Increasing the Strength and Impact Toughness of Carbon Steel Using a Nanosized Eutectoid Resulting from Time-Controlled Quenching
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- There is a certain optimal holding time at a high temperature that should be precisely maintained, with subsequent sample cooling in oil. This controlled holding time provides an incomplete dissolution of cementite and therefore a precise match of the critical cooling rate of austenite and actual cooling rate during cooling in oil. As a result, a very fine pearlitic nanostructure appears at depth of approximately 100 μm from the surface, with an interlamellar spacing of approximately 100 nm and a hardness of HV 380–390. This nanostructure provides a significant increase in resistance to impact load. After a heat treatment with the optimal holding time, the impact sample with a cross-section of 7.5 × 10 mm2 was not broken after impact with an energy value of 460 J.
- The optimal holding time strongly depends on the sample cross-section. It was established that the optimal holding time is 7 min for the impact sample, with a cross-section of 7.5 × 10 mm2 and 4 min for the tensile sample, which is 5 mm in diameter. Excessive holding at a high temperature before cooling leads to appearance of high-carbon martensite and a drastic decrease in impact toughness and strength. Therefore, for each given section of a machine part, special preliminary experiments are necessary to establish the optimal exposure time at a high temperature.
- The XRD investigation showed that the solid solution of the heat-treated impact sample after a 7 min holding time contains 0.12 wt.% of carbon. It means that a nanostructured composite is formed that comprises thin cementite lamellas located in low-carbon martensite.
- Further research is needed to better understand the fracture mechanism of the obtained gradient microstructure of high-carbon steel under a tensile load. Additionally, it is necessary to establish the range of dimensions of parts that are suitable for heat treatment with controlled holding at a high temperature. This research will promote a better understanding of how the changes in shape, sample thickness, and surface quality would affect the properties of high-carbon steel after time-controlled thermal treatment.
- The obtained results can be used for the production of machine parts and structural elements for which high resistance to impact loads is critically important.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Z.; Yang, C.; Chen, G.; Li, Y.; Cao, X.; Cao, P.; Dong, H.; Hu, C. The Variation Patterns of the Martensitic Hierarchical Microstructure and Mechanical Properties of 35Si2MnCr2Ni3MoV Steel at Different Austenitizing Temperatures. Materials 2024, 17, 1099. [Google Scholar] [CrossRef]
- Bouaziz, O.; Zurob, H.; Huang, M. Driving Force and Logic of Development of Advanced High Strength Steels for Automotive Applications. Steel Res. Int. 2013, 84, 937–947. [Google Scholar] [CrossRef]
- Karnaukh, S.G.; Markov, O.E.; Kukhar, V.V.; Shapoval, A.A. Classification of Steels According to Their Sensitivity to Fracture Using a Synergetic Model. Int. J. Adv. Manuf. Technol. 2022, 119, 5277–5287. [Google Scholar] [CrossRef]
- Madadi, M.; Yeganeh, M.; Eskandari, M. Nano-Steels in the Automotive Industry. In Nanotechnology in the Automotive Industry; Elsevier: Amsterdam, The Netherlands, 2022; pp. 287–313. [Google Scholar] [CrossRef]
- Lazarova, R.; Petrov, R.H.; Gaydarova, V.; Davidkov, A.; Alexeev, A.; Manchev, M.; Manolov, V. Microstructure and Mechanical Properties of P265GH Cast Steel after Modification with TiCN Particles. Mater. Des. 2011, 32, 2734–2741. [Google Scholar] [CrossRef]
- Zeng, D.; Lu, L.; Gong, Y.; Zhang, Y.; Zhang, J. Influence of Solid Solution Strengthening on Spalling Behavior of Railway Wheel Steel. Wear 2017, 372–373, 158–168. [Google Scholar] [CrossRef]
- Meng, C.; Wang, Y.; Wei, Y.; Shi, B.; Cui, T.; Wang, Y. Strengthening Mechanisms for Ti- and Nb-Ti-Micro-Alloyed High-Strength Steels. J. Iron Steel Res. Int. 2016, 23, 350–356. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, Z.; Chen, J.; Wu, S.; Wu, K.; Pan, L. The Performance of Niobium-Microalloying Ultra-High-Strength Bridge Cable Steel during Hot Rolling. Materials 2024, 17, 1259. [Google Scholar] [CrossRef]
- Chen, M.; Li, J.; Liu, H.; Wang, M.; Xing, S.; Zhao, Y. Achievement of High Strength-Ductility Combination in Austenitic and Ferritic Duplex Stainless Steel by Heterogeneous Deformation. J. Mater. Res. Technol. 2022, 21, 943–950. [Google Scholar] [CrossRef]
- Kvačkaj, T.; Bidulská, J. From Micro to Nano Scale Structure by Plastic Deformations. MSF 2014, 783–786, 842–847. [Google Scholar] [CrossRef]
- Hajizadeh, K.; Kurzydlowski, K.J. On the Possibility of Fabricating Fully Austenitic Sub-Micron Grained AISI 304 Stainless Steel via Equal Channel Angular Pressing. Mater. Today Commun. 2023, 35, 105641. [Google Scholar] [CrossRef]
- El-Tahawy, M.; Pereira, P.H.R.; Huang, Y.; Park, H.; Choe, H.; Langdon, T.G.; Gubicza, J. Exceptionally High Strength and Good Ductility in an Ultrafine-Grained 316L Steel Processed by Severe Plastic Deformation and Subsequent Annealing. Mater. Lett. 2018, 214, 240–242. [Google Scholar] [CrossRef]
- Gong, N.; Hu, C.; Hu, B.; An, B.; Misra, R.D.K. On the Mechanical Behavior of Austenitic Stainless Steel with Nano/Ultrafine Grains and Comparison with Micrometer Austenitic Grains Counterpart and Their Biological Functions. J. Mech. Behav. Biomed. Mater. 2020, 101, 103433. [Google Scholar] [CrossRef]
- Chabak, Y.; Efremenko, B.; Petryshynets, I.; Efremenko, V.; Lekatou, A.G.; Zurnadzhy, V.; Bogomol, I.; Fedun, V.; Kovaľ, K.; Pastukhova, T. Structural and Tribological Assessment of Biomedical 316 Stainless Steel Subjected to Pulsed-Plasma Surface Modification: Comparison of LPBF 3D Printing and Conventional Fabrication. Materials 2021, 14, 7671. [Google Scholar] [CrossRef]
- Sheng, J.; Wei, J.; Li, Z.; Man, K.; Chen, W.; Ma, G.; Zheng, Y.; Zhan, F.; La, P.; Zhao, Y.; et al. Micro/Nano-Structure Leads to Super Strength and Excellent Plasticity in Nanostructured 304 Stainless Steel. J. Mater. Res. Technol. 2022, 17, 404–411. [Google Scholar] [CrossRef]
- Niu, G.; Wu, H.; Zhang, D.; Gong, N. Hybrid Nanostructure Stainless Steel with Super-High Strength and Toughness. Procedia Eng. 2017, 207, 1791–1796. [Google Scholar] [CrossRef]
- Misra, R.D.K.; Wan, X.L.; Challa, V.S.A.; Somani, M.C.; Murr, L.E. Relationship of Grain Size and Deformation Mechanism to the Fracture Behavior in High Strength–High Ductility Nanostructured Austenitic Stainless Steel. Mater. Sci. Eng. A 2015, 626, 41–50. [Google Scholar] [CrossRef]
- Dobatkin, S.V.; Rybalchenko, O.V.; Enikeev, N.A.; Tokar, A.A.; Abramova, M.M. Formation of Fully Austenitic Ultrafine-Grained High Strength State in Metastable Cr–Ni–Ti Stainless Steel by Severe Plastic Deformation. Mater. Lett. 2016, 166, 276–279. [Google Scholar] [CrossRef]
- Sunil, S.; Kapoor, R.; Sarkar, S.K.; Sarita; Biswas, A.; Donthula, H.; Sen, D. Ultra-High Strength Steel Made from AISI 304L Using a Novel Thermo-Mechanical Processing Technique. Acta Mater. 2021, 221, 117379. [Google Scholar] [CrossRef]
- Kerscher, E.; Lang, K.-H. Influence of Thermal and Thermomechanical Treatments on the Fatigue Limit of a Bainitic High-Strength Bearing Steel. Procedia Eng. 2010, 2, 1731–1739. [Google Scholar] [CrossRef]
- Hwang, B.; Lee, C.G. Influence of Thermomechanical Processing and Heat Treatments on Tensile and Charpy Impact Properties of B and Cu Bearing High-Strength Low-Alloy Steels. Mater. Sci. Eng. A 2010, 527, 4341–4346. [Google Scholar] [CrossRef]
- Xu, X.; Bai, B.; Liu, D.; Yuan, Y. Effect of Thermomechanical Treatment Temperature on Structure and Properties of CFB/M Ultra-High Strength Steel. J. Iron Steel Res. Int. 2010, 17, 66–72. [Google Scholar] [CrossRef]
- Kerscher, E.; Lang, K.-H.; Löhe, D. Increasing the Fatigue Limit of a High-Strength Bearing Steel by Thermomechanical Treatment. Mater. Sci. Eng. A 2008, 483–484, 415–417. [Google Scholar] [CrossRef]
- Barani, A.A.; Li, F.; Romano, P.; Ponge, D.; Raabe, D. Design of High-Strength Steels by Microalloying and Thermomechanical Treatment. Mater. Sci. Eng. A 2007, 463, 138–146. [Google Scholar] [CrossRef]
- Zouhar, G.; Finke, P.; Güth, A.; Schaper, M.; Klauss, H.-J. Relation Between Structure and Mechanical Properties of High-Strength Low-Alloy Martensitic Steels after High Temperature Thermomechanical Treatment. In Strength of Metals and Alloys; Elsevie: Amsterdam, The Netherlands, 1979; pp. 1377–1382. [Google Scholar] [CrossRef]
- Kvackaj, T.; Bidulská, J.; Bidulský, R. Overview of HSS Steel Grades Development and Study of Reheating Condition Effects on Austenite Grain Size Changes. Materials 2021, 14, 1988. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.X.; Yang, G.; Liu, Z.D.; Wang, C.; Huang, C.X. Significant Enhancement of Strength in a Lamellar-Type Nanostructured Maraging Steel Subjected to Equal-Channel Angular Pressing for 12 Passes. Mater. Sci. Eng. A 2012, 550, 429–433. [Google Scholar] [CrossRef]
- Ravi Kumar, B.; Sharma, S.; Munda, P.; Minz, R.K. Structure and Microstructure Evolution of a Ternary Fe–Cr–Ni Alloy Akin to Super Martensitic Stainless Steel. Mater. Des. 2013, 50, 392–398. [Google Scholar] [CrossRef]
- Mun, D.J.; Shin, E.J.; Choi, Y.W.; Lee, J.S.; Koo, Y.M. Effects of Cooling Rate, Austenitizing Temperature and Austenite Deformation on the Transformation Behavior of High-Strength Boron Steel. Mater. Sci. Eng. A 2012, 545, 214–224. [Google Scholar] [CrossRef]
- Allain, S.Y.P.; Pushkareva, I.; Teixeira, J.; Gouné, M.; Scott, C. Dual-Phase Steels: The First Family of Advanced High Strength Steels. In Encyclopedia of Materials: Metals and Alloys; Elsevier: Amsterdam, The Netherlands, 2022; pp. 37–62. [Google Scholar] [CrossRef]
- Askari-Paykani, M.; Shahverdi, H.R.; Miresmaeili, R. First and Third Generations of Advanced High-Strength Steels in a FeCrNiBSi System. J. Mater. Process. Technol. 2016, 238, 383–394. [Google Scholar] [CrossRef]
- Calcagnotto, M.; Adachi, Y.; Ponge, D.; Raabe, D. Deformation and Fracture Mechanisms in Fine- and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging. Acta Mater. 2011, 59, 658–670. [Google Scholar] [CrossRef]
- Zavattieri, P.D.; Savic, V.; Hector, L.G., Jr.; Fekete, J.R.; Tong, W.; Xuan, Y. Spatio-Temporal Characteristics of the Portevin–Le Châtelier Effect in Austenitic Steel with Twinning Induced Plasticity. Int. J. Plast. 2009, 25, 2298–2330. [Google Scholar] [CrossRef]
- Grajcar, A.; Kuziak, R.; Zalecki, W. Third Generation of AHSS with Increased Fraction of Retained Austenite for the Automotive Industry. Arch. Civ. Mech. Eng. 2012, 12, 334–341. [Google Scholar] [CrossRef]
- Mehrabi, A.; Zurob, H.S.; McDermid, J.R. Process Maps for Predicting Austenite Fraction (Vol.%) in Medium-Mn Third-Generation Advanced High-Strength Steels. Materials 2024, 17, 993. [Google Scholar] [CrossRef] [PubMed]
- Zurnadzhy, V.I.; Efremenko, V.G.; Wu, K.M.; Petryshynets, I.; Shimizu, K.; Zusin, A.M.; Brykov, M.N.; Andilakhai, V.A. Tailoring Strength/Ductility Combination in 2.5 wt% Si-Alloyed Middle Carbon Steel Produced by the Two-Step Q-P Treatment with a Prolonged Partitioning Stage. Mater. Sci. Eng. A 2020, 791, 139721. [Google Scholar] [CrossRef]
- Soleimani, M.; Kalhor, A.; Mirzadeh, H. Transformation-Induced Plasticity (TRIP) in Advanced Steels: A Review. Mater. Sci. Eng. A 2020, 795, 140023. [Google Scholar] [CrossRef]
- De Moor, E.; Speer, J.G. Bainitic and Quenching and Partitioning Steels. In Automotive Steels; Elsevier: Amsterdam, The Netherlands, 2017; pp. 289–316. [Google Scholar] [CrossRef]
- Sedaghat-Nejad, R.; Shahverdi, H.R.; Askari-Paykani, M. Introduction and Mechanical Evaluation of a Novel 3rd-Generation Medium Manganese AHSS with 86 GPa% of PSE. Mater. Sci. Eng. A 2022, 843, 143104. [Google Scholar] [CrossRef]
- Espinosa, L.; Torres, A.; Cruz, R.; Deaquino, R.; Salinas, A.; González, A.; Reyes, I.; Aguilar, J.; Palomares, S.; Gutiérrez, E. Effect of Chemical Composition and Isothermal Treatment Time on the Microstructure and Mechanical Properties of High-Strength Carbide-Free Bainitic Steel. Mater. Lett. 2023, 349, 134757. [Google Scholar] [CrossRef]
- Sun, D.; Wang, H.; An, X.; Wang, G.; Huang, S.; Huang, X. Quantitative Evaluation of the Contribution of Carbide-Free Bainite, Lath Martensite, and Retained Austenite on the Mechanical Properties of C-Mn-Si High-Strength Steels. Mater. Charact. 2023, 199, 112802. [Google Scholar] [CrossRef]
- Niu, G.; Jin, D.; Wang, Y.; Chen, H.; Gong, N.; Wu, H. Achieving 2.2 GPa Ultra-High Strength in Low-Alloy Steel Using a Direct Quenching and Partitioning Process. Materials 2023, 16, 7533. [Google Scholar] [CrossRef]
- Koval’, A.D.; Efremenko, V.G.; Brykov, M.N.; Andrushchenko, M.I.; Kulikovskii, R.A.; Efremenko, A.V. Principles for Developing Grinding Media with Increased Wear Resistance. Part 1. Abrasive Wear Resistance of Iron-Based Alloys. J. Frict. Wear 2012, 33, 39–46. [Google Scholar] [CrossRef]
- Hesse, O.; Merker, J.; Brykov, M.; Efremenko, V. Zur Festigkeit niedriglegierter Stäble mit erhöhtem Kohlenstoffgehalt gegen abrasiven Verschleiß [On the strength of low-alloy steels with increased carbon content against abrasive wear. Tribol. Schmierungstech. 2013, 60, 37–43. [Google Scholar]
- Efremenko, V.G.; Hesse, O.; Friedrich, T.; Kunert, M.; Brykov, M.N.; Shimizu, K.; Zurnadzhy, V.I.; Šuchmann, P. Two-Body Abrasion Resistance of High-Carbon High-Silicon Steel: Metastable Austenite vs Nanostructured Bainite. Wear 2019, 418–419, 24–35. [Google Scholar] [CrossRef]
- Zurnadzhy, V.I.; Efremenko, V.G.; Brykov, M.N.; Petryshynets, I.; Pastukhova, T.V.; Kussa, R.A. The Metastability of Retained Austenite in Multiphase Steel during Abrasive Wear. J. Frict. Wear 2020, 41, 119–124. [Google Scholar] [CrossRef]
- Brykov, M.N.; Akrytova, T.O.; Osipov, M.J.; Petryshynets, I.; Puchy, V.; Efremenko, V.G.; Shimizu, K.; Kunert, M.; Hesse, O. Abrasive Wear of High-Carbon Low-Alloyed Austenite Steel: Microhardness, Microstructure and X-Ray Characteristics of Worn Surface. Materials 2021, 14, 6159. [Google Scholar] [CrossRef]
- Loskutova, T.; Hatala, M.; Pogrebova, I.; Nikitina, N.; Bobina, M.; Radchenko, S.; Kharchenko, N.; Kotlyar, S.; Pavlenko, I.; Ivanov, V. Composition, Structure, and Properties of Ti, Al, Cr, N, C Multilayer Coatings on AISI W1-7 Alloyed Tool Steel. Coatings 2022, 12, 616. [Google Scholar] [CrossRef]
- Li, Y.J.; Choi, P.; Goto, S.; Borchers, C.; Raabe, D.; Kirchheim, R. Evolution of Strength and Microstructure during Annealing of Heavily Cold-Drawn 6.3 GPa Hypereutectoid Pearlitic Steel Wire. Acta Mater. 2012, 60, 4005–4016. [Google Scholar] [CrossRef]
- Li, Y.; Raabe, D.; Herbig, M.; Choi, P.-P.; Goto, S.; Kostka, A.; Yarita, H.; Borchers, C.; Kirchheim, R. Segregation Stabilizes Nanocrystalline Bulk Steel with Near Theoretical Strength. Phys. Rev. Lett. 2014, 113, 106104. [Google Scholar] [CrossRef]
- Hohenwarter, A.; Völker, B.; Kapp, M.W.; Li, Y.; Goto, S.; Raabe, D.; Pippan, R. Ultra-Strong and Damage Tolerant Metallic Bulk Materials: A Lesson from Nanostructured Pearlitic Steel Wires. Sci. Rep. 2016, 6, 33228. [Google Scholar] [CrossRef]
- Djaziri, S.; Li, Y.; Nematollahi, G.A.; Grabowski, B.; Goto, S.; Kirchlechner, C.; Kostka, A.; Doyle, S.; Neugebauer, J.; Raabe, D.; et al. Deformation-Induced Martensite: A New Paradigm for Exceptional Steels. Adv. Mater. 2016, 28, 7753–7757. [Google Scholar] [CrossRef]
- Herbig, M.; Raabe, D.; Li, Y.J.; Choi, P.; Zaefferer, S.; Goto, S. Atomic-Scale Quantification of Grain Boundary Segregation in Nanocrystalline Material. Phys. Rev. Lett. 2014, 112, 126103. [Google Scholar] [CrossRef]
- Ziemian, C.W.; Sharma, M.M.; Whaley, D.E. Effects of Flashing and Upset Sequences on Microstructure, Hardness, and Tensile Properties of Welded Structural Steel Joints. Mater. Des. 2012, 33, 175–184. [Google Scholar] [CrossRef]
- Findlay, S.J.; Harrison, N.D. Why Aircraft Fail. Mater. Today 2002, 5, 18–25. [Google Scholar] [CrossRef]
- Pineau, A.; Benzerga, A.A.; Pardoen, T. Failure of Metals I: Brittle and Ductile Fracture. Acta Mater. 2016, 107, 424–483. [Google Scholar] [CrossRef]
- Q’Donnelly, B.E.; Reuben, R.L.; Baker, T.N. Quantitative Assessment of Strengthening Parameters in Ferrite-Pearlite Steels from Microstructural Measurements. Met. Technol. 1984, 11, 45–51. [Google Scholar] [CrossRef]
- Vander Voort, G.F. The Interlamellar Spacing of Pearlite. Pract. Metallogr. 2015, 52, 419–436. [Google Scholar] [CrossRef]
- Yanagimoto, F.; Shibanuma, K.; Kawabata, T.; Suzuki, K.; Aihara, S. Measurement of Local Brittle Fracture Stress for Dynamic Crack Propagation in Steel. Procedia Struct. Integr. 2016, 2, 395–402. [Google Scholar] [CrossRef]
- Lv, Z.; Jiang, P.; Wang, Z.; Zhang, W.; Sun, S.; Fu, W. XRD Analyses on Dissolution Behavior of Cementite in Eutectoid Pearlitic Steel during Cold Rolling. Mater. Lett. 2008, 62, 2825–2827. [Google Scholar] [CrossRef]
C | Si | Mn | Cr | Ni | Cu | P | S |
---|---|---|---|---|---|---|---|
0.79 | 0.23 | 0.21 | 0.19 | 0.17 | 0.22 | 0.011 | 0.004 |
Holding Time, min-s | Impact Energy, J |
---|---|
No heat treatment | 218 |
No heat treatment | 41 1 |
3-00 | 100 |
4-00 | 109 |
4-30 | 153 |
5-00 | 141 |
5-30 | 281 |
6-00 | 237 |
6-30 | Sample was half-broken. Gauge was stopped at the bottom low position |
6-30 | 8 1 |
6-45 | 25 1 |
7-00 | Sample was not broken. Gauge was stopped by the sample |
7-00 | 21 1 |
8-00 | 18 |
9-00 | 10 |
Holding Time, min-s | Yield Strength, MPa | Tensile Strength, MPa | Relative Elongation, % | Relative Cross-Section Reduction, % |
---|---|---|---|---|
No heat treatment | 903 | 1043 | 6.8 | 19.0 |
1-30 | 628 | 1045 | 11.6 | 20.3 |
2-00 | 675 | 1033 | 8.0 | 21.5 |
2-30 | 569 | 1029 | 10.8 | 21.5 |
3-00 | 543 | 1018 | 8.0 | 25.1 |
3-30 | 513 | 1091 | 8.0 | 21.9 |
4-00 | 1187 | 1295 | 1.5 | - |
4-30 | 1000 | 1000 | - | - |
5-00 | 873 | 873 | - | - |
6-00 * | 341 | 341 | - | - |
8-00 | 658 | 658 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brykov, M.; Mierzwiński, D.; Efremenko, V.; Girzhon, V.; Shalomeev, V.; Shyrokov, O.V.; Petryshynets, I.; Klymov, O.; Kapustyan, O. Increasing the Strength and Impact Toughness of Carbon Steel Using a Nanosized Eutectoid Resulting from Time-Controlled Quenching. Materials 2024, 17, 3696. https://doi.org/10.3390/ma17153696
Brykov M, Mierzwiński D, Efremenko V, Girzhon V, Shalomeev V, Shyrokov OV, Petryshynets I, Klymov O, Kapustyan O. Increasing the Strength and Impact Toughness of Carbon Steel Using a Nanosized Eutectoid Resulting from Time-Controlled Quenching. Materials. 2024; 17(15):3696. https://doi.org/10.3390/ma17153696
Chicago/Turabian StyleBrykov, Michail, Dariusz Mierzwiński, Vasily Efremenko, Vasyl’ Girzhon, Vadim Shalomeev, Oleksandr V. Shyrokov, Ivan Petryshynets, Olexandr Klymov, and Oleksii Kapustyan. 2024. "Increasing the Strength and Impact Toughness of Carbon Steel Using a Nanosized Eutectoid Resulting from Time-Controlled Quenching" Materials 17, no. 15: 3696. https://doi.org/10.3390/ma17153696
APA StyleBrykov, M., Mierzwiński, D., Efremenko, V., Girzhon, V., Shalomeev, V., Shyrokov, O. V., Petryshynets, I., Klymov, O., & Kapustyan, O. (2024). Increasing the Strength and Impact Toughness of Carbon Steel Using a Nanosized Eutectoid Resulting from Time-Controlled Quenching. Materials, 17(15), 3696. https://doi.org/10.3390/ma17153696