Assessing the Performance of a Dual-Speed Tool When Friction Stir Welding Cast Mg AZ91 with Wrought Al 6082
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Conventional Tool
3.2. Dual-Speed Tool
4. Conclusions
- Defect-free friction stir welds were produced with the dual-speed tool and no offset at relatively higher weld speeds than the conventional tool. With separate pin and shoulder rotation speeds, the dual-speed tool provides greater flexibility over material flow rate and temperature, thus helping to control eutectic formation. A minimum flow rate of 26.0 cm3/s and a maximum percentage of the weld cross-section above the eutectic temperature of 35% produced a defect-free weld with the dual-speed tool.
- Offsetting the conventional tool to the aluminum (advancing) side produced a higher-quality weld than offsetting to the magnesium (retreating) side. The offset to the aluminum side produced relatively less brittle and eutectic material in the weld zone and provided more uniform flow. The weld quality of the conventional tool was comparable to the weld quality of the dual-speed tool, but at lower weld speeds.
- For both tools, the weld surfaces reach temperatures equivalent to or in excess of the solidus temperature of Mg AZ91, leading to the liquation and extrusion of the liquid into the weld zone. As the liquid solidifies, the Al12Mg17/α-Mg eutectic structure forms (and to a lesser extent, the Al3Mg2/α-Al structure) in the weld zone as interleaved layers of workpiece materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sambasivam, S.; Gupta, N.; Jassim, A.S.; Singh, D.P.; Kumar, S.; Giri, J.M.; Gupta, M. A review paper of FSW on dissimilar materials using aluminum. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Grimm, A.; Schulze, S.; Silva, A.; Göbel, G.; Standfuss, J.; Brenner, B.; Beyer, E.; Füssel, U. Friction stir welding of light metals for industrial applications. Mater. Today Proc. 2015, 2, S169–S178. [Google Scholar] [CrossRef]
- Dumpala, L.; Chandra, P.H.; Sriram, N. Development of bobbin tool and influence of its design parameters on FSW joint. Mater. Today Proc. 2022, 56, 1582–1587. [Google Scholar] [CrossRef]
- Li, G.; Chen, T.; Fu, B.; Shen, J.; Bergmann, L.; Zhou, L.; Chen, K.; dos Santos, J.F.; Klusemann, B. Semi-stationary shoulder bobbin-tool: A new approach in tailoring macrostructure and mechanical properties of bobbin-tool friction stir welds in magnesium alloy. J. Mater. Process. Technol. 2023, 317, 1179–1184. [Google Scholar] [CrossRef]
- Yadav, M.K.; Arora, K.; Kumar, S.; Kumar, A. Micro-hardness evaluation of the bobbin tool-friction stir welded AA6063 using regression-based machine learning. Mater. Lett. 2023, 349, 1347–1351. [Google Scholar] [CrossRef]
- Barbini, A.; Carstensen, J.; dos Santos, J.F. Influence of a non-rotating shoulder on heat generation, microstructure and mechanical properties of dissimilar AA2024/AA7050 FSW joints. J. Mater. Sci. Technol. 2018, 34, 119–127. [Google Scholar] [CrossRef]
- Sinhmar, S.; Dwivedi, D.K. Mechanical behavior of FSW joint welded by a novel designed stationary shoulder tool. J. Mater. Process. Technol. 2020, 277, 1164–1182. [Google Scholar] [CrossRef]
- Sundar, A.S.; Kar, A.; Mugada, K.K.; Kumar, A. Enhancement of microstructure, micro-texture, and mechanical properties of Al6061 friction stir welds using the developed static shoulder welding tool. Mater. Charact. 2023, 203, 1131–1148. [Google Scholar]
- Zhang, W.; He, H.; Xu, C.; Yu, W.; Li, L. Precipitates dissolution, phase transformation, and re-precipitation-induced hardness variation in 6082-T6 alloy during MIG welding and subsequent baking. JOM 2019, 71, 2711–2720. [Google Scholar] [CrossRef]
- Caceres, C.H.; Davidson, C.J.; Griffiths, J.R.; Newton, C.L. Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy. Mater. Sci. Eng. A 2002, 325, 344–355. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, B.; Wang, Q.; Zhu, Y.; Ding, W. An understanding of the hot tearing mechanism in AZ 91 magnesium alloy. Mater. Lett. 2002, 53, 35–39. [Google Scholar] [CrossRef]
- Sen, M.; Puri, A.B. Formation of intermetallic compounds (IMCs) in FSW of aluminum and magnesium alloys (Al/Mg alloys)—A review. Mater. Today Commun. 2022, 33, 105017. [Google Scholar] [CrossRef]
- Okamoto, H.; Schlesinger, M.E.; Mueller, E.M. (Eds.) ASM Metals Handbook, Vol. 3: Alloy Phase Diagrams; ASM International: Materials Park, OH, USA, 1992; p. 48. [Google Scholar]
- McLean, A.A.; Powell, G.L.F.; Brown, I.H.; Linton, V.M. Friction stir welding of magnesium alloy AZ31B to aluminum alloy 5083. Sci. Technol. Weld. Join. 2013, 8, 461–464. [Google Scholar]
- Gerlich, A.; Su, P.; Noth, T.H. Peak temperatures and microstructures in aluminum and magnesium alloy friction stir spot welds. Sci. Technol. Weld. Join. 2005, 10, 647–652. [Google Scholar] [CrossRef]
- Buffa, G.; Baffari, D.; Di Caro, A.; Fratini, L. Friction stir welding of dissimilar aluminum-magnesium joints: Sheet mutual position effects. Sci. Technol. Weld. Join. 2015, 20, 271–279. [Google Scholar] [CrossRef]
- Sameer, M.; Birru, A.K. Mechanical and metallurgical properties of friction stir welded dissimilar joints of AZ91 magnesium alloy and AA 6082-T6 aluminium alloy. J. Magnes. Alloys 2019, 7, 264–271. [Google Scholar] [CrossRef]
- Asadi, P.; Mahdavinejad, R.A.; Tutunchilar, S. Simulation and experimental investigation of FSP of AZ91 magnesium alloy. Mater. Sci. Eng. A 2011, 528, 6469–6477. [Google Scholar] [CrossRef]
- Park, S.K.; Hong, S.T.; Park, J.H.; Park, K.Y.; Kwon, Y.J.; Son, H.J. Effect of material locations on properties of friction stir welding joints of dissimilar aluminium alloys. Sci. Technol. Weld. Join. 2010, 15, 331–336. [Google Scholar] [CrossRef]
- Guo, J.F.; Chen, H.C.; Sun, C.N.; Bi, G.; Sun, Z.; Wei, J. Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters. Mater. Des. 2014, 56, 185–192. [Google Scholar] [CrossRef]
- Amancio-Filho, S.T.; Sheikhi, S.; dos Santos, J.F.; Bolfarini, C. Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4. J. Mater. Process. Tech. 2008, 206, 132–142. [Google Scholar] [CrossRef]
- Reza-E-Rabby, M.; Tang, W.; Reynolds, A.P. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys. Sci. Technol. Weld. Join. 2015, 20, 425–432. [Google Scholar] [CrossRef]
- Kalemba-Rec, I.; Hamilton, C.; Kopyściański, M.; Miara, D.; Krasnowski, K. Microstructure and mechanical properties of friction stir welded 5083 and 7075 aluminum alloys. J. Mater. Eng. Perform. 2017, 26, 1032–1043. [Google Scholar] [CrossRef]
- Deng, Y.; Qiu, Z.; Zuo, D.; Zeng, J.; Zhang, W. Influence of tool offset on microstructure and properties of Mg/Al dissimilar alloys by friction stir welding joints a low heat input. Int. J. Manuf. Technol. 2020, 109, 2845–2853. [Google Scholar] [CrossRef]
- Jadav, H.H.; Badheka, V.; Sharma, D.K.; Upadhyay, G. Effect of pin diameter and different cooling media on friction stir welding of dissimilar Al-Mg alloys. Mater. Today 2021, 42, 362–369. [Google Scholar] [CrossRef]
- Mroczka, K.; Dymek, S.; Pietras, A.; Węglowska, A.; Hamilton, C.; Kopyściański, M. Joining cast Mg AZ91 and wrought Al 6082 through friction stir welding. In Proceedings of the TMS 2023 Annual Meeting and Exposition, San Diego, CA, USA, 19–23 March 2023. [Google Scholar] [CrossRef]
- Hamilton, C.; Kopyściański, M.; Węglowska, A.; Pietras, A.; Dymek, S. Modeling, microstructure, and mechanical properties of dissimilar 2017A and 5083 aluminum alloys friction stir welds. J. Eng. Manuf. 2019, 233, 553–564. [Google Scholar] [CrossRef]
- Hamilton, C.; Dymek, S.; Kopyściański, M.; Węglowska, A.; Pietras, A. Numerically based phase transformation maps for dissimilar aluminum alloys joined by friction stir-welding. Metals 2018, 8, 324–338. [Google Scholar] [CrossRef]
- Bannour, S.; Abderrazak, K.; Mhiri, H.; Le Palec, G. Effects of temperature-dependent material properties and shielding gas on molten pool formation during continuous laser welding of AZ91 magnesium alloy. Opt. Laser Technol. 2012, 44, 2459–2468. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, P.; Cheng, D.; Niu, J.; Sommitsch, C. Numerical simulation of material flow in AA6082 during friction stir spot welding. Eng. Rev. 2015, 35, 283–289. [Google Scholar]
- Zahra, A.M.; Zahra, C.Y.; Jaroma-Weiland, G.; Neuer, G.; Lacom, W. Heat capacities of aluminium alloys. J. Mater. Sci. 1995, 30, 426–436. [Google Scholar] [CrossRef]
- Sheppard, T.; Wright, D. Determination of flow-stress. 1. Constitutive equation for aluminum-alloys at elevated temperatures. Met. Technol. 1979, 6, 215–223. [Google Scholar] [CrossRef]
- Raghunath, B.K.; Raghukandan, K.; Karthikeyan, R.; Palanikumar, K.; Pillai, U.T.S.; Gandhi, R.A. Flow stress modeling of AZ91 magnesium alloys at elevated temperature. J. Alloys Compd. 2011, 509, 4992–4998. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, Q.; Wei, Z.; Lin, B.; Jing, Y.; Shi, Y.; Misra, R.D.K.; Li, J. Hot deformation behaviors of AZ91 magnesium alloy: Constitutive equation, ANN-based prediction, processing map and microstructure evolution. J. Alloys Compd. 2022, 908, 164580. [Google Scholar] [CrossRef]
- Wang, H.; Colegrove, P.; Mayer, H.M.; Campbell, L.; Robson, R.D. Material constitutive behaviour and microstructure study on aluminium alloys for friction stir welding. Adv. Mater. Res. 2010, 615, 615–620. [Google Scholar] [CrossRef]
- Chelliah, N.M.; Kumar, R.; Singh, H.; Surappa, M.K. Microstructural evolution of die-cast and homogenized AZ91 Mg-alloys during dry sliding condition. J. Magnes. Alloys 2017, 5, 35–40. [Google Scholar] [CrossRef]
- Srinivasan, P.B.; Blawert, C.; Dietzel, W. Dry sliding wear behaviour of plasma electrolytic oxidation coated AZ91 cast magnesium alloy. Wear 2009, 266, 1241–1247. [Google Scholar] [CrossRef]
- Threadgill, P.L.; Ahmed, M.M.Z.; Martin, J.P.; Perrett, J.G.; Wynne, B.P. The use of bobbin tools for friction stir welding of aluminum alloys. In Proceedings of the Thermec 2009, Berlin, Germany, 25–29 August 2009. [Google Scholar]
- Xu, Y.; Ke, L.; Ouyang, S.; Mao, Y.; Niu, P. Precipitation behavior of intermetallic compounds and their effect on mechanical properties of thick plate friction stir welded Al/Mg joint. J. Manuf. Process. 2021, 64, 1059–1069. [Google Scholar] [CrossRef]
- Mehta, K.P.; Carlone, P.; Astarita, A.; Scherillo, F.; Rubino, F.; Vora, P. Conventional and cooling assisted friction stir welding of AA6061 and AZ31B alloys. Mater. Sci. Eng. A 2019, 759, 252–261. [Google Scholar] [CrossRef]
- Chen, W.; Wang, W.; Liu, Z.; Zhai, X.; Bian, G.; Zhang, T.; Dong, P. Improvement in tensile strength of Mg/Al dissimilar friction stir welding joints by reducing intermetallic compounds. J. Alloys Compd. 2021, 861, 157942. [Google Scholar] [CrossRef]
Conventional Tool | ||
Shoulder Rotation (RPM) | Weld Speed (mm/min) | |
710 | 90 | |
710 | 140 | |
Dual-Speed Tool | ||
Shoulder Rotation (RPM) | Pin Rotation (RPM) | Weld Speed (mm/min) |
350 | 1400 | 350 |
350 | 1400 | 450 |
450 | 1800 | 140 |
450 | 1800 | 224 |
450 | 1800 | 280 |
450 | 1800 | 350 |
450 | 1800 | 450 |
Alloy | Q (J/mol) | A (1/s) | α (1/MPa) | N |
---|---|---|---|---|
AZ91 | 177,500 | 2.8405 × 1012 | 0.021 | 5.578 |
Al 6082 | 168,000 | 3.0197 × 1011 | 0.024 | 4.709 |
Parameter Set Pin/Shoulder/Weld Speed (RPM-RPM-mm/min) | %Cross-Section >Teutectic | Flow Rate at Trailing Edge (cm3/s) |
---|---|---|
1800/450/140 | 75% | 26.7 |
1800/450/224 | 68% | 26.6 |
1800/450/280 | 64% | 26.5 |
1800/450/355 | 59% | 26.4 |
1400/350/355 | 47% | 20.5 |
1800/450/450 | 31% | 26.2 |
1400/350/450 | 11% | 20.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mroczka, K.; Hamilton, C.; Węglowska, A.; Kopyściański, M.; Dymek, S.; Pietras, A. Assessing the Performance of a Dual-Speed Tool When Friction Stir Welding Cast Mg AZ91 with Wrought Al 6082. Materials 2024, 17, 3705. https://doi.org/10.3390/ma17153705
Mroczka K, Hamilton C, Węglowska A, Kopyściański M, Dymek S, Pietras A. Assessing the Performance of a Dual-Speed Tool When Friction Stir Welding Cast Mg AZ91 with Wrought Al 6082. Materials. 2024; 17(15):3705. https://doi.org/10.3390/ma17153705
Chicago/Turabian StyleMroczka, Krzysztof, Carter Hamilton, Aleksandra Węglowska, Mateusz Kopyściański, Stanisław Dymek, and Adam Pietras. 2024. "Assessing the Performance of a Dual-Speed Tool When Friction Stir Welding Cast Mg AZ91 with Wrought Al 6082" Materials 17, no. 15: 3705. https://doi.org/10.3390/ma17153705
APA StyleMroczka, K., Hamilton, C., Węglowska, A., Kopyściański, M., Dymek, S., & Pietras, A. (2024). Assessing the Performance of a Dual-Speed Tool When Friction Stir Welding Cast Mg AZ91 with Wrought Al 6082. Materials, 17(15), 3705. https://doi.org/10.3390/ma17153705