.1 44 40 1.8
P8 G23 MPa 31.1 37.7 35 1.5
P9 V12 / 0.12 0.38 0.25 0.005
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4.2.2. Sensitivity Analysis

The structural geometry parameters are easy to measure; thus, the uncertainty of
material parameters is considered in this study. Materials parameters were extracted in
the design space in Table 2 and written into input files by Python 3.0. Detailed geometry
parameter conditions were listed in Table 3: the thickness of the composite was 1 mm,
2 mm, 3 mm, and 4 mm; the radius of the V-shape composite was 6 mm, 8 mm, 10 mm, and
12 mm. A total of 1400.inp files were generated for submitting ABAQUS 2017 calculations.

Table 3. Parameters for different groups.

Group A Group B Group C Group D Group E Group F Group G

Thickness 3 mm 1 mm 2 mm 4 mm 3 mm 3 mm 3 mm
Radius 6 mm 6 mm 6 mm 6 mm 6 mm 10 mm 12 mm

After obtaining the input files, the maximum displacement of the V-shape composite
structures was extracted at the last increment step and written into the dataset to train
the decision tree. Seven distinct regression models were trained for sensitivity analysis
and probability prediction. Figure 5 depicts a scatter plot of finite element analysis results
and regression model predictions for the employed test dataset conditions, with the red
line representing a perfect fit. The proximity of scattered points to the perfect fit line
indicates the accuracy of the surrogate models. Figure 5h illustrates the R-squared values
for all surrogate models trained on deformations induced by curing. All R-squared values
exceeding 0.8 suggested an acceptable accuracy for surrogate models.
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Figure 5. Comparison of finite element method and surrogate models.

RSME (Root Mean Square Error) and MSE (Mean Squared Error) were also used to
evaluate the accuracy of the surrogate model. A smaller RMSE and MSE indicated a higher
accuracy in the model predictions. The regression model in this study showed a good
prediction capacity (Table 4).

Table 4. RSME and MSE for surrogate model.

Group A Group B Group C Group D Group E Group F Group G

RSME 0.0277 0.0339 0.0291 0.0224 0.0333 0.0225 0.0301
MSE 0.0007 0.0011 0.0008 0.0005 0.0011 0.0005 0.0009
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The sensitivity analysis results are shown in Figure 6. The PID of the V-shape structure
was most sensitive to the coefficients of thermal expansion in the in-plane perpendicular
fiber direction and out-of-plane normal direction (P2 in Table 2) for different structures. This
sensitivity arises primarily due to two reasons. Firstly, the temperature field of composite
material components is composed of the external process curve temperature field and the
exothermic heat released from the curing reaction. The exothermic heat release during the
curing reaction of the composite material is primarily associated with the chemical reaction
of the resin. Secondly, the chemical expansion coefficient of the resin is much greater than
that of the fibers and is directly related to the deformation of the structure.
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The relationship between PID and P2 (Table 2) is illustrated in Figure 7. The two
variables exhibited a positive correlation, indicating that the PID increased with the in-
creasing thermal expansion coefficients. This phenomenon emphasized that the thermal
expansion properties played a critical role in governing the PID of composite structures.
Understanding and quantifying these sensitivities are crucial for optimizing the design and
predicting the performance of composite structures during the curing process.
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4.2.3. Probability Prediction of Curing Process-Induced Deformation

Figure 8 presents the distribution of PID for composite structures with different
geometry. The inset graphs at the top right depicted the upper and lower bounds of the
deformation magnitudes. The PID showed a Gaussian normal distribution. For Group A,
over 99% of curing-induced deformations are distributed between 1.8 mm and 2.4 mm. For
Group F, over 99% of curing-induced deformations are distributed between 1.6 mm and
2.1 mm.

1 
 

 
Figure 8. Distribution of curing-induced deformations for V-shape composite 
structures.  

 

Figure 8. Distribution of curing-induced deformations for V-shape composite structures.

In order to verify the reliability of PID probabilistic prediction, 30 additional sets
of data were calculated by numerical model (Figure 9). These numerical PID values are
uniformly distributed within the upper and lower bounds determined through data mining,
highlighting the generality and feasibility of the employed methodology.
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By employing a combination of multi-field finite element simulation and data mining
techniques, the prediction of curing-induced deformations in composite materials has
been successfully constrained within a specific dataset. Considering the distribution
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and upper/lower limits of material mechanical properties, we derived the distribution
and threshold values of deformation. During the manufacturing phase, effective quality
control measures can be implemented through real-time monitoring and prediction of
deformations in the curing process of composite materials. This contributes to the reduction
of manufacturing defects, enhancing product consistency and quality. This approach not
only ensures the production of high-quality goods but also optimizes manufacturing
processes, reducing resource waste and lowering production costs.

Accurate prediction of the range of curing-induced deformations in composite materi-
als is crucial for driving the development of new materials. By gaining in-depth insights
into the deformation behavior of composite materials during the curing process, engineers
can design more advanced and reliable materials based on this understanding. This not
only improves material performance but also expands the application areas of materials,
fostering technological innovation.

In summary, the engineering significance of accurately predicting curing-induced
deformations in composite materials lies in optimizing engineering design, improving
product quality, and reducing manufacturing costs. This predictive approach not only aids
in the current improvement of engineering practices but also provides a foundation for
future innovations. Through the integration of advanced simulation techniques and data
analysis methods, engineers can address challenges related to curing-induced deforma-
tions in composite materials more reliably and efficiently, contributing to the sustainable
development of the engineering field.

5. Conclusions

This work proposed a prediction method to predict the probability of PID for V-shape
composite structures based on the FEM method and data mining. A sequential coupling
thermal–chemical–mechanical coupling FE model was established by the user defined
subroutine and verified the experimental results. A decision tree was built and trained
based on datasets from the FE model. The sensitivity and probability distribution of PID
were analyzed, as aforementioned. The results showed that the accuracy of the sequence
coupling FE model is enough to simulate the PID of V-shape composite structures. The
maximum simulation error is less than 5% for a V-shape specimen with 3 mm thickness.
The curing-induced PID is most sensitive to the coefficients of thermal expansion in the
in-plane perpendicular fiber direction and out-of-plane normal direction, regardless of the
thickness and radius of the V-shape structure. The data-mining method is accurate enough
for the PID probability prediction, and its efficiency provides an additional calculation
option in engineering applications. The PID of the V-shape specimen showed Gaussian
normal distribution. In a future study, the effect of curing parameters on mechanical
properties will be further discussed.
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