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Abstract: The occurrence of adiabatic shear bands, as an instability phenomenon, is viewed as
a precursor to failure caused by instability at high strain rates. Metastable β titanium alloys are
extensively utilized due to their excellent mechanical properties, which are often subjected to high
strain rate loads in service conditions. Understanding and studying their adiabatic shear instability
behavior is thus crucial for preventing catastrophic failure and enhancing material performance. In
this study via detailed microstructural analyses in the adiabatic shear region of a Ti-10V-2Fe-3Al alloy
subjected to high strain rates, it was observed that α′′ martensitic transformation and nano-twinning
plus β-to-α phase transformation with α′′ martensite as an intermediate phase occurred, in addition
to substantial fine grains. The grain refinement mechanisms were mainly related to dynamic recovery
dominated by dislocation migration alongside severe plastic deformation.

Keywords: adiabatic shear band; martensitic transformation; nano-twinning; dynamic recovery;
severe plastic deformation

1. Introduction

Due to their low density, high strength, and reasonable ductility/toughness at room
temperature, metastable β-titanium alloys have been developed and successfully used
in aircraft fuselages, wings, and landing gears where reliability and safety are of vital
importance [1,2]. At the same time, the increasingly harsh environment of industrial
applications places higher demands on the materials, making it inevitable that metastable β-
titanium alloys will be subjected to high strain rates in service, while premature catastrophic
failure of critical components must be avoided [3,4].

Adiabatic shear banding (ASB) is an important and common deformation instability
phenomenon in high strain rate conditions, being often before ductile fracture [5], and
has been widely studied since its discovery. The formation of ASB is explained by the
“thermoplastic instability” theory, which states that the rate of thermal diffusion at high
strain rates is extremely limited relative to the heat generated by plastic deformation and
is close to being adiabatic. The instability phenomenon is a result of competing thermal
softening, strain hardening, and strain rate hardening [6–8].
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In the high-performance advanced engineering applications, ASB is commonly en-
countered. In the forging process, the occurrence of adiabatic shear is indicative of material
failure and should be avoided as much as possible [6,9]. In high-speed machining pro-
cesses, this phenomenon can be utilized to reduce machining temperatures and forces,
thereby improving machining efficiency and surface quality [10,11]. However, in the
process of projectile penetration, ASB can diminish the penetration capacity of the projec-
tile [12]. Nonetheless, some “self-sharpening” projectile materials exploit this instability
phenomenon to enhance their penetration capabilities [13]. In explosive events, materials
inevitably endure high strain rate loads, reaching up to 106 s−1, and severe plastic deforma-
tion. It is essential to prevent the occurrence of adiabatic instability in the context of armor
protection [14,15]. Thus, on one hand, efforts should be made to avoid the occurrence of
this plastic instability as ASB often leads to the accumulation of damage and reduction in
flow stress, resulting in further concentrated deformation and eventual failure. On the other
hand, this phenomenon can be utilized to enhance the efficiency of mechanical processing
and improve the penetration performance of projectile materials.

Due to the extreme conditions experienced by ASB, its formation may be related to a
variety of deformation mechanisms. The specific mechanisms are correlated with the type
of materials [6]. Substantial grain refinement is the most common phenomenon in ASB and
is crucial for the initiation and development of ASB and the change in mechanical behavior.
Research by Rittle et al. [16] suggests that dynamic recrystallization (DRX) may serve as
a potential cause inducing adiabatic shear instability in the early stages of deformation—
a result similar to the findings of Magagnosc et al. [17]. Furthermore, Lieou et al. [5]
conducted a study using polycrystalline plasticity thermodynamics theory, which indicated
that DRX provides a crucial softening mechanism to explain the stress reduction in adiabatic
shear instability. However, there is some controversy regarding the mechanism of grain
refinement in ASB. Jiang et al. [18] studied the microstructural evolution of pure titanium
ASB, revealing that the microstructure in ASB consists of ultrafine grains, with an average
grain size decreasing from the initial 20 µm to 0.1–1 µm and equiaxed ultrafine grains being
the product of DRX. Similarly, Li et al. [19] studied the microstructure of ultrafine-grained
pure titanium ASB and observed that the initial 120 nm grain-sized structure could still
undergo significant refinement in ASB, with a grain size of approximately 40 nm. These
studies were accompanied by a significant temperature increase in the ASB region, enabling
the possibility of DRX occurrence. However, other researchers suggest that DRX may not
be completed during high-speed loading processes, and substantial grain refinement is the
result of dynamic recovery (DRV). Pérez-Prado et al. [20] investigated the microstructural
evolution of a Ta-W alloy ASB, observing grain refinement in the center of the ASB but with
a more evident texture. Through dynamic calculations, they demonstrated that subgrain
boundaries cannot be refined by rotation and relaxation, suggesting that grain refinement
should be attributed to the division and breakage of initial grains by subgrain boundaries.
This is consistent with the observations of Wang et al. [21] and Guan et al. [22].

To elucidate the evolution of deformation mechanisms within ASB, particularly the
grain refinement mechanism, is crucial for enhancing the high strain rate service perfor-
mance of materials and for achieving a rational prediction of adiabatic shear instability
phenomena. Therefore, this study focused on this important issue, utilizing hat-shaped
specimens and a split Hopkinson pressure bar (SHPB) to induce ASB in the designated
area and employing high-resolution transmission electron microscopy (HRTEM) combined
with focused ion beam (FIB) to conduct an in-depth investigation into the microstructural
evolution and grain refinement mechanism in the ASB region of a metastable β-titanium
alloy Ti1023. The research results in this study were aimed to advance the understanding
and enrich the theory of adiabatic shear instability.

2. Materials and Methods

The nominal composition of the Ti1023 alloy used in this study is Ti-10V-2Fe-3Al
(wt.%). Based on the content of β-stabilizing elements (V and Fe as β-stabilizing elements
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and Al as an α-stabilizing element), the region of the Ti1023 alloy in the phase diagram
was determined. As depicted in Figure 1a, the Ti1023 alloy is a typical metastable β

titanium alloy. To avoid the interference from the multi-phase structure of the alloy in
subsequent analyses, the Ti1023 alloy was subjected to a solution treatment above the β

transformation temperature of 1068 K (i.e., 1103 K for 1 h, water quenching) to obtain a β

single-phase microstructure. Metallographic (OM) analysis of the post-solution treatment
was conducted using a Zeiss Axio Observer.5m optical microscope (Carl Zeiss AG, Jena,
Germany), revealing an equiaxed and coarse β single-phase microstructure as shown in
Figure 1b with an average grain size of ~389 µm (Figure 1c). The initial microstructure being
β single phase was further verified through the observation of the post-solution-treated
original microstructure using a Zeiss Gemini 300 scanning electron microscope (SEM) (Carl
Zeiss AG, Jena, Germany) equipped with an Oxford electron backscatter diffraction (EBSD)
detector (Oxford Instruments, Oxford, UK) (Figure 1e). Dynamic loading experiments
were conducted on the post-solution-treated hat-shaped specimen using a split Hopkinson
pressure bar (SHPB). The incident, transmitted, and reflected waves through strain gauges
in the incident and transmitted bars connected to digital oscilloscopes were recorded for
analyzing the strain rate, stress, strain, time, and other related parameters. The SHPB
system setup is shown in Figure 1f. Further characterization and analysis of the ASB
induced by forced shear in the hat-shaped specimen post-dynamic loading were performed
using backscatter electron (BSE) imaging with a Zeiss Gemini 300 SEM (Carl Zeiss AG, Jena,
Germany) at an accelerating voltage of 20 kV and an aperture size of 60 µm. A detailed
characterization of the ASB region was conducted using a combination of FEI Helios UX
FIB (FEI, Hillsboro, OR, USA) and JEM 2100F (JEOL, Tokyo, Japan) transmission electron
microscopy (TEM).
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Figure 1. (a) Titanium alloy phase diagram labeling titanium alloy classification. (b) OM image and
(c) grain size distribution of Ti1023 alloy after solution treatment. (d) Geometry and dimensions of
the hat-shaped specimen. (e) Band contrast (BC), IPF orientation map, and phase distribution results
within the hat-shaped specimen. (f) SHPB system schematic illustration. (g) Original waveforms
during dynamic loading. (h) True stress vs. time curve.
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3. Results and Discussion
3.1. Dynamic Mechanical Response

By analyzing the original wave of the dynamic loading process of the SHPB (Figure 1g),
it can be inferred that during the continuous dynamic loading, a drop in the transmitted
wave started to occur at 160 µs, indicating the generation of damage, i.e., the onset of
adiabatic shear instability [4,23]. As reflected in the true stress–time curve (Figure 1h), the
stress reached its peak at 160 µs, followed by a stress collapse, which was indicative of
adiabatic shear instability, where the loading process started at 128 µs and ended at 226 µs
with a duration of 98 µs. The entire dynamic mechanical response could be divided into
three stages: The first stage comprised the elastic deformation and the double-yielding
phenomenon caused by stress-induced martensitic phase transformation, the second stage
was represented by the stress collapse, and the third stage was characterized by the stress
dynamic equilibrium.

3.2. ASB Microstructural Evolution

An ASB of a width of ~56 µm can be seen from a low-magnification backscattered
electron (BSE) image in Figure 2a, where the difference in the microstructure between the
ASB and the surrounding matrix is clearly visible. Cracks and voids were also observed
at the edges and inside the ASB, which could cause the catastrophic fracture at high
strain rates [24,25]. High-magnification BSE analysis performed at the center of the ASB
(Figure 2b) revealed that the grains in the center of the ASB were highly refined (with
an average grain size of ~478 nm). As indicated by yellow outlines, a dark contrast lath
structure was extensively observed within the nanograins, as indicated by white arrows.
However, the relative low magnification of SEM prevented in-depth analysis, so that
HRTEM combined with FIB positioning was used to characterize the fine structures of ASB
more precisely. The TEM bright field (BF) results, as shown in Figure 2c, were consistent
with the BSE results, pointing to widespread nanograin and lath structures in the center of
the ASB. Further details of the grains indicated in Figure 2c are shown in Figure 2d, with
a ~90◦ image rotation. The white contrast coarse laths were seen in parallel rows, within
which fine dark contrast lath structures were visible. The selected area electron diffraction
(SAED) analysis (Figure 2e) uncovered that three sets of diffraction spots existed in this
region as {111}α′′ twins and [-12-10]α, with an orientation relationship of (-111)α′′//(10-
11)α and [110]α′′//[-12-10]α. The lattice parameter, crystal system, and the corresponding
space group of the phases that may occur in the adiabatic shear region are summarized in
Table 1. For further analysis of this structure, HRTEM was performed, and the results are
shown in Figure 3.

Table 1. Crystallographic parameters of the phases present in ASBs.

Phase Lattice Parameter Crystal Structure Space Group

α phase a = b = 0.293 nm,
c = 0.466 nm Hexagonal P63/mmc

β phase a = b = c = 0.325 nm Cubic Im-3m

α′′ martensite
a = 0.301 nm,
b = 0.490 nm,
c = 0.463 nm

Orthorhombic Cmcm

Figure 3a shows the HRTEM image from the yellow box indicated in Figure 2d,
with the results of the fast Fourier transform (FFT) analysis of three areas shown in
Figure 3b–d. The FFT results from area 1 in Figure 3a are shown in Figure 3b, where
[-12-10]α and [110]α′′

T twins have an orientation relationship: (001)α′′
T//(0002)α. As

a typical metastable β titanium alloy, the β stabilizing elements in Ti1023 enabled the
attainment of a room-temperature β single-phase microstructure. However, as indicated in
Figure 1a, the position of Ti1023 in the phase diagram suggested that the β stability of the
alloy was still relatively limited. Thus, β phase lay in a supersaturated metastable state
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after solution treatment, and it had a tendency to transform to α phase under dynamic
loading. However, due to the large lattice strain in the direct β-to-α transformation, it was
more favorable to coordinate the β-to-α phase transformation through α′′ martensite as
an intermediate phase or transient phase [26]. Two types of martensite exist in titanium
alloys: α′ with an HCP crystal structure and α′′ with a centered orthogonal structure [27].
The choice between these two types of martensite is intricately linked to the chemical com-
position of titanium alloys. α′ typically forms in titanium alloys containing lower levels
of β-stabilizing elements [28]. In the Ti1023 alloy investigated in the present study, the
α′ martensitic transformation was hindered by its relatively high content of β-stabilizing
elements [29]. FFT results further revealed the presence of {111}α′′ martensite twin in
area 2 (Figure 3c) and just [110]α′′ martensite matrix in area 3 (Figure 3d). The location of
the twin boundary (TB) is indicated as a while dashed line in Figure 3a. The orientation
relationships between the α phase and the α′′ matrix and twin are shown in Figure 3e. The
{0002}α//(001)α′′ and (-111)α′′ twin boundary are parallel to (10-11)α. A combination of
these HRTEM and SAED analyses allowed us to determine that the white contrast laths
in Figure 2d were α, the adjacent gray contrast structure was α′′ martensite, and the dark
contrast {111}α′′ twins were distributed within the α laths. The twin boundaries, as spe-
cial high-energy grain boundaries, were more likely to act as nucleation sites for α′′-to-α
transformation.
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3.3. ASB Grain Refinement

Grain refinement is a common outcome from the microstructural transformation
within ASB, and the formation of ultrafine grains is mostly interpreted as a result of DRX.
Temperature, as one of the key factors influencing the deformation mechanisms, also plays
an important role in the occurrence of DRX in ASB. The temperature at the center of the
ASB can be estimated to be ~676 K (0.38 Tm) through the conversion of plastic work and
heat, as reported in our recent study [30]. Since the conventional DRX based on the grain
boundary migration mechanism is difficult to perform in high strain rate conditions, a
rotational dynamic recrystallization (RDR) mechanism based on the subgrain boundary
transformation along with its kinetic calculation given in Equation (1) [31] was used to
analyze the grain refinement phenomenon within the ASB,

t = LkT f (θ)
4δηDboexp(−Qb/RT)

f (θ) = 3tan(θ)−2cos(θ)
3−6sin(θ) + 2

3 − 4
√

3
9 ln( 2+

√
3

2−
√

3
) + 4

√
3

9 ln tan(θ/2)−2−
√

3
tan(θ/2)−2+

√
3

(1)

The meaning and value of the constants and variables in Equation (1) were specified
in [30] and are also outlined in Table 2. The time required for subgrain sizes of 100–500 nm
to complete DRX via the RDR mechanism at the estimated temperature of 676 K in the
ASB center was calculated and is shown in Figure 4a. The grain refinement mechanism is
shown in Figure 4b, which can be divided into the following five stages: (1) homogeneous
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distribution of dislocations within the initially equiaxed β-Ti grains; (2) initial deformation
to generate elongated grains; (3) continued deformation with a gradual accumulation of
dislocations at the subgrain boundaries and gradual subdivision of the elongated grains;
(4) the subgrain boundary hindering the movement of other dislocations, causing more
dislocations to accumulate at the subgrain boundary, with gradually increasing misorienta-
tions between the subgrain grains as if the elongated grains are broken to accommodate
the strain; and (5) the strain energy stored at the subgrain boundaries released by rotating
the subgrain boundary by 30◦, causing the subgrains to relax into equiaxed ultrafine grains.
Since the results of the RDR kinetic calculations shown in Figure 4a demonstrated that the
subgrain boundary rotation could not be completed during the rapid dynamic loading
within 0.098 ms (or 98 µs, Figure 1g,h) at the estimated peak temperature of 676 K, which
was even lower than the recrystallization temperature of a highly cold-worked commer-
cially pure titanium (919–942 K) [32], only the first four stages would occur within the ASB
in this study. Thus, the grain refinement mechanism was mainly related to the DRV process
by the migration of dislocations, along with the severe plastic deformation at high strain
rates like equal channel angular extrusion and high-pressure torsion [33–35].

Table 2. Meaning and value of constants and variables used in Equation (1).

Constant and Variable Meaning Value

L Average subgrain diameter 100–500 nm
k Boltzmann’s constant 1.38 × 10−23 J·K−1

T Absolute temperature 676 K
δ Grain boundary thickness 5.8 × 10−10 m
η Grain boundary energy 1.19 J·m−2

Dbo Constant related to grain boundary diffusion 2.8 × 10−5 m2·s−1

Q Activation energy for grain boundary
diffusion 312 kJ·mol−1

θ Subgrain misorientation 0–30◦

R Gas constant 8.314 J·mol−1·K−1
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Figure 4. (a) Time required to rotate the 100–500 nm subgrain size boundaries by 30◦ at 676 K.
(b) Schematic diagram illustrating the grain refinement mechanisms.

4. Conclusions

The microstructural evolution of Ti1023 ASB was characterized in detail, and the grain
refinement mechanisms were discussed. The following conclusions could be drawn:

(1) Adiabatic shear instability was observed to occur during high strain rate loading, with
the dynamic mechanical response exhibiting three stages: elastic deformation and
stress-induced α′′ martensitic transformation, followed by stress collapse and finally
stress dynamic equilibrium.
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(2) In addition to significant grain refinement, {111}α′′ nano-twins and α laths were ob-
served in the ASB center, and there was an orientation relationship of (001)α′′//(0002)α
and [110]α′′//[-12-10]α between α and α′′, suggesting that α′′ acted as an intermedi-
ate phase to coordinate the β-to-α phase transformation.

(3) The peak temperature in the ASB center reached only ~676K; thus, the mechanism
of significant grain refinement might not be DRX but rather DRV dominated by
dislocation migration and severe plastic deformation under high strain rates.

Author Contributions: Conceptualization, S.Q. and A.F.; methodology, G.C., A.F. and D.L.; software,
X.G. and G.C.; validation, S.Q. and X.G.; formal analysis, X.G.; investigation, D.L. and X.G.; resources,
G.C. and H.W.; data curation, A.F.; writing—original draft preparation, X.G.; writing—review and
editing, D.C. and A.F.; visualization, X.G.; supervision, D.C. and H.W.; project administration, A.F.;
funding acquisition, S.Q., D.C. and D.L. All authors have read and agreed to the published version of
the manuscript.
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