Investigation of the Mechanical Strength of Artificial Metallic Mandibles with Lattice Structure for Mandibular Reconstruction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Lattice Structures
2.2. Preparation of Specimens
2.3. Compression Test
2.4. Static Bending Test
2.5. Fatigue Test
2.6. Statistical Analysis
3. Results
3.1. Selection of Lattice Structures by a Numerical Material Test
3.2. Compression Test
3.3. Static Bending Test
3.4. Fatigue Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sjöström, M.; Danielsson, D.; Munck-Wikland, E.; Nyberg, J.; Sandström, K.; Thor, A.; Johansson, H.; Ceghafi, P.; Udd, S.D.; Emanuelsson, J.; et al. Mandibular resection in patients with head and neck cancer: Acute and long-term complications after reconstruction. Acta Oto-Laryngol. 2022, 142, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Kasper, R.; Scheurer, M.; Pietzka, S.; Sakkas, A.; Schramm, A.; Wilde, F.; Ebeling, M. MRONJ of the Mandible—From Decortication to a Complex Jaw Reconstruction Using a CAD/CAM-Guided Bilateral Scapula Flap. Medicina 2023, 59, 535. [Google Scholar] [CrossRef] [PubMed]
- Wongwaithongdee, U.; Inglam, S.; Chantarapanich, N. Biomechanical evaluation of two internal fixation systems for the treatment of mandibular symphyseal fracture. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2023, 237, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Tarsitano, A.; Ceccariglia, F.; Bevini, M.; Breschi, L.; Felice, P.; Marchetti, C. Prosthetically guided mandibular reconstruction using a fibula free flap: Three-dimensional Bologna plate, an alternative to the double-barrel technique. Int. J. Oral Maxillofac. Surg. 2023, 52, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Almansoori, A.A.; Choung, H.W.; Kim, B.; Park, J.Y.; Kim, S.M.; Lee, J.H. Fracture of Standard Titanium Mandibular Reconstruction Plates and Preliminary Study of Three-Dimensional Printed Reconstruction Plates. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 2020, 78, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Shen, S.; Li, M.; Shen, G.; Ding, G.; Yu, H. Three-dimensional printed titanium mesh combined with iliac cancellous bone in the reconstruction of mandibular defects secondary to ameloblastoma resection. BMC Oral Health 2023, 23, 681. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.S.; Li, S.J.; Hou, W.T.; Wang, S.G.; Hao, Y.L.; Yang, R.; Misra, R.D.K. Mechanistic understanding of compression-compression fatigue behavior of functionally graded Ti-6Al-4V mesh structure fabricated by electron beam melting. J. Mech. Behav. Biomed. Materials 2020, 103, 103590. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ummethala, R.; Singh, N.; Tang, S.; Suryanarayana, C.; Eckert, J.; Prashanth, K.G. Selective Laser Melting of Aluminum and Its Alloys. Material 2020, 13, 4564. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-C.; Liu, Y.; Li, S.; Hao, Y. Additive Manufacturing of Titanium Alloys by Electron Beam Melting: A Review. Adv. Eng. Mater. 2018, 20, 1700842. [Google Scholar] [CrossRef]
- Hoshi, I.; Kawai, T.; Kurosu, S.; Minamino, T.; Onodera, K.; Miyamoto, I.; Yamada, H. Custom-Made Titanium Mesh Tray for Mandibular Reconstruction Using an Electron Beam Melting System. Material 2021, 14, 6556. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Li, S.; Liu, Y.; Zhang, A.; Chen, B.; Han, Q.; Wang, J. Novel exploration of 3D printed personalized total elbow arthroplasty to solve the severe bone defect after internal fixation failure of comminuted distal humerus fracture: A case report. Medicine 2020, 99, e21481. [Google Scholar] [CrossRef] [PubMed]
- Meng, M.; Wang, J.; Huang, H.; Liu, X.; Zhang, J.; Li, Z. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J. Orthop. Transl. 2023, 42, 94–112. [Google Scholar] [CrossRef] [PubMed]
- Yang, L. 9-Safety of nanotechnology-enhanced orthopedic materials. In Nanotechnology-Enhanced Orthopedic Materials; Yang, L., Ed.; Woodhead Publishing: Oxford, UK, 2015; pp. 181–195. [Google Scholar]
- Maconachie, T.; Leary, M.; Tran, P.; Harris, J.; Liu, Q.; Lu, G.; Ruan, D.; Faruque, O.; Brandt, M. The effect of topology on the quasi-static and dynamic behaviour of SLM AlSi10Mg lattice structures. Int. J. Adv. Manuf. Technol. 2022, 118, 4085–4104. [Google Scholar] [CrossRef]
- Kim, T.; Zhao, C.Y.; Lu, T.J.; Hodson, H.P. Convective heat dissipation with lattice-frame materials. Mech. Mater. 2004, 36, 767–780. [Google Scholar] [CrossRef]
- Distefano, F.; Pasta, S.; Epasto, G. Titanium Lattice Structures Produced via Additive Manufacturing for a Bone Scaffold: A Review. J. Funct. Biomater. 2023, 14, 125. [Google Scholar] [CrossRef] [PubMed]
- Pałka, K.; Pokrowiecki, R. Porous Titanium Implants: A Review. Adv. Eng. Mater. 2018, 20, 1700648. [Google Scholar] [CrossRef]
- Sing, S.L.; Yeong, W.Y.; Wiria, F.E. Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties. J. Alloys Compd. 2016, 660, 461–470. [Google Scholar] [CrossRef]
- Taniguchi, N.; Fujibayashi, S.; Takemoto, M.; Sasaki, K.; Otsuki, B.; Nakamura, T.; Matsushita, T.; Kokubo, T.; Matsuda, S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 690–701. [Google Scholar] [CrossRef] [PubMed]
- Ushijima, K.; Akiyoshi, T.; Chen, D.-H.; Nakahara, T.; Cantwell, W.J. Estimation of Bending Behaviour for Beams Composed of Three-Dimensional Micro-Lattice Cells (Part 1 Based on Numerical Analysis). Trans. Jpn. Soc. Mech. Eng. Part A 2013, 79, 620–632. [Google Scholar] [CrossRef]
- Ushijima, K.; Chen, D.-H.; Cantwell, W.J.; Seo, M. Shear Deformation Response for Three-Dimensional Lattice Structures (1st Report, effects of geometry of overall lattice structure). Trans. Jpn. Soc. Mech. Eng. Part A 2010, 76, 1557–1564. [Google Scholar] [CrossRef]
- Ushijima, K.; Chen, D.-H.; Cantwell, W.J.; Seo, M. Shear Deformation Response for Three-Dimensional Lattice Structures (2nd Report, Effects of Unit Cell Geometry in a Lattice Structure). Trans. Jpn. Soc. Mech. Eng. Part A 2011, 77, 1417–1432. [Google Scholar] [CrossRef]
- Hattori, Y.; Sato, C.; Watanabe, M. Bite force distribution on dental arch during clenching. J. Jpn. Soc. Stomatognathic Funct. 1996, 2, 111–117. [Google Scholar] [CrossRef]
- Satoh, C. A Study of Bite Force Distribution on the Dental Arch in Normal Subjects. J. Jpn. Prosthodont. Soc. 1997, 41, 634–644. [Google Scholar] [CrossRef]
- Dahlberg, B. The masticatory habits; an analysis of the number of chews when consuming food. J. Dent. Res. 1946, 25, 67–72. [Google Scholar] [CrossRef] [PubMed]
- JIS T 0309; Test Method for Fatigue Properties of Metallic Biomaterials. Japanese Industrial Standards Committee: Tokyo, Japan, 2009.
- JIS T 0312; Testing Methods for Bending Properties of Metallic Osteosynthesis. Japanese Standards Committee: Tokyo, Japan, 2009.
- JIS T 0313; Testing Methods for Compression Bending Properties of Metallic Osteosynthesis Devices. Japanese Standards Committee: Tokyo, Japan, 2009.
- Ma, X.; Zhang, N.; Chang, Y.; Tian, X. Analytical model of mechanical properties for a hierarchical lattice structure based on hierarchical body-centered cubic unit cell. Thin-Walled Struct. 2023, 193, 111217. [Google Scholar] [CrossRef]
- Tian, W.; Li, W.; Yu, W.; Liu, X. A Review on Lattice Defects in Graphene: Types, Generation, Effects and Regulation. Micromachines 2017, 8, 163. [Google Scholar] [CrossRef]
- Xiao, L.; Song, W.; Wang, C.; Tang, H.; Fan, Q.; Liu, N.; Wang, J. Mechanical properties of open-cell rhombic dodecahedron titanium alloy lattice structure manufactured using electron beam melting under dynamic loading. Int. J. Impact Eng. 2017, 100, 75–89. [Google Scholar] [CrossRef]
- Davoodi, E.; Montazerian, H.; Mirhakimi, A.S.; Zhianmanesh, M.; Ibhadode, O.; Shahabad, S.I.; Esmaeilizadeh, R.; Sarikhani, E.; Toorandaz, S.; Sarabi, S.A.; et al. Additively manufactured metallic biomaterials. Bioact. Mater. 2022, 15, 214–249. [Google Scholar] [CrossRef] [PubMed]
- Distefano, F.; Epasto, G.; Guglielmino, E.; Amata, A.; Mineo, R. Subsidence of a partially porous titanium lumbar cage produced by electron beam melting technology. J. Biomed. Mater. Res. Part B Appl. Biomater. 2023, 111, 590–598. [Google Scholar] [CrossRef]
- Lee, J.; Li, L.; Song, H.Y.; Son, M.J.; Lee, Y.M.; Koo, K.T. Impact of lattice versus solid structure of 3D-printed multiroot dental implants using Ti-6Al-4V: A preclinical pilot study. J. Periodontal Implant. Sci. 2022, 52, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Park, H.; Kim, J.H.; Kim, H.M.; Yoo, C.H.; Kang, H.G. Fabrication of a lattice structure with periodic open pores through three-dimensional printing for bone ingrowth. Sci. Rep. 2022, 12, 17223. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Luo, Y.; Lu, M.; Wang, Y.; Gong, T.; He, X.; Hu, X.; Long, J.; Zhou, Y.; Min, L.; et al. Biomimetic design and clinical application of Ti-6Al-4V lattice hemipelvis prosthesis for pelvic reconstruction. J. Orthop. Surg. Res. 2024, 19, 210. [Google Scholar] [CrossRef] [PubMed]
- Seiler, M.; Kämmerer, P.W.; Peetz, M.; Hartmann, A. Customized lattice structure in reconstruction of three-dimensional alveolar defects. Int. J. Comput. Dent. 2018, 21, 261–267. [Google Scholar] [PubMed]
- Yagihara, K.; Okabe, S.; Ishii, J.; Amagasa, T.; Yamashiro, M.; Yamaguchi, S.; Yokoya, S.; Yamazaki, T.; Kinoshita, Y. Mandibular reconstruction using a poly(L-lactide) mesh combined with autogenous particulate cancellous bone and marrow: A prospective clinical study. Int. J. Oral Maxillofac. Surg. 2013, 42, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.F.; Choi, W.S.; Zhu, W.Y.; Su, Y.X. “One-piece” patient-specific reconstruction plate for double-barrel fibula-based mandibular reconstruction. Int. J. Oral Maxillofac. Surg. 2020, 49, 1016–1019. [Google Scholar] [CrossRef]
- Saijo, H.; Kanno, Y.; Mori, Y.; Suzuki, S.; Ohkubo, K.; Chikazu, D.; Yonehara, Y.; Chung, U.I.; Takato, T. A novel method for designing and fabricating custom-made artificial bones. Int. J. Oral Maxillofac. Surg. 2011, 40, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, A.; Chiba, H.; Takahashi, H.; Toyoda, J.; Abukawa, H. Clinical application of a custom-made bioresorbable raw particulate hydroxyapatite/poly-L-lactide mesh tray for mandibular reconstruction. Odontology 2010, 98, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Aytaç, S.; Ozbek, S.; Kahveci, R.; Ozgenel, Y.; Akin, S.; Ozcan, M. Titanium mesh fracture in mandibular reconstruction. J. Craniofac. Surg. 2005, 16, 1120–1122. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Guan, Z.; Cantwell, W.J. Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int. J. Mech. Sci. 2013, 67, 28–41. [Google Scholar] [CrossRef]
- Kobayashi, R. Improvements in occlusion after orthognathic surgery. Jpn. J. Oral Maxillofac. Surg. 1990, 36, 2473–2490. [Google Scholar] [CrossRef]
Structures | Equivalent Physical Properties (MPa) | Relative Density | |||
---|---|---|---|---|---|
X Axis Direction | Y Axis Direction | Z Axis Direction | Average | ||
Body diagonals with rounded nodes | 15,995 | 15,996 | 15,971 | 15,987 | 45.40% |
Body diagonals with nodes | 16,864 | 16,694 | 16,622 | 16,727 | 50.20% |
Cross | 5109 | 5109 | 5109 | 5109 | 10.40% |
Cross-1 | 1390 | 1390 | 1390 | 1390 | 3.20% |
Cross-2 | 1599 | 1598 | 1598 | 1598 | 4.20% |
Cross-3 | 1635 | 1635 | 1635 | 1635 | 4.60% |
Cross-X | 348 | 23,333 | 434 | 8039 | 19.40% |
Cross-X reinforced | 36 | 699 | 45 | 260 | 2.70% |
Diamond 20 percent relative density | 2793 | 2793 | 2793 | 2793 | 20.00% |
Diamond 30 percent relative density | 6635 | 6635 | 6634 | 6635 | 29.60% |
Dode—medium | 630 | 630 | 630 | 630 | 12.60% |
Dode—thick | 3026 | 3027 | 3027 | 3027 | 24.60% |
Dode—thin | 47 | 47 | 47 | 47 | 3.90% |
G-structure2 | 2149 | 3424 | 2150 | 2574 | 8.40% |
G-structure3 | 553 | 212 | 552 | 439 | 12.00% |
G-structure4 | 4206 | 4206 | 4206 | 4206 | 10.60% |
G-structure6 | 6031 | 6031 | 6031 | 6031 | 11.90% |
G-structure7 | 8052 | 443 | 8052 | 5515 | 14.80% |
G-structure8 | 2519 | 1324 | 2520 | 2121 | 7.50% |
G-structure9 | 3920 | 4003 | 4901 | 4275 | 22.40% |
G-structure10 | 6619 | 7787 | 10,681 | 8362 | 29.90% |
Octet truss relative density 30 percent | 8120 | 8119 | 8100 | 8113 | 29.30% |
Rhombi_Octa-Dense | 5837 | 5837 | 5837 | 5837 | 15.40% |
Rhombi_Octa-Light | 2672 | 2672 | 2672 | 2672 | 10.10% |
Rhombic dodecahedron relative density 20 percent | 1964 | 1964 | 1975 | 1968 | 19.40% |
Rhombic dodecahedron relative density 30 percent | 5673 | 5673 | 5675 | 5674 | 29.80% |
Trunc Octa-Dense | 6513 | 6452 | 6348 | 6438 | 24.70% |
Trunc Octa-Light | 3590 | 3481 | 3458 | 3509 | 20.40% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawamata, S.; Kawai, T.; Yasuge, E.; Hoshi, I.; Minamino, T.; Kurosu, S.; Yamada, H. Investigation of the Mechanical Strength of Artificial Metallic Mandibles with Lattice Structure for Mandibular Reconstruction. Materials 2024, 17, 3557. https://doi.org/10.3390/ma17143557
Kawamata S, Kawai T, Yasuge E, Hoshi I, Minamino T, Kurosu S, Yamada H. Investigation of the Mechanical Strength of Artificial Metallic Mandibles with Lattice Structure for Mandibular Reconstruction. Materials. 2024; 17(14):3557. https://doi.org/10.3390/ma17143557
Chicago/Turabian StyleKawamata, Shinsuke, Tadashi Kawai, Erika Yasuge, Isao Hoshi, Tadaharu Minamino, Shingo Kurosu, and Hiroyuki Yamada. 2024. "Investigation of the Mechanical Strength of Artificial Metallic Mandibles with Lattice Structure for Mandibular Reconstruction" Materials 17, no. 14: 3557. https://doi.org/10.3390/ma17143557
APA StyleKawamata, S., Kawai, T., Yasuge, E., Hoshi, I., Minamino, T., Kurosu, S., & Yamada, H. (2024). Investigation of the Mechanical Strength of Artificial Metallic Mandibles with Lattice Structure for Mandibular Reconstruction. Materials, 17(14), 3557. https://doi.org/10.3390/ma17143557