Study on Expansion Rate of Steel Slag Cement-Stabilized Macadam Based on BP Neural Network
Abstract
:1. Introduction
2. Experimental Materials
2.1. Cement
2.2. Aggregates
2.3. Steel Slag
2.3.1. The Physical Properties of Steel Slag
2.3.2. The Chemical Properties of Steel Slag
2.3.3. Microstructure of Steel Slag
2.3.4. Comprehensive Thermal Analysis of Steel Slag
2.3.5. Testing of Steel Slag for Water Swelling by Immersion
3. Grading and Proportioning of Steel Slag Cement Stabilized Macadam
4. Research on the Expansion Rate of Steel Slag-Stabilized Crushed Stone Mixture Based on BP Neural Network
4.1. The Natural Expansion Rate of the Mixture
4.2. The Immersion Expansion Rate of the Mixture
4.3. Construction and Test of Expansion Volume Prediction Model Based on BP Neural Network
4.3.1. Selection of Training and Test Samples
4.3.2. Prediction Results Output
5. Conclusions
- It was found that the volume expansion rate of cement-stabilized gravel mixtures with different steel slag dosages over seven days, in the case of cement dosages of 5% and 6%, in the natural state increased with the gradual increase of steel slag substitution, and when the dosage reached 59%, it was no longer suitable for use in actual projects.
- The rule of change of the volumetric expansion rate of the mixture in the submerged state was consistent with the natural state. In the same amount of steel slag and with the same submersion time, with the increase in the amount of cement, the expansion rate of the mixture decreased, which was mainly due to the cement’s bonding effect being enhanced, offsetting part of the expansion caused by the steel slag.
- The expansion rate polynomial of the cement-stabilized steel slag crushed stone mix was fitted using MATLAB 2020b software, and a BP neural network prediction model of the expansion rate of the cement-stabilized steel slag crushed stone mix was established. This method roughly arrived at the expansion rate of cement-stabilized crushed stone steel slag mix through the calculation of the expansion rate of steel slag and the different substitution amounts of steel slag. It greatly reduced the experimental workload, improved the accuracy of the proportion design, and provided a reliable method for the prediction and quality control of the expansion of the cement-stabilized steel slag aggregate.
- The expansion damage of steel slag is an important factor affecting the application of steel slag cement-stabilized macadam, and its expansion is a long-term process. It is recommended to conduct long-term research and attempt to incorporate other cost-effective materials to further explore ways to effectively utilize the excellent performance of steel slag while economically addressing its drawbacks.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, Y.; Chen, A.; Lin, M.; Ma, Y.; Zhao, Y. Microscale characterization of an anti-cracking stone base course filled with cement stabilized macadam. Constr. Build. Mater. 2024, 425, 136037. [Google Scholar] [CrossRef]
- Feng, L.; Liu, W.; Jiang, W.; Wang, G. Mechanics and road performance of mudstone modified stabilized gravel subgrade in arid desert areas. Case Stud. Constr. Mater. 2024, 20, e02799. [Google Scholar] [CrossRef]
- Ma, Y.H.; Gu, J.Y.; Li, Y.; Li, Y.C. The bending fatigue performance of cement-stabilized aggregate reinforced with polypropylene filament fiber. Constr. Build. Mater. 2015, 83, 230–236. [Google Scholar] [CrossRef]
- Yang, R.C.; Li, K.; Zhu, J.P.; Zhu, T.K.; Dong, Z.; Wu, D.C. Effect of Rubber Particles on Cement Stabilized Gravel System. J. Wuhan Univ. Technol.—Mater. Sci. Ed. 2014, 29, 990–995. [Google Scholar] [CrossRef]
- Li, Z.X.; Chen, Y.Z.; Meng, Q.L.; Wang, C.H.; Guan, J.; Zhang, L.; Wang, X.Q.; Hu, X.G.; Zhang, Y.J.; Chen, H.J. Study on Pavement Performance of Cement Stabilized Recycled Brick Aggregate Base with Basalt Fiber. Adv. Mater. Sci. Eng. 2022, 2022, 2347736. [Google Scholar] [CrossRef]
- Liu, J.; Wang, B.; Hu, C.T.; Chen, J.G.; Zhu, S.Y.; Xu, X.D. Multiscale study of the road performance of cement and fly ash stabilized aeolian sand gravel base. Constr. Build. Mater. 2023, 397, 131842. [Google Scholar] [CrossRef]
- Sun, Q.Q.; Tao, L.J.; Li, X.; Xu, W.; Yao, S.; Li, J.P.; Ren, Q.F.; Chen, Y.E.; Xu, C.S.; Wu, Z.L.; et al. Study on preparation of inorganic binder stabilized material with large dosage of phosphogypsum. J. Korean Ceram. Soc. 2023, 60, 883–895. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Gao, Y.; Zhang, Y.L.; Jia, Y.S. Effect of fines on the drying crack resistance of composite soil stabiliser-stabilised gravel soil. Road Mater. Pavement Des. 2019, 20, 1255–1274. [Google Scholar] [CrossRef]
- Zeng, Z.; Miao, C.; Shi, M.; Zhang, R.; Xu, Y. Study on the dense structure and properties of cement-stabilized coral aggregates. Constr. Build. Mater. 2022, 359, 129465. [Google Scholar] [CrossRef]
- Hoy, M.; Tran, N.Q.; Suddeepong, A.; Horpibulsuk, S.; Buritatum, A.; Yaowarat, T.; Arulrajah, A. Wetting-drying durability performance of cement-stabilized recycled materials and lateritic soil using natural rubber latex. Constr. Build. Mater. 2023, 403, 133108. [Google Scholar] [CrossRef]
- Yan, P.; Ma, Z.; Li, H.; Gong, P.; Xu, M.; Chen, T. Laboratory tests, field application and carbon footprint assessment of cement-stabilized pure coal solid wastes as pavement base materials. Constr. Build. Mater. 2023, 366, 130265. [Google Scholar] [CrossRef]
- Olatoyan, O.J.; Okeyinka, O.M.; Oluwafemi, B.; Oyewo, S.T.; Olayanju, O.K.; Kareem, M.A.; Usman Adebanjo, A.; Salami, M.O. Investigation of tensile strength performance of green concrete incorporating steel slag. Hybrid Adv. 2024, 6, 100186. [Google Scholar] [CrossRef]
- Li, Y.; Liu, F.; Yu, F.; Du, T. A review of the application of steel slag in concrete. Structures 2024, 63, 106352. [Google Scholar] [CrossRef]
- Díaz-Piloneta, M.; Terrados-Cristos, M.; Álvarez-Cabal, J.V.; Vergara-González, E. Comprehensive Analysis of Steel Slag as Aggregate for Road Construction: Experimental Testing and Environmental Impact Assessment. Materials 2021, 14, 3587. [Google Scholar] [CrossRef]
- Ren, Z.; Li, D. Application of Steel Slag as an Aggregate in Concrete Production: A Review. Materials 2023, 16, 5841. [Google Scholar] [CrossRef]
- Chen, G.; Wang, S. Research on macro-microscopic mechanical evolution mechanism of cement-stabilized steel slag. J. Build. Eng. 2023, 75, 107047. [Google Scholar] [CrossRef]
- Li, W.; Lang, L.; Lin, Z.; Wang, Z.; Zhang, F. Characteristics of dry shrinkage and temperature shrinkage of cement-stabilized steel slag. Constr. Build. Mater. 2017, 134, 540–548. [Google Scholar] [CrossRef]
- Lang, L.; Song, C.; Xue, L.; Chen, B. Effectiveness of waste steel slag powder on the strength development and associated micro-mechanisms of cement-stabilized dredged sludge. Constr. Build. Mater. 2020, 240, 117975. [Google Scholar] [CrossRef]
- Wu, Y.C.; Feng, J.W. Development and Application of Artificial Neural Network. Wirel. Pers. Commun. 2018, 102, 1645–1656. [Google Scholar] [CrossRef]
- Bahrami, S.; Alamdari, S.; Farajmashaei, M.; Behbahani, M.; Jamshidi, S.; Bahrami, B. Application of artificial neural network to multiphase flow metering: A review. Flow Meas. Instrum. 2024, 97, 102601. [Google Scholar] [CrossRef]
- Ghorbani, B.; Arulrajah, A.; Narsilio, G.; Horpibulsuk, S.; Bo, M.W. Shakedown analysis of PET blends with demolition waste as pavement base/subbase materials using experimental and neural network methods. Transp. Geotech. 2021, 27, 100481. [Google Scholar] [CrossRef]
- Kozubal, J.V.; Kania, T.; Tarawneh, A.S.; Hassanat, A.; Lawal, R. Ultrasonic assessment of cement-stabilized soils: Deep learning experimental results. Measurement 2023, 223, 113793. [Google Scholar] [CrossRef]
- Sathiparan, N.; Jayasundara, W.G.B.S.; Samarakoon, K.S.D.; Banujan, B. Prediction of characteristics of cement stabilized earth blocks using non-destructive testing: Ultrasonic pulse velocity and electrical resistivity. Materialia 2023, 29, 101794. [Google Scholar] [CrossRef]
- Tran, V.Q. Hybrid gradient boosting with meta-heuristic algorithms prediction of unconfined compressive strength of stabilized soil based on initial soil properties, mix design and effective compaction. J. Clean. Prod. 2022, 355, 131683. [Google Scholar] [CrossRef]
- Ndepete, C.P.; Sert, S.; Beycioğlu, A.; Katanalp, B.Y.; Eren, E.; Bağrıaçık, B.; Topolinski, S. Exploring the effect of basalt fibers on maximum deviator stress and failure deformation of silty soils using ANN, SVM and FL supported by experimental data. Adv. Eng. Softw. 2022, 172, 103211. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, G.; Zhang, Y.; Wu, X.; Zhang, F.; Zhang, J.; Li, X. Hydration behavior and cementitious properties of steel slag: From an early age to a long-term. Case Stud. Constr. Mater. 2024, 20, e03066. [Google Scholar] [CrossRef]
- EN 206:2013+A1:2016; Concrete—Specification, Performance, Production and Conformity. European Committee for Standardization (CEN): Brussels, Belgium, 2013.
Indicators | Units | Technical Standards | Measured Values | |
---|---|---|---|---|
Specific surface area | m2/kg | ≥300 | 344 | |
Stability | mm | ≤5.0 | 1.8 | |
Initial setting time | min | ≥45 | 183 | |
Final setting time | min | ≤600 | 244 | |
Loss on burning | % | ≤5.0 | 3.98 | |
Sulfur trioxide | % | ≤3.5 | 2.07 | |
Magnesium oxide | % | ≤5.0 | 2.64 | |
Chloride ion | % | ≤0.06 | 0.007 | |
3-day strength | Flexural strength | MPa | ≥3.5 | 5.7 |
Compressive strength | MPa | ≥17.0 | 28.0 | |
28-day strength | Flexural strength | MPa | ≥6.5 | 8.9 |
Compressive strength | MPa | ≥42.5 | 50.7 |
Physical Properties | 0~5 mm | 5~15 mm | 15~25 mm | Technical Requirement |
---|---|---|---|---|
Apparent relative density (g/cm3) | 3.664 | 3.755 | 3.549 | ≥2.6 |
Packing density (g/cm3) | 2.352 | 2.185 | 1.941 | / |
Gross volume relative density (g/cm3) | 3.422 | 3.572 | 3.827 | / |
Void ratio (%) | 35.8 | 41.8 | 45.3 | / |
Water absorption (%) | 2.03 | 1.36 | 1.89 | ≤2 |
Sand equivalent (%) | 71 | / | / | / |
Crushing value (%) | / | 16.1 | 17.6 | ≤22 |
Los Angeles abrasion value (%) | / | 16.4 | 17.2 | ≤26 |
Needle flake content (%) | / | 2.2 | 2.7 | ≤22 |
Days | D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | Expansion Rate | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | Before heating | 0 | 0.07 | 0.11 | 0.18 | 0.31 | 0.44 | 0.58 | 0.72 | 0.80 | 0.87 | 0.91 | 0.76% |
After heating | 0.04 | 0.10 | 0.15 | 0.24 | 0.37 | 0.49 | 0.61 | 0.77 | 0.85 | 0.89 | |||
B | Before heating | 0 | 0.08 | 0.14 | 0.20 | 0.41 | 0.58 | 0.74 | 0.84 | 0.91 | 1.02 | 1.09 | 0.91% |
After heating | 0.03 | 0.12 | 0.18 | 0.27 | 0.43 | 0.61 | 0.78 | 0.89 | 0.93 | 1.05 | |||
C | Before heating | 0 | 0.06 | 0.12 | 0.21 | 0.28 | 0.36 | 0.52 | 0.68 | 0.75 | 0.87 | 0.95 | 0.79% |
After heating | 0.04 | 0.11 | 0.17 | 0.26 | 0.32 | 0.44 | 0.56 | 0.71 | 0.79 | 0.90 |
Serial Number | Gathering Gear | |||||
---|---|---|---|---|---|---|
15~25 mm Limestone | 5~15 mm Limestone | 0~5 mm Limestone | 15~25 mm Steel Slag | 5~15 mm Steel Slag | 0~5 mm Steel Slag | |
1 | 37% | 32% | 31% | 0% | 0% | 0% |
2 | 31% | 21% | 21% | 13% | 10% | 4% |
3 | 20% | 13% | 19% | 25% | 15% | 8% |
4 | 10% | 8% | 16% | 37% | 17% | 12% |
5 | 5% | 7% | 5% | 31% | 20% | 32% |
6 | 0% | 0% | 0% | 32% | 31% | 37% |
Type of Mix | Initial Volume (cm3) | Volume after 7 Days (cm3) | Volume Expansion Rate (%) |
---|---|---|---|
0% steel slag mixing | 2654.89 | 2663.39 | 0.32 |
21% steel slag mixing | 2675.12 | 2698.13 | 0.86 |
40% steel slag mixing | 2648.11 | 2676.71 | 1.08 |
59% steel slag mixing | 2653.58 | 2688.61 | 1.32 |
78% steel slag mixing | 2632.45 | 2677.99 | 1.73 |
100% steel slag mixing | 2654.23 | 2712.89 | 2.21 |
Type of Mix | Initial Volume (cm3) | Volume after 7 Days (cm3) | Volume Expansion Rate (%) |
---|---|---|---|
0% steel slag mixing | 2642.98 | 2647.72 | 0.18 |
21% steel slag mixing | 2679.86 | 2692.46 | 0.47 |
40% steel slag mixing | 2654.76 | 2681.23 | 1.00 |
59% steel slag mixing | 2657.89 | 2691.24 | 1.25 |
78% steel slag mixing | 2627.67 | 2671.89 | 1.68 |
100% steel slag mixing | 2662.12 | 2711.12 | 1.84 |
Immersion Time (days) | 21% Steel Slag | 40% Steel Slag | 59% Steel Slag | 78% Steel Slag | 100% Steel Slag |
---|---|---|---|---|---|
1 | 0.11 | 0.22 | 0.37 | 0.46 | 0.54 |
2 | 0.33 | 0.39 | 0.52 | 0.70 | 0.77 |
3 | 0.41 | 0.48 | 0.70 | 0.75 | 0.93 |
4 | 0.53 | 0.53 | 0.86 | 0.87 | 1.16 |
5 | 0.61 | 0.69 | 0.93 | 1.06 | 1.32 |
6 | 0.66 | 0.74 | 1.15 | 1.29 | 1.57 |
7 | 0.79 | 0.85 | 1.33 | 1.41 | 1.73 |
8 | 0.86 | 0.99 | 1.51 | 1.63 | 1.87 |
9 | 0.93 | 1.03 | 1.64 | 1.82 | 2.29 |
10 | 1.07 | 1.21 | 1.73 | 2.11 | 2.67 |
Immersion Time (days) | 21% Steel Slag | 40% Steel Slag | 59% Steel Slag | 78% Steel Slag | 100% Steel Slag |
---|---|---|---|---|---|
1 | 0.08 | 0.12 | 0.27 | 0.36 | 0.44 |
2 | 0.24 | 0.27 | 0.41 | 0.57 | 0.74 |
3 | 0.32 | 0.45 | 0.65 | 0.72 | 0.88 |
4 | 0.47 | 0.52 | 0.83 | 0.83 | 1.08 |
5 | 0.56 | 0.66 | 0.92 | 0.97 | 1.25 |
6 | 0.61 | 0.70 | 1.09 | 1.16 | 1.52 |
7 | 0.67 | 0.81 | 1.31 | 1.35 | 1.67 |
8 | 0.70 | 0.93 | 1.52 | 1.57 | 1.81 |
9 | 0.82 | 1.01 | 1.59 | 1.74 | 2.11 |
10 | 0.97 | 1.11 | 1.61 | 1.91 | 2.47 |
Serial Number | Steel Slag Expansion Rate | Steel Slag Mixing | Specimen Expansion Rate | Serial Number | Steel Slag Expansion Rate | Steel Slag Mixing | Specimen Expansion Rate |
---|---|---|---|---|---|---|---|
1 | 0.11 | 0.21 | 0.11 | 26 | 0.73 | 0.59 | 1.64 |
2 | 0.23 | 0.21 | 0.41 | 27 | 0.82 | 0.59 | 1.73 |
3 | 0.28 | 0.21 | 0.52 | 28 | 0.11 | 0.78 | 0.46 |
4 | 0.34 | 0.21 | 0.61 | 29 | 0.15 | 0.78 | 0.69 |
5 | 0.44 | 0.21 | 0.66 | 30 | 0.23 | 0.78 | 0.74 |
6 | 0.58 | 0.21 | 0.79 | 31 | 0.28 | 0.78 | 0.87 |
7 | 0.64 | 0.21 | 0.86 | 32 | 0.34 | 0.78 | 1.06 |
8 | 0.73 | 0.21 | 0.93 | 33 | 0.44 | 0.78 | 1.29 |
9 | 0.82 | 0.21 | 1.07 | 34 | 0.58 | 0.78 | 1.41 |
10 | 0.11 | 0.4 | 0.22 | 35 | 0.73 | 0.78 | 1.82 |
11 | 0.15 | 0.4 | 0.38 | 36 | 0.82 | 0.78 | 2.11 |
12 | 0.23 | 0.4 | 0.47 | 37 | 0.11 | 1 | 0.54 |
13 | 0.34 | 0.4 | 0.69 | 38 | 0.15 | 1 | 0.77 |
14 | 0.44 | 0.4 | 0.74 | 39 | 0.23 | 1 | 0.92 |
15 | 0.58 | 0.4 | 0.85 | 40 | 0.28 | 1 | 1.16 |
16 | 0.64 | 0.4 | 0.99 | 41 | 0.34 | 1 | 1.32 |
17 | 0.73 | 0.4 | 1.03 | 42 | 0.44 | 1 | 1.57 |
18 | 0.82 | 0.4 | 1.21 | 43 | 0.58 | 1 | 1.73 |
19 | 0.11 | 0.59 | 0.37 | 44 | 0.64 | 1 | 1.87 |
20 | 0.15 | 0.59 | 0.51 | 45 | 0.73 | 1 | 2.29 |
21 | 0.23 | 0.59 | 0.69 | 46 | 0.15 | 0.21 | 0.33 |
22 | 0.28 | 0.59 | 0.85 | 47 | 0.28 | 0.4 | 0.52 |
23 | 0.34 | 0.59 | 0.93 | 48 | 0.44 | 0.59 | 1.15 |
24 | 0.58 | 0.59 | 1.33 | 49 | 0.64 | 0.78 | 1.63 |
25 | 0.64 | 0.59 | 1.51 | 50 | 0.82 | 1 | 2.67 |
Number of Days | Steel Slag Expansion Rate | Steel Slag Admixture | Mix Expansion Rate |
---|---|---|---|
2 | 0.15 | 0.21 | 0.33 |
4 | 0.28 | 0.4 | 0.52 |
6 | 0.44 | 0.59 | 1.15 |
8 | 0.64 | 0.78 | 1.63 |
10 | 0.82 | 1 | 2.67 |
Measured Value | BP Projected Value | BP Inaccuracies |
---|---|---|
0.33 | 0.27141 | −0.058592 |
0.52 | 0.54873 | 0.02873 |
1.15 | 1.1212 | −0.028766 |
1.63 | 1.6101 | −0.019886 |
2.67 | 2.7533 | 0.083275 |
Cement Mixing | MAE | MSE | RMSE | MAPE |
---|---|---|---|---|
5% cement | 0.043850 | 0.0024832 | 0.049832 | 6.0241% |
6% cement | 0.029548 | 0.0010899 | 0.033014 | 5.6820% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Xu, F.; Li, B.; Gao, Q. Study on Expansion Rate of Steel Slag Cement-Stabilized Macadam Based on BP Neural Network. Materials 2024, 17, 3558. https://doi.org/10.3390/ma17143558
Wu H, Xu F, Li B, Gao Q. Study on Expansion Rate of Steel Slag Cement-Stabilized Macadam Based on BP Neural Network. Materials. 2024; 17(14):3558. https://doi.org/10.3390/ma17143558
Chicago/Turabian StyleWu, Hengyu, Feng Xu, Bingyang Li, and Qiju Gao. 2024. "Study on Expansion Rate of Steel Slag Cement-Stabilized Macadam Based on BP Neural Network" Materials 17, no. 14: 3558. https://doi.org/10.3390/ma17143558
APA StyleWu, H., Xu, F., Li, B., & Gao, Q. (2024). Study on Expansion Rate of Steel Slag Cement-Stabilized Macadam Based on BP Neural Network. Materials, 17(14), 3558. https://doi.org/10.3390/ma17143558