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Abstract: A customized digital image correlation (DIC) system was implemented to monitor the
strain produced in a cold-rolled AL-6XN stainless steel plate, 3.0 mm thick, subjected to quasi-static
and cyclic loading tests. A comparison of the DIC strain measurements was made against those
provided by conventional extensometers. Furthermore, the DIC system was used to monitor the
fatigue crack initiation in low-cycle fatigue tests. The true stress–strain behavior for the AL-6XN
material was properly captured by the DIC measurements. For low-cycle fatigue tests (strain control),
the strain mapping generated by DIC allowed for identifying zones with higher strain than the
nominal strain amplitude applied (εa) since the first stages of the fatigue life (FL). These zones become
potential fatigue crack initiation sites.

Keywords: strain monitoring; AL-6XN; loading–unloading; low cycle fatigue; digital image correlation

1. Introduction

AL-6XN alloy is a relative new material which was developed by Allegheny Technolo-
gies Incorporated (ATI) as a super-austenitic, nitrogen-bearing stainless steel, having an
excellent formability and without a plasticity-induced martensitic transformation under
cold working. It was designed with a significantly higher content of chromium, nickel, and
molybdenum for an improved strength to highly corrosive environments, in comparison
to 304 L, 316 L and 317 L stainless steel grades [1]. The American Society for Testing and
Materials (ASTM) has included it in the B688 standard specification for chromium–nickel–
molybdenum–iron products with the UNS N08367 designation [2]. The AL-6XN alloy is
used in a variety of applications, for instance, in the chemical industry and water piping
in nuclear plants, where it presents an excellent resistance to chloride, crevice, pitting
corrosion, and stress corrosion cracking in both acidic and alkaline environments [3].

Several studies on AL-6XN have been conducted to determine its fatigue behavior at
room temperature [4,5], as well as its thermomechanical response in compression tests [6]
and low-cycle fatigue (LCF) under different strain rates and temperatures [7,8], including
dynamic strain aging (DSA) regime (573 and 873 K). Other studies have been focused on
subjects such as the microstructural evolution during the hot-rolling process [9], the effect
of dislocations and persistent Lüders bands (PLBs) in the fatigue damage [10], as well as
the fatigue behavior in similar and dissimilar welds [11–13].

The understanding until now about the fatigue process can be distinguished into
three stages: a threshold one, where the cyclic loading accumulates a microscopic internal
damage (I); followed by a crack initiation and its stable propagation stage (II); and the final
fracture, with an unstable crack growth process, where the crack length reaches a critical
size ac (III) [14].

In recent years, Structural Health Monitoring (SHM) has been developing to detect the
fatigue damage timely, using optical fibers or a network of ultrasonic transducers for the
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strain measurements [15]. Due to the physical phenomenon involved in the stage I, which
occurs inside of the materials at a microscopic level, the evaluation at the threshold stage
of the fatigue damage has remained as one of the biggest challenges. Some researchers
have attempted to monitor the stage I by non-destructive techniques, based on quantitative
changes in the physical and mechanical properties of the material throughout its fatigue
life. Fredrik Bjørheim et al. [16] made a summary of several proposed techniques to detect
the accumulated fatigue damage prior to the macroscopic crack initiation, as well as during
the fatigue crack growth. Table 1 shows a summary of these techniques.

Table 1. Overview of several methods for the monitoring of fatigue process in materials [16].

Method Stage Remarks

Potential drop method (PDM) Fatigue crack The calibration curves are geometry-dependent and, they must be
developed for each case.

Acoustic emission (AE) Fatigue crack There are some undesired AE sources; rubbing between fracture
surfaces and moving parts, hammering and vibrating.

Ultrasonic waves Fatigue crack
Fatigue damage

Parameters such as wave attenuation and sound velocity can be
used to characterize the microstructural fatigue damage, which
exhibits small changes and often with large plateaus.

Electric resistance Fatigue damage
It can only be applicable for conductive materials. It requires
several electrodes for properly map the fatigue damage
accumulation.

Hardness measurements Fatigue damage

Its application might be questionable because indentations can
serve as notches.
Polishing the material surface for microhardness removes the
strain-hardened/softened surfaces.

X-ray diffraction Fatigue damage
Its application as an in situ tool could represent a challenge. An
initial dislocation structure will influence the parameters used for
the fatigue damage analysis.

Thermometric measurements Fatigue damage Measurements are strongly dependent upon stress, frequency,
and environmental conditions.

Strain-based Fatigue damage Loads must be applied to evaluate the produced strain and has
limitation in practical applications.

Positron annihilation Fatigue damage
It is a material-dependent method, and, in some cases, it could
not be applicable to fatigue damage detection due to initial
positron trapping sites.

Magnetic methods Fatigue damage It can only be applicable for ferromagnetic materials. It must be
measurable without loading.

On the other hand, in the last few decades, the digital image correlation (DIC) tech-
nique has taken quite a bit of interest in the scientific community since it provides non-
contact full-field deformation data. This technique was developed in the 1980s at the
Department of Mechanical Engineering in the University of South Carolina [17–19]. It
considers a given number of subsets from a region of interest (ROI), where one point P is
established in each subset before the deformation f (P) = f (x, y) and then tracked to the
new position P∗ after deformation f ∗ (P∗) = f ∗

[
x + u (P), y + v (P)

]
(Figure 1). Then,

both subsets are compared by a cross-correlation coefficient C [17]:

C (u, v,
∂u
∂x

,
∂u
∂y

,
∂v
∂x

,
∂v
∂y

) =

∫
∆M∗ f (x, y) f ∗ (x + ξ, y + η)dA[∫

∆M[ f (x, y)]2dA
∫

∆M∗[ f ∗ (x + ξ, y + η)]2 dA
]1/2 (1)

where:
∆M = Subset in undeformed image
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∆M∗ = Subset in deformed image
ξ = u + ∂u

∂x ∆x + ∂u
∂y ∆y

η = v + ∂v
∂x ∆x + ∂v

∂y ∆y
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fatigue crack growth processes [26,28]. For instance, Valanduit et al. [26] used the DIC 
technique in combination with a stroboscopic illumination source to monitor the fatigue 
crack growth process. They could analyze fatigue tests conducted at several frequencies 
and up to 12 Hz. On the other hand, Niendorf et al. [22] and Risbet et al. [25] carried out 
studies to monitor fatigue damage (stage I) during low-cycle fatigue tests; in all these 
works, no validation of DIC strain measurements against conventional techniques, like 
extensometers, were performed. 

The objective of the present work was to use the DIC technique to monitor the gen-
erated strain in two dimensions (2D) during quasi-static and cyclic loading tests of AL-
6XN specimens. A comparison was made for the strain measured by a conventional phys-
ical extensometer and a virtual extensometer set by the DIC technique, which used a low-
cost and customized hardware system comprising a conventional cell phone armed with 
a 64 megapixels camera and a free basic software for the image analysis. In addition, the 
DIC-customized system was used for full-field strain measurements during a fatigue test 
in order to detect the fatigue crack formation. 

Figure 1. Schematic representation of the digital image correlation technique, adapted from [17–19].

Due to its versatility, DIC has become a popular measurement technique for a variety
of experiments [20–28]. However, the use of DIC techniques had been mostly limited to
quasi-static conditions. A few manuscripts reported the DIC technique applied to monitor
fatigue crack growth processes [26,28]. For instance, Valanduit et al. [26] used the DIC
technique in combination with a stroboscopic illumination source to monitor the fatigue
crack growth process. They could analyze fatigue tests conducted at several frequencies
and up to 12 Hz. On the other hand, Niendorf et al. [22] and Risbet et al. [25] carried
out studies to monitor fatigue damage (stage I) during low-cycle fatigue tests; in all these
works, no validation of DIC strain measurements against conventional techniques, like
extensometers, were performed.

The objective of the present work was to use the DIC technique to monitor the gener-
ated strain in two dimensions (2D) during quasi-static and cyclic loading tests of AL-6XN
specimens. A comparison was made for the strain measured by a conventional physical
extensometer and a virtual extensometer set by the DIC technique, which used a low-cost
and customized hardware system comprising a conventional cell phone armed with a
64 megapixels camera and a free basic software for the image analysis. In addition, the
DIC-customized system was used for full-field strain measurements during a fatigue test
in order to detect the fatigue crack formation.

2. Materials and Methods

A super-austenitic stainless steel plate (AL-6XN) in the annealed condition was used
(700 mm long by 300 mm width and 3 mm thick). A chemical analysis was conducted as
follows: Mn, P, Si, Cr, Ni, Cu, Mo, and Fe by optical emission spectroscopy (OES); C and S
by combustion technique; and N by thermal conductivity (Table 2).
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Table 2. Chemical composition of AL-6XN stainless steel (weight%).

C Mn P S Si Cr Ni Cu Mo N Fe

0.017 0.490 0.030 0.0002 0.493 21.080 25.100 0.420 6.150 0.220 Bal

To analyze the microstructure, metallographic analyses were performed in the longitu-
dinal (L), short transverse (ST), and long transverse (LT) surface directions regarding the
rolling direction. Metallographic specimens (10 × 10 × 3 mm) were prepared following the
guidelines described in ASTM E3 [29]. Polished specimens were etched using glyceregia as
a chemical reagent, according to ASTM E407 [30], and then observed with a MA200-eclipse
Nikon optical microscope.

Rockwell B hardness tests were carried out by making ten random indentations on
L, ST, and LT surface directions. The indentations were performed on a digital Wilson
Rockwell hardness tester model 574T in accordance with ASTM E18 [31] standards.

To evaluate the DIC-customized system and obtain the stress–strain behavior, tensile
tests were conducted according to ASTM E8 [32]. Sub-size specimens were obtained on the
LT direction with a gauge length of 25 mm (Figure 2). A servo-hydraulic test system MTS
Landmark 370.10 with a contact extensometer model 634.31F-25 was used with a crosshead
speed of 0.5 mm/min. The specimens were lightly grinded on the longitudinal surface
at the reduced section, with silicon carbide sandpaper (grade 400) to apply the speckled
pattern for the DIC method.
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Figure 2. Scheme of specimen geometry for tensile test. Dimensions are in mm.

The speckled pattern was made with a matte black acrylic spray enamel, which was
applied over the area of interest (reduced section). Different application distances and
angles were tested to find the best combination and to obtain a speckled pattern with a good
adherence and heterogeneous distribution. The best conditions for the spray application
were an application distance of 300 mm from the specimen and an application angle
of 45 degrees. The covered area of the speckled pattern in the ROI was quantified by
converting the images in 8-bit gray scale and then analyzed by contrast between black
and white zones (image analysis) using ImageJ 1.54i 03® software. The analyzed area was
approximately 140 mm2, whereas the speckled pattern area (black speckles) was roughly
52 mm2, given a ratio of 37% (Figure 3).

The images were acquired by using a Samsung Galaxy A52 ® cell phone, armed
with a 64 megapixels camera set to record 30 frames per second (fps). This device was
fixed on a tripod and turned on using a Bluetooth controller to avoid blur. The tests were
recorded in HD quality video and uploaded into GOM Correlate® 2022 free software
for frames fragmentation. It was not necessary to use special lighting conditions for the
measurement system, the diaphragm opening of the cell phone camera was enough to
obtain the adequate contrast between black and clear areas of the speckle pattern. Figure 4
shows the experimental arrangement.
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GOM Correlate® has the possibility of defining a variety of virtual extensometers
based on the reference distances on the full ROI in any direction and size. This feature was
used to analyze the DIC reliability in the quasi-static and cyclic loading tests. In the case of
the quasi-static loading, a virtual extensometer with the same length and which was close
to the conventional physical extensometer was set into the analysis (see Figure 5).
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Conventional tensile test data were processed into the Equations (2) and (3) to obtain
the true stress (

∼
σ) as a function of the engineering strain (ε) behavior. This calculation was

performed until the ultimate tensile strength σu (before necking).

∼
σ = σ(1 + ε) (2)

∼
ε = ln(1 + ε) (3)

The registered force by the tensile test, in conjunction with the final cross-sectional
area of the specimen, was used to determine the strength at fracture (point of fracture).
The strain measurements obtained from the virtual extensometer (DIC calculation) were
compared with the true strain determined by Equation (3). A Hollomon constitutive
model (Equation (4)) was used to determine the strength coefficient H, as well as the
strain-hardening exponent n.

∼
σ = H

(∼
ε P

)n
(4)

To assess the DIC technique’s reliability during the cyclic loading tests, an increasing
loading–unloading sequence was repeated five times on two specimens with the same
geometry, as shown in Figure 2. A constant crosshead speed of 0.5 mm/min was used. In
each of the five cycles, the specimens were tensile stretched at different stress levels above
the yield strength and then immediately released to zero stress with the same crosshead
speed. The remanent plastic strain (εp) was recorded and, subsequently, the specimen was
again loaded in tension at a higher stress. Young’s modulus and yield strength ( σ0.2) were
used to determine the elastic strain component (εe).

Axial strain-controlled fatigue tests were conducted to analyze the contour maps
of the full-field strain resolved by the DIC customized system and to correlate with the
fatigue crack formation. The fatigue specimens (Figure 6), in accordance with the ISO 12106
standard [33], were machined in the LT to rolling direction. The specimens were ground
using silicon carbide sandpapers (180–1200 grade) over the thickness at the reduce section.
The servo-hydraulic test system MTS Landmark 370.10 was used again, but it was matched
with an MTS extensometer model 632.13F-20 with a gauge length of 10 mm to control the
strain amplitude during the fatigue tests.
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The DIC-customized system was also used for the fatigue tests, but without the
possibility to create a virtual extensometer of the same gauge length, so that the physical
one with the rubber bands was used to attach it. Two strain amplitudes (εa = 0.006 and
εa = 0.008) were defined for the fatigue test at a strain ratio RE = −1, with a triangular
waveform. The test frequency ( f ) was determined by the Equation (5), at a constant strain
rate of

.
ε = 0.016 s−1 for both strain amplitude conditions, with a video-recording rate of

30 fps, thus fulfilling the Nyquist relation ( fN ≥ 2) [34,35]. The failure criterion for the
fatigue test was established at a 15% drop in the force from the stable strain hysteresis loop.

f =

.
ε

4εa
(5)

3. Results and Discussion
3.1. Microstructure of the AL-6XN Material

Figure 7 shows the microstructure of the AL-6XN super-austenitic stainless steel along
the longitudinal (L), short transverse (ST), and long transverse (LT) directions.
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The observed microstructure was homogeneous in the three analyzed sections, con-
stituted by equiaxial and randomly oriented grains of the austenite γ phase (FCC) with
an average grain size of approximately 20 µm. The presence of annealed twinning and
deformation bands along the rolling direction were observed. The average hardnesses
for the three sections are shown in Figure 7. As it was possible to observe, the L section
direction slightly increased its hardness in comparison with ST and LT section directions.
This aspect can be attributed to the presence of the oriented deformation bands.

3.2. Tensile Mechanical Properties

Figure 8 shows the conventional stress–strain behavior for the AL-6XN stainless steel
(transverse to rolling direction). From Figure 8, the average tensile mechanical properties
were determined (Table 3).
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Table 3. Tensile mechanical properties for the AL-6XN stainless steel.

σ0.2
(MPa)

σu
(MPa)

E
(GPa) εu εf

H
(MPa) n UT

(MJm−3)

AL-6XN 357.6
±30.8

769.5
±8.3

183.7
±5.1

0.38
±0.005

0.5
±0.01

1644.1
±7.9

0.39
±0.004

331.0 ±
24.0

σ0.2 = yield strength at 0.2% strain, σu = ultimate tensile strength (UTS), E = Young’s modulus, εu = strain at UTS,
ε f = strain at fracture, H = strength coefficient, n = strain hardening exponent, UT = toughness.

From the conventional stress–strain behavior (average curve), the true stress–strain
curve was plotted (Figure 9). This curve was compared with those obtained by DIC,
i.e., where the strain was measured by the virtual extensometer. As it is possible to
observe in Figure 9a, the stress–strain curves determined by DIC fit very well with that
obtained from the conventional measurements. However, a slight deviation appears
when the deformation was no longer uniform, due to the necking formation at εu ≈ 0.38,
according to the conventional stress–strain. In addition, an absolute DIC strain error was
determined with respect to the measured strain by the extensometer εext as presented in
Equation (6). Figure 9b presents this error as a function of the true stress. The absolute DIC
strain error was close to zero over a true stress range up to approximately 350 MPa. This
region represented the linear–elastic material behavior, where it was found that the DIC
customized system and the extensometer provided similar results. For the plastic material
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behavior, an increment was observed for the absolute DIC strain error with some scatter.
The worst error was lower than 3%, which rose at the necking zone formation.

e = |εDIC − εext| × 100 (6)
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Figure 9. True stress–strain behavior of the AL-6XN stainless steel (a) and absolute DIC strain error (b).

3.3. Loading–Unloading Behavior

Figure 10 shows the loading–unloading curves for the five different tensile cycles
applied to the AL-6XN material (the strain corresponds to the conventional physical
extensometer). As it is possible to observe, the loading–unloading cycles follow the linear
behavior stablished by the Young’s modulus, followed by a non-linear behavior because
of the plastic deformation, whereas a hardening effect was presented from each tensile
cycle to the next one, due to the accumulated residual plastic strain at the end of each cycle.
The hardening effect followed the true stress–strain behavior according to the strength
coefficient and strain-hardening exponent (Figure 9 and Table 3).
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Figure 10. (a) Stress–strain behavior of the five loading–unloading cycles, (b) a zoom-in to the firsts
loading–unloading cycles.

To observe the correspondence between the displacement measurements determined
from the physical and virtual extensometer (DIC), the strain was plotted as a function of
the time for each loading and unloading cycle (Figures 11a, 12a, 13a, 14a and 15a). Also, the
images taken from the loading–unloading cycle tests are shown in Figures 11b, 12b, 13b,
14b and 15b. From these results, a very good approximation of the DIC measurements with
the physical extensometer was observed. As can be noted, the residual strain (εr) increased
due to the increment in the plastic strain component in each loading–unloading cycle. On
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the other hand, the mapping DIC images (Figures 11b, 12b, 13b, 14b and 15b) displayed
a non-uniform displacement along the ROI. This could be associated with the speckles’
shape, which did not have a defined geometry, producing non-equal strain. DIC mapping
represented a biaxial strain (x, y), whereas the extensometer measurements corresponds to
the axial strain.
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Figure 15. (a) Fifth loading–unloading cycle (εmax = 0.0920, εr = 8.7× 10−2) for the AL-6XN material,
(b) mapping displacements at the end of the cycle.

Once the strain results obtained by the DIC were verified for the quasi-static and
loading–unloading test conditions against the physical extensometer, low cycle fatigue
experiments (strain control) were carried out at two different strain amplitudes (εa = 0.008
and εa = 0.006). A DIC with full field strain measurements on the ROI was used. The
objective of these experiments was to analyze the DIC’s reliability in detecting the crack
location (fatigue damage) under a cyclic loading (tension–compression) imposed at a strain
ratio Rε = −1. According to the failure criterion (a 15% drop in force), the fatigue life at
εa = 0.008 and εa = 0.006 was reached at 2502 ± 282.5 and 3494 ± 34.3 cycles, respectively.
From these results, the DIC images for four different fatigue damage stages from both
strain amplitudes were taken (Figures 16 and 17), i.e., 25%, 50%, 75%, and final failure (15%
drop in force).

The DIC strain mapping from the four fatigue damage levels (Figures 16 and 17) was
analyzed to observe the zones with a high strain concentration, which could eventually
represent potential crack initiation sites.

The specimen that fatigued at εa = 0.008 showed a zone with a maximum strain value
(determined from obeserved displacements) of about 0.010 (Figure 16a) at 25% of damage,
which is higher than the nominal strain applied (0.008 ε). This zone tends to retain the
highest strain values during the test, reaching a final value of roughly 0.015 at the last cycle
(final failure), which is approximately two times higher than the nominal strain applied
(Figure 16d).
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Figure 17. Fatigue specimen at εa = 0.006, showing different fatigue life damage: (a) 25%, (b) 50%,
(c) 75% FL, and (d) 100% (final failure).

In the case of the specimen that fatigued at εa = 0.006, from displacements of the DIC
mapping, a maximum strain value of 0.014 (Figure 17a) at 25% of damage was reached,
which is approximately two times the nominal strain applied. At the end of the fatigue life
(100% damage), this zone reached a value of ε = 0.026 at the last cycle, which is more than
four times the nominal strain (Figure 17d). In this case, the fatigue crack was detected with
the naked eye.

To observe the final condition of the fatigued specimens, the speckle pattern was
removed (Figures 18 and 19). The specimen tested at εa = 0.008 (Figure 18) showed the
fatigue crack, which seems to have started in the opposite surface of the speckle, growing
through the thickness of the material.
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Figure 19. The crack observed in the fatigue specimen tested at εa = 0.006, (a) speckled surface,
(b) opposite surface of the speckle.

Regarding the specimen tested at εa = 0.006, the plastic strain with observed the
naked eye was higher than the specimen tested at εa = 0.008, which matched with the
observed strain mapping during the fatigue tests. The fatigue crack also seems to have
started in the opposite surface of the speckle and grew through the thickness until reaching
the opposite surface (see Figure 19).

4. Conclusions

From the results reported in this work, the following statements can be drawn:

• DIC represents a good alternative for strain measurements during quasi-static and
cyclic loadings. The true stress–strain curves generated by the virtual extensometer
using the DIC technique provided accurate strain measurements, as verified against
those measured by a conventional physical extensometer. A slight deviation appeared
when the strain was no longer uniform due to the necking formation.

• The absolute DIC strain error follows a linear trend, with practically zero slopes over
the linear elastic material behavior. However, once the plastic strain takes place, the
absolute DIC strain error increases as a function of the true stress. The error was not
larger than 3%.

• In the loading–unloading sequence test, the strain measurements provided by the
virtual extensometer also adjusted very well with those provided by the physical
extensometer. The DIC technique used was shown to be able to determine the resid-
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ual strain in each subsequent cycle, which confirms its feasibility as an alternative
measurement technique.

• For the strain control fatigue tests, the strain mapping allowed to determine zones
with higher strain values than the nominal strain amplitude applied. These zones
eventually could become potential crack initiation sites.

• The experimental set-up used demonstrates that DIC can be considered a low-cost
technique for accurate strain measurements in the full ROI.
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