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Abstract: The Inconel 718 superalloy demonstrates the potential to fabricate high-temperature
components using additive manufacturing. However, additively manufactured Inconel 718 typically
exhibits low strength, necessitating post-heat treatments for precipitate strengthening. This study
investigated the microstructures and mechanical properties of the Inconel 718 superalloy fabricated
via laser powder bed fusion. The room-temperature and high-temperature tensile properties of the
Inconel 718 alloy samples following various post-heat treatments were evaluated. The results indicate
that the as-built samples exhibited columnar grains with fine cell structures. Solution treatment
resulted in δ phase formation and grain recrystallization. Subsequent double aging led to finely
distributed nanoscale γ′ and γ′′ particles. These nanoscale particles provided high strength at both
room and high temperatures, resulting in a balanced strength and ductility comparable to the wrought
counterpart. High-temperature nanoindentation analyses revealed that the double-aging samples
exhibited very high hardness and low creep rates at 650 ◦C.

Keywords: laser powder bed fusion; superalloy; high-temperature tensile; high-temperature
nanoindentation

1. Introduction

Nickel-based superalloys are extensively utilized for fabricating components oper-
ating at high temperatures, such as heat-resistant parts and turbine blades, due to their
exceptional strength, stability, and fatigue resistance at temperatures up to 1000 ◦C [1,2].
Inconel 718 (or IN718) stands out as a typical superalloy renowned for its high-temperature
strength and overall performance [3]. Unlike solid-solution hardened superalloys, like
IN625 or Hastelloy X, IN718 is an age-hardened Ni-based superalloy. Its microstructure
primarily comprises the γ-phase, γ′ (Ni = (Al, Ti, Nb), L12), (Ni3Nb, DO22), δ-phase (Ni3Nb,
DOa), and carbides [4]. Among these constituents, γ′ and γ′′ precipitates, typically in the
size range of tens of nanometers, serve as the principal strengthening phases.

Additive manufacturing (AM) techniques, such as laser powder bed fusion (L-PBF),
and laser-directed energy deposition (L-DED), are increasingly employed for fabricating
complex metallic materials, including titanium alloys and superalloys [5–12]. AM offers
distinct advantages, such as ease and high accuracy in manufacturing components with
intricate shapes and geometries [13]. The ultimate quality and mechanical performance of
the fabricated parts strongly rely on the AM process and subsequent treatments. The key
AM parameters such as laser power, scanning speed, layer thickness, and energy density
significantly influence these mechanical properties [14].

L-PBF generally results in the formation of a fine-grained structure and fine cells
in IN718 compared to its wrought counterpart; however, due to the limited presence of
precipitates (γ′′), its strength is initially lower than that of the aged state. For example, the
L-PBF as-built IN718 typically exhibits a strength level of less than 1 GPa, while the strength
of the samples after aging can exceed 1400 MPa, thanks to the formation of finely dispersed
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precipitates during the aging process. Consequently, various post-heat treatments are
extensively utilized to improve the mechanical properties of LPBF-built IN718. Stress-
relieving (SR), hot isostatic pressing (HIP), solution treatment (ST) or homogenization
annealing, and aging (single or double-step) are the most commonly used heat treatments.
The laser-based AM processes typically generate significant residual stresses that can
compromise the mechanical properties. These residual stresses can be alleviated through
SR treatments conducted at sufficiently high temperatures and extended holding times.
HIP is commonly employed to decrease the porosity of the additive manufactured (AM)
parts. During the HIP processes, grain recrystallization and grain coarsening may occur.
Previous studies have indicated that the porosity in IN718 can be reduced from 0.08%
to 0.01% through HIP, with equiaxed grain formation also observed [15,16]. However,
when the solution or annealing treatment is conducted at temperatures below 1100 ◦C,
a small number of needle-like δ phases remain in the sample, along with incomplete
recrystallization. Upon reaching a temperature of 1020 ◦C during solution treatment or
annealing, the δ particles dissolve into the γ-matrix, leaving only carbides and oxides [17].
Subsequent aging or double aging after solution treatment typically leads to the formation
of dense γ′ and γ′′ nanoparticles. Research indicates that a solution treatment at 1020 ◦C for
15 min followed by aging at 720 ◦C for 24 h can completely eliminate Laves and δ particles
while precipitating finely dispersed γ′ and γ′′ nanoparticles [18].

Regarding the mechanical performance of additively manufactured IN718, most stud-
ies in the literature have focused on the tensile properties or fatigue at ambient temperature,
as well as the impact of the post-heat treatments on these properties. For instance, the
standard solution and double aging treatment have been found to yield a strength of
1250 MPa and an elongation of 16% [19]. When HIP is followed by a solution and double
aging treatment, the strength increases to 1385 MPa with a ductility of 23.4%, where the
ductility is higher compared to the standard solution and double aging [20]. Recent research
has indicated that introducing a cold rolling step before heat treatment leads to equiaxed
grains, resulting in a strength of 1600 MPa and an elongation exceeding 15% [21]. However,
it should be noted that cold deformation can be challenging to implement for additive
manufactured parts, particularly those with thin walls or complex shapes. The effects
of various post-heat treatments on the microstructure and room-temperature mechanical
properties have been extensively studied.

The literature on the high-temperature properties of the L-PBF (laser powder bed
fused) IN718 alloy is relatively sparse compared to ambient temperature studies. For
example, one study investigated the high-temperature wear behavior of as-built L-PBF
IN718 up to 600 ◦C [22]. Xu et al. examined the creep performance at 650 ◦C, finding that
heat-treated and HIP (hot isostatic pressing) specimens had significantly lower lifetimes
(20–90 h) compared to hot-rolled specimens (200 h under similar conditions) [23]. Another
study by Stephen reported that heat-treated IN718 samples exhibited strengths below
900 MPa at 600 ◦C [24]. Alexandra et al. systematically studied the effect of the process
parameters on the high-temperature properties of the IN718 alloy at 650 ◦C, noting that the
as-built samples generally showed strengths below 1000 MPa and exhibited mechanical
anisotropy [25]. Ho investigated the impact of CoAl2O4 inoculants on the microstructures
and high-temperature tensile properties, finding that double aging (aged at 720 ◦C for
8 h followed by 620 ◦C for 8 h) resulted in strengths around 987 MPa and elongation of
19.3% at 650 ◦C; the addition of CoAl2O4 slightly increased the strength to 1036 MPa with a
decreased elongation of 16.7% [26].

The present study aims to investigate the effect of post-heat treatment on the mi-
crostructures and tensile properties of the L-PBF IN718 alloy at both ambient temperature
and elevated temperatures. The microstructures of the as-built and heat-treated samples
were systematically examined using SEM, EBSD, and TEM. The tensile properties of the
samples were evaluated at both room temperature and specifically at 650 ◦C. Additionally,
nanoindentation was performed at 650 ◦C to assess the creep resistance.
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2. Materials and Methods
2.1. Sample Preparation

Gas-atomized powders of the IN718 alloy were utilized in this study, sourced from
Ninbo Zhonghe company (Ninbo, China). The chemical composition of the alloy powders
was analyzed using inductively coupled plasma (ICP) spectroscopy, and the results are
detailed in Table 1, meeting the ASTM B670 specifications [27]. Figure 1 illustrates the
morphology and size distribution of the powders. The morphology was examined using a
scanning electron microscope (TESCAN VEGA Compact, Brno, Czech Republic), while the
size distribution was measured using a laser particle size analyzer (Horiba LA-960, HORIBA
Scientific, Kyoto, Japan). The powders exhibited consistently spherical shapes, with average
sizes (D10, D50, and D90) measured at 12.1 µm, 29.0 µm, and 44.7 µm, respectively.

Table 1. Chemical composition of the powders used in this study.

Element Cr Fe Nb Mo Ti Al C Mn Si Ni

Wt.% 19.2 19.7 5.4 3.2 1.1 0.5 0.05 0.2 0.01 Bal.
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were prepared, as depicted in Figure 2a. All the samples were fabricated under an argon-
protective atmosphere to prevent oxidation during the processing. Based on prior optimi-
zation studies, the following process parameters were employed to ensure nearly dense 
samples: laser power of 260 W, scan speed of 1000 mm/s, layer thickness of 40 µm, and 
hatch spacing of 100 µm. The laser scanning strategy involved a stripe pattern with a ro-
tation angle of 67° between successive layers, as illustrated in Figure 2b. The build sub-
strate was preheated to 200 °C to mitigate residual stresses. The as-built samples were 
separated from the substrate by using wire-EDM. These samples are designated as “AB”. 

Figure 1. SEM image of the IN718 powder morphology (a) and size distribution (b).

The samples were manufactured using an EOS M290 equipped with a 400 W Yb fiber
laser(EOS GmbH, Krailing, Germany). Bar samples having a dimension of ϕ12 × 150 mm
were prepared, as depicted in Figure 2a. All the samples were fabricated under an argon-
protective atmosphere to prevent oxidation during the processing. Based on prior opti-
mization studies, the following process parameters were employed to ensure nearly dense
samples: laser power of 260 W, scan speed of 1000 mm/s, layer thickness of 40 µm, and
hatch spacing of 100 µm. The laser scanning strategy involved a stripe pattern with a
rotation angle of 67◦ between successive layers, as illustrated in Figure 2b. The build
substrate was preheated to 200 ◦C to mitigate residual stresses. The as-built samples were
separated from the substrate by using wire-EDM. These samples are designated as “AB”.
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2.2. Post-Heat Treatments

Two types of post-heat treatments were employed in this study: solution treatment,
and solution treatment plus double aging. The as-built samples underwent initial solution
treatment at 980 ◦C in a pre-heated furnace, held for 1 h, and then air cooled, designated
as “ST”. Subsequently, the solution-treated samples were aged at 720 ◦C in a pre-heated
furnace for 8 h, followed by a slow cooling to 620 ◦C over 8 h, and then air cooled. The
cooling rate during the decrease from 720 ◦C to 620 ◦C was set at 50 ◦C/h. These aged
samples are denoted as “STDA”.

2.3. Microstructural Observation

For the microstructural analysis, the samples underwent mechanical grinding using
silicon carbide sandpaper, followed by polishing with 5 µm and 1.5 µm diamond pastes. A
final polish was conducted using a mixture of 20 vol.% H2O2 and 80 vol.% colloidal silica
suspension (0.02 µm). The microstructural observations were carried out using Backscatter-
ing electron (BSE) imaging and Electron backscatter diffraction (EBSD). The BSE imaging
was performed on a field emission scanning electron microscope (FESEM: TESCAN MIRA
III, Brno, Czech Republic) operating at 15 kV. EBSD mappings were conducted using a
FESEM (TESCAN Clara, Brno, Czech Republic) equipped with an EBSD detector (Oxford
NordlysNano, High Wycombe, UK), operated at 20 kV with a step size of 1 µm and a work-
ing distance of 18 mm. The precipitate analysis of the aged samples was conducted using
a transmission electron microscope (TEM, model: JEM 2100F, JEOL, Peabody, MA, USA)
operating at 200 kV. The sample preparation for the TEM involved mechanical thinning to
a 100 µm thickness, followed by final thinning using a precision ion polishing system (PIPS
model 691, Gatan Inc., Warrendale, PA, USA).

2.4. Mechanical Testing

The samples for tensile testing had a gauge dimension of 5 mm in diameter and 35 mm
in length, following GB/T 6397 [28] (Figure 2c). Tensile loading was applied parallel to the
build direction. Room temperature tests were conducted at 25 ◦C using an MTS E45 tensile
machine (MTS, Eden Prairie, MN, USA,) according to GB/T 228.1.2021 [29]. A constant
speed of 1.5 mm/min was maintained using a contact extensometer, resulting in a strain
rate of 1 × 10−3/s. For high-temperature tests at 650 ◦C, the samples were preheated in a
furnace and equilibrated for 15 min to ensure the temperature uniformity, with a deviation
of ±4 ◦C. Tests were conducted as per GB/T 228.2.2015 [30] using a constant speed of
0.5 mm/min and a corresponding strain rate of 0.33 × 10−3/s. The extensometer was
removed after a deformation strain of 2%. The yield strength (YS) and ultimate tensile
strength (UTS) were directly obtained from engineering stress–strain curves, while the total
elongation to fracture (tEl) was determined by measuring the gauge length increments
after fracture. Each test condition was repeated three times (Table 2), confirming the high
repeatability (Figure S1).

Table 2. Number of samples tested for tensile tests and nanoindentation used in this study.

Samples Tensile at 25 ◦C Tensile at 650 ◦C Nanoindentation

AB 3 3 2
ST 3 3 2

STDA 3 3 2

Nanoindentation tests were conducted using a NanoTest Vantage system from Micro
Materials Ltd., Wrexham, UK, equipped with a cubic boron nitride Berkevich indenter.
Prior to testing, the samples were mechanically polished to achieve a mirror surface finish.
Both the indenter and samples were maintained at 650 ◦C, monitored by thermocouples.
During the testing, a fixed load of 50 mN was applied, reaching the preset maximum load
within 5 s and was held for 600 s before reducing the load to 5 mN. The displacement and
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load measurements of the indenter were recorded with resolutions of 0.002 nm and 10 nN,
respectively. To ensure the accuracy, multiple regions of each sample should ideally be
tested. However, due to the rapid wear of the indenter at high temperatures, resulting in
significant costs for replacement, two distinct regions of each sample were tested under
identical loading conditions (as detailed in Table 2). The results showed a minimal variation
between the indentation measurements from these different regions.

3. Results and Discussion
3.1. Microstructural Observation

Figure 3 presents the EBSD maps illustrating the microstructural characteristics of
sample AB. The predominant feature observed is a columnar structure typical of AM
superalloys [14,18]. Melt pools with a wavy shape are clearly visible. The inverse pole figure
(IPF) map in Figure 3a indicates that most of the grains are orientated with a [001]//build
direction (BD). The sample exhibited a non-uniform distribution of grain sizes, with an
average size of approximately 55 µm, as depicted in Figure 3d. In Figure 3b, the image
quality (IQ) + grain boundary (GB) maps reveal that around 70% of the grain boundaries
are high angles (≥15◦), while low-angle grain boundaries are sparse. Figure 3e provides a
quantitative representation of this distribution. The kernel average misorientation (KAM)
map in Figure 3c illustrates the presence of numerous dislocations, particularly near the
grain boundaries.
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Figure 4 presents the BSE images illustrating the interior structure of the columnar
grains in the sample. Both columnar dendrites and cellular dendrites are visible. Columnar
dendrites have a thickness ranging from 1 to 2 µm, as depicted in Figure 4a, while cellular
dendrites are smaller, approximately 0.5 to 1 µm in size, as shown in Figure 4b. Figure 4b,c
highlight the presence of white nanoparticles at the boundaries of dendrites, indicated by
arrows. These nanoparticles are identified as Laves phases and MC carbides, consistent
with the findings from previous studies [31,32]. Figure 4d also shows the presence of oxides
(black particles), marked by arrows, alongside individual dislocations (gray lines).

Figure 5 illustrates the microstructures of sample ST. Despite undergoing solution
treatment, a columnar structure remains evident, with a slight grain growth observed, as
depicted in Figure 5a. A significant change in the grain orientation is notable compared
to Figure 3a, indicating a shift in texture. Figure 5b shows the presence of a considerable
number of low-angle boundaries. The interior microstructure exhibits substantial trans-
formations: the disappearance of cell and plate structures, the dissolution of most of the
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nanoparticles into the matrix, and the homogeneous formation of fine needle-like δ phases
within the matrix and along high-angle grain boundaries. Figure 5c highlights the presence
of numerous intra-granular δ plates, approximately 1 to 2 µm in length. Additionally,
Figure 5d reveals the presence of Laves phases and oxides, suggesting that the solution
temperature was insufficient to fully dissolve these phases into the matrix.
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Figure 6 displays the microstructures of the STDA sample observed using the TEM.
Figure 6a clearly shows the presence of δ particles, which exhibited a length of approxi-
mately 0.5 µm and a thickness of 50 nm. Additionally, a small number of dislocations can
be seen in the sample, as demonstrated in Figure 6b. The higher magnification images
in Figure 6c,d revealed a fine dispersion of precipitates, identified as γ′ and γ′′ phases
formed during the double aging process. These γ′ and γ′′ precipitates had a size of approx-
imately 25 nm, resulting in a fine-grained microstructure with a uniform distribution of
strengthening precipitates generated during the double aging treatment.
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phase, (b) substructures, (c,d) nanoprecipitates along the cell boundary and in the matrix.

3.2. Mechanical Performance of the Samples at Room Temperature

Figure 7 presents the tensile stress–strain curves of samples AB, ST, and STDA tested
at room temperature, with their corresponding properties summarized in Table 3. The
stress–strain curve for sample AB exhibits significant plastic strain accompanied by pro-
nounced work hardening. This sample demonstrates an ultra-high work-hardening ability
(UTS-YS = 0.33 GPa, YS/UTS = 0.66) and good uniform elongation (>30%). The sub-
stantial strain hardening is primarily attributed to coarse γ grains (Figure 2) and where
dislocation slips activate and propagate readily within the γ-matrix due to the sparse
presence of particles or precipitates (Laves phase and oxide in Figure 4). This charac-
teristic explains why the as-built IN718 alloy samples using L-PBF often display a low
yield strength (typically < 700 MPa) and a very high ductility (tEl > 30%). Similarly, the ST
sample demonstrates an excellent work-hardening ability, resulting in a uniform elongation
of approximately 45%. The ST process reduces the dislocation density and particles fur-
ther, enhancing the work hardening. Conversely, the subsequent double aging introduces
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finely dispersed nanoprecipitates (γ′ and γ′′), which weakened the work-hardening ability
(UTS-YS = 0.16 GPa, YS/UTS = 0.88). Consequently, the uniform elongation decreases to
approximately 15%. This behavior is typical in precipitate-hardened Ni-based alloys, where
the interaction between γ′ and γ′′ nanoprecipitate and dislocations causes rapid initial hard-
ening during the deformation. However, the dislocation accumulation saturates quickly
during the subsequent straining, limiting the further work hardening capacity [33,34].
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Table 3. Room-temperature tensile properties of the samples in this work and in the literature.

Samples UTS/MPa YS/MPa El/% Ref.

AB 967 ± 6 638 ± 14 36.6 ± 1.2
This workST 904 ± 3 570 ± 10 47.2 ± 0.6

STDA 1394 ± 4 1229 ± 5 18.6 ± 0.3
AB 970 680 31.6 [19]
AB 995 698 33.2 [20]
AB 900 630 18 [21]
AB 950 650 32 [23]
AB 998 700 30.8 [26]
AB 915 844 26.3 [31]

STDA 1560 1240 11.6 [18]
STDA 1195 963 15.8 [19]
STDA 1187 1056 26.1 [24]
STDA 1144 978 28.6 [24]
STDA 1384 1173 10.7 [31]

Cast 718 862 758 5 [35]
Wrought 718 1276 1034 12 [36]

The AB sample shows a UTS of 967 MPa, a YS of 638 MPa, and a tEl of 36.6%,
consistent with the findings from previous studies, as listed in Table 3. However, these
room-temperature properties fall short of meeting the AMS 5383 standard [35] for cast
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IN718, particularly in YS, which should minimally be 700 MPa according to AMS 5383 [35].
Following the solution treatment, the samples exhibited a slight strength decrease (YS
of 570 MPa) and improved ductility of 47.2%, attributed to the coarsening effect of the
fine substructures induced by the solution treatment. Subsequent aging treatments are
therefore necessary to strengthen the γ-matrix. In contrast, the STDA sample demonstrates
a significantly higher strength (UTS of 1394 MPa and YS of 1229 MPa) and a tEl of 18.6%.
These tensile properties notably exceed the reported data, as summarized in Table 3, and
fully comply with the requirements specified by AMS 5662 [36] for wrought IN718.

3.3. Mechanical Performance of the Samples at an Elevated Temperature

Figure 8 illustrates the tensile stress–strain curves of the AB, ST, and STDA samples
tested at 650 ◦C, with their corresponding properties summarized in Table 4. Similar to the
room temperature tests, significant strain hardening occurred in the AB and ST samples,
resulting in a high uniform elongation: 22% for AB and 40% for ST. This work-hardening
mechanism involves dislocation slips facilitated in the γ-matrix. In contrast, the STDA
sample exhibited rapid necking followed by flow softening, leading to a reduced uniform
elongation of only 4.6%. This flow softening phenomenon of IN718 has been noted in
previous studies [2].
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The AB sample displayed a UTS of 813 ± 8 MPa, a YS of 567 ± 13 MPa, and a tEl
of 42.8 ± 8.3%, as detailed in Table 3. Although the yield strength is slightly lower than
the reported values, the ductility significantly exceeds the reported data [25,26,37]. This
discrepancy can likely be attributed to the substrate preheating at 200 ◦C during the fab-
rication, which reduces the dislocation density and residual stress [38,39]. Conversely,
the ST sample exhibited a lower strength (UTS of 735 ± 13 MPa, a YS of 507 ± 21 MPa)
and higher ductility (45.1 ± 6.4%) due to the absence of the substructures like cell struc-
tures and sub-boundaries (Figure 5). However, the high-temperature properties of the



Materials 2024, 17, 3735 10 of 14

samples do not meet the requirements of AMS 5662 (wrought IN718) due to the insuffi-
cient strength, necessitating aging for alloy hardening in high-temperature applications.
The STDA sample demonstrated a UTS of 1124 ± 6 MPa, a YS of 1025 ± 20 MPa, and
an El of 12.3 ± 3.6%. These properties are comparable to the reported values [40,41] and
conventional wrought IN718.

Table 4. Tensile properties at 650 ◦C of the samples in this work and the literature.

Samples UTS/MPa YS/MPa tEl/% Ref.

AB 813 ± 8 567 ± 13 42.8 ± 8.3
This workST 735 ± 13 507 ± 21 45.1 ± 6.4

STDA 1124 ± 6 1025 ± 20 12.3 ± 3.6
AB 860 600 25 [25]
AB 987 800 19.3 [26]
AB 879 815 8.5 [37]

STDA 992 860 14.2 [40]
STDA 1100 - 12 [41]

Wrought 718 1000 862 12 [36]

3.4. Nanoindentation at an Elevated Temperature

Figure 9 illustrates the load–depth and depth–time curves of the samples undergoing
nanoindentation at 650 ◦C, with the corresponding data outlined in Table 5. Figure 9a
specifically depicts the typical load–displacement curves for the three samples. Notably,
the AB and ST samples exhibited a similar load–depth pattern, whereas the STDA sample
demonstrated a distinct behavior, with a depth penetration that was only half of that
observed in the AB and ST samples. As calculated from the load–displacement curves,
Table 4 reveals the nanohardness and elastic modulus of the samples. Both the AB and ST
samples displayed a nanohardness and elastic modulus of 3.0 GPa and 105 GPa, respectively.
In contrast, the STDA sample exhibited significantly higher values, with a nanohardness
of 6.3 ± 1.1 GPa and an elastic modulus of 139.5 ± 5.2 GPa. The increase in hardness at a
high temperature is approximately twice that of the AB and ST samples, aligning with the
observed high-temperature yield strengths in these samples.
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Table 5. Nanoindentation results of the samples measured at 650 ◦C.

Samples Nanohardness/GPa Elastic Modulus/GPa

AB 3.0 ± 0.5 105.5 ± 4.6
ST 3.0 ± 0.4 107.8 ± 3.7

STDA 6.3 ± 1.1 139.5 ± 5.2
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Figure 9b illustrates the depth–time curves of the samples, showing a rapid initial
increase in depth penetration followed by a gradual rise. This behavior suggests an
excellent creep resistance, as noted in recent research [42]. Particularly, the STDA sample
maintains a nearly constant depth at around 500 nm, significantly lower than the AB
and ST samples (~750 nm). This indicates a superior creep resistance under a constant
high-temperature load compared to the other samples, attributed to the strengthening
effect of the finely dispersed γ′ and γ′′ nanoprecipitates within the γ-matrix, as previously
discussed [23]. Moreover, previous studies have highlighted that L-PBF-manufactured
IN718, after solution and double aging, exhibits an enhanced creep performance relative
to its cast and wrought counterparts. This improvement is attributed to a higher volume
fraction of γ′ and γ′′ phases, which serve as primary strengthening agents [43].

In summary, the experimental findings of this study demonstrate that standard post-
heat treatments have produced a specific microstructure comprising a substantial number
of uniformly distributed δ-phase needles in the γ-matrix, along with a high-volume fraction
of γ′ and γ′ ′ strengthening nanoprecipitates. This structure not only provides superior
mechanical properties at ambient temperatures, comparable to those of wrought IN718
counterparts, but also enhances the high-temperature strength and durability. However,
the optimal heat treatments are anticipated to further enhance the material’s strength
and ductility. Additionally, as a superalloy commonly used for structural applications at
elevated temperatures, future research should focus on evaluating the creep resistance and
high-temperature fatigue evaluation of AM 718 under optimized heat treatments.

4. Conclusions

In this study, microstructure analyses and tensile testing at ambient and elevated
temperatures were performed on L-PBF-fabricated IN718, compared to different heat
treatments. High-temperature nanoindentation was also conducted to indirectly assess the
creep resistance. The following conclusions can be drawn:

1. The microstructure of the as-built L-PBF 718 alloy exhibits elongated columnar
grains with cellular and columnar dendrites, both showing an ultrafine scale. A small
amount of Laves phase and oxides are present in the as-built condition. The solution
treatment did not significantly alter the columnar structures but eliminated the cellular and
columnar dendrites. Instead, grain coarsening and partial recrystallization occurred, accom-
panied by the formation of a δ phase. Needle-like δ particles were uniformly distributed in
the γ matrix or formed along the boundaries. The double aging subsequent to the solution
treatment resulted in the formation of finely dispersed γ′ and γ′′ nanoprecipitates.

2. The as-built samples demonstrated a moderate strength at both room temperature
and 650 ◦C, primarily due to the presence of few precipitates. After the solution treatment,
the samples exhibited a similar strength and ductility to the as-built ones because the
strengthening effect of the fine δ particles may have been offset by the grain growth and
reduced substructures. Both the as-built and solution-treated samples displayed tensile
properties below the AMS requirements. However, after solution treatment followed by
double aging, the samples showed significantly improved tensile properties. At room
temperature, they achieved an ultimate tensile strength of 1394 MPa with an elongation of
18.6%. At 650 ◦C, they reached an ultimate tensile strength of 1124 MPa with an elongation
of 12.3%. These properties, attributed to the finely dispersed strengthening γ′ and γ′′

nanoprecipitates, are comparable to those of their wrought counterparts.
3. Nanoindentation at high temperatures revealed that the as-built sample and

solution-treated sample exhibited similar creep behavior, whereas the double aging samples
showed a significantly improved creep resistance compared to the other two. Nanoindenta-
tion at high temperatures proves to be an effective method for indirectly characterizing the
creep behavior of superalloys.
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