Advanced Material Strategy for Restoring Damaged Endodontically Treated Teeth: A Comprehensive Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Choice of Full-Coverage Restoration Material
- Partial crown and veneers
- b.
- Full crown
- c.
- Endocrowns
3.2. Post or No Post?
- No post required: Choice of material for composite build-up
- b.
- Post required: which one is more favorable?
- c.
- Post cementation
3.3. Deep Margin Elevation
3.4. Limits and Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sedgley, C.M.; Messer, H.H. Are endodontically treated teeth more brittle? J. Endod. 1992, 18, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.J.; Santana, F.R.; Silva, N.R.; Preira, J.C.; Pereira, C.A. Influence of the Endodontic Treatment on Mechanical Properties of Root Dentin. J. Endod. 2007, 33, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Wu, Y.; Smales, R.J. Identifying and Reducing Risks for Potential Fractures in Endodontically Treated Teeth. J. Endod. 2010, 36, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Papa, J.; Cain, C.; Messer, H.H. Moisture content of vital vs. endodontically treated teeth. Endod. Dent. Traumatol. 1994, 10, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Fusayama, T.; Maeda, T. Effect of pulpectomy on dentin hardness. J. Dent. Res. 1969, 48, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Reeh, E.S.; Messer, H.H.; Douglas, W.H. Reduction in tooth stiffness as a result of endodontic and restorative procedures. J. Endod. 1989, 15, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.C.R.; Martins, J.N.R.; Chen, A.; Quaresma, S.A.; Lúıs, H.; Caramês, J. Prognosis of Indirect Composite Resin Cuspal Coverage on Endodontically Treated Premolars and Molars: An In Vivo Prospective Study. J. Prosthodont. 2018, 27, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Dietschi, D.; Duc, O.; Krejci, I.; Sadan, A. Biomechanical considerations for the restoration of endodontically treated teeth: A systematic review of the literature—Part 1. Composition and micro- and macrostructure alterations. Quintessence Int. 2007, 38, 733–743. [Google Scholar]
- Dietschi, D.; Duc, O.; Krejci, I.; Sadan, A. Biomechanical considerations for the restoration of endodontically treated teeth: A systematic review of the literature, Part II (Evaluation of fatigue behavior, interfaces, and in vivo studies). Quintessence Int. 2008, 39, 117–129. [Google Scholar]
- Reeh, E.S.; Douglas, W.H.; Messer, H.H. Stiffness of endodontically-treated teeth related to restoration technique. J. Dent. Res. 1989, 68, 1540–1544. [Google Scholar] [CrossRef]
- Linn, J.; Messer, H.H. Effect of restorative procedures on the strength of endodontically treated molars. J. Endod. 1994, 20, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Piancino, M.G.; Isola, G.; Cannavale, R.; Cutroneo, G.; Vermiglio, G.; Bracco, P.; Anastasi, G.P. From periodontal mechanoreceptors to chewing motor control: A systematic review. Arch. Oral Biol. 2017, 78, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.K.; Chudler, E.H.; Martin, R.F. Physiological properties of intradental mechanoreceptors. Brain Res. 1985, 334, 389–395. [Google Scholar] [CrossRef]
- Awawdeh, L.; Hemaidat, K.; Al-Omari, W. Higher Maximal Occlusal Bite Force in Endodontically Treated Teeth Versus Vital Contralateral Counterparts. J. Endod. 2017, 43, 871–875. [Google Scholar] [CrossRef] [PubMed]
- Loewenstein, W.R.; Rathkamp, R. A study on the pressoreceptive sensibility of the tooth. J. Dent. Res. 1955, 34, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Touré, B.; Faye, B.; Kane, A.W.; Lo, C.M.; Niang, B.; Boucher, Y. Analysis of reasons for extraction of endodontically treated teeth: A prospective study. J. Endod. 2011, 37, 1512–1515. [Google Scholar] [CrossRef] [PubMed]
- Mannocci, F.; Bitter, K.; Sauro, S.; Ferrari, P.; Austin, R.; Bhuva, B. Present status and future directions: The restoration of root filled teeth. Int. Endod. J. 2022, 55 (Suppl. S4), 1059–1084. [Google Scholar] [CrossRef]
- Soares, C.J.; Rodrigues, M.d.P.; Faria-e-Silva, A.L.; Santos-Filho, P.C.F.; Veríssimo, C.; Kim, H.C.; Versluis, A. How biomechanics can affect the endodontic treated teeth and their restorative procedures? Braz. Oral Res. 2018, 32, e76. [Google Scholar] [CrossRef]
- de Matos, L.M.R.; Silva, M.L.; Cordeiro, T.O.; Cardoso, S.d.A.M.; Campos, D.e.S.; de Muniz, I.A.F.; Barros, S.A.d.L.; Seraidarian, P.I. Clinical and laboratorial performance of rehabilitation of endodontically treated teeth: A systematic review. J. Esthet. Restor. Dent. 2024. ahead of print. [Google Scholar] [CrossRef]
- Mannocci, F.; Cowie, J. Restoration of endodontically treated teeth. Br. Dent. J. 2014, 216, 341–346. [Google Scholar] [CrossRef]
- Bhuva, B.; Giovarruscio, M.; Rahim, N.; Bitter, K.; Mannocci, F. The restoration of root filled teeth: A review of the clinical literature. Int. Endod. J. 2021, 54, 509–535. [Google Scholar] [CrossRef] [PubMed]
- Mannocci, F.; Bhuva, B.; Roig, M.; Zarow, M.; Bitter, K. European Society of Endodontology position statement: The restoration of root filled teeth. Int. Endod. J. 2021, 54, 1974–1981. [Google Scholar] [PubMed]
- Abu-Awwad, M. Dentists’ decisions regarding the need for cuspal coverage for endodontically treated and vital posterior teeth. Clin. Exp. Dent. Res. 2019, 5, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Pratt, I.; Aminoshariae, A.; Montagnese, T.A.; Williams, K.A.; Khalighinejad, N.; Mickel, A. Eight-Year Retrospective Study of the Critical Time Lapse between Root Canal Completion and Crown Placement: Its Influence on the Survival of Endodontically Treated Teeth. J. Endod. 2016, 42, 1598–1603. [Google Scholar] [CrossRef] [PubMed]
- Bandlish, R.B.; McDonald, A.V.; Setchell, D.J. Assessment of the amount of remaining coronal dentine in root-treated teeth. J. Dent. 2006, 34, 699–708. [Google Scholar] [CrossRef]
- Frankenberger, R.; Winter, J.; Dudek, M.C.; Naumann, M.; Amend, S.; Braun, A.; Krämer, N.; Roggendorf, M.J. Post-Fatigue Fracture and Marginal Behavior of Endodontically Treated Teeth: Partial Crown vs. Full Crown vs. Endocrown vs. Fiber-Reinforced Resin Composite. Materials 2021, 14, 7733. [Google Scholar] [CrossRef]
- Ferrari, M.; Ferrari Cagidiaco, E.; Pontoriero, D.I.K.; Ercoli, C.; Chochlidakis, K. Survival Rates of Endodontically Treated Posterior Teeth Restored with All-Ceramic Partial-Coverage Crowns: When Systematic Review Fails. Int. J. Environ. Res. Public Health 2022, 19, 1971. [Google Scholar] [CrossRef] [PubMed]
- Chrepa, V.; Konstantinidis, I.; Kotsakis, G.A.; Mitsias, M.E. The survival of indirect composite resin onlays for the restoration of root filled teeth: A retrospective medium-term study. Int. Endod. J. 2014, 47, 967–973. [Google Scholar] [CrossRef]
- Suksawat, N.; Angwaravong, O.; Angwarawong, T. Fracture resistance and fracture modes in endodontically treated maxillary premolars restored using different CAD-CAM onlays. J. Prosthodont. Res. 2024, 68, 290–298. [Google Scholar] [CrossRef]
- Magne, P.; Knezevic, A. Influence of overlay restorative materials and load cusps on the fatigue resistance of endodontically treated molars: Quintessence International. Quintessence Int. 2009, 40, 729–737. [Google Scholar]
- Sevimli, G.; Cengiz, S.; Oruc, M.S. Endocrowns: Review. J. Istanb. Univ. Fac. Dent. 2015, 49, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Govare, N.; Contrepois, M. Endocrowns: A systematic review. J. Prosthet. Dent. 2020, 123, 411–418.e9. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Peng, L.; Xiong, F.; Lin, X.Y.; Zhang, P.; Lin, Z.T.; Wu, B.-L. A 3-year clinical evaluation of endodontically treated posterior teeth restored with two different materials using the CEREC AC chair-side system. J. Prosthet. Dent. 2018, 119, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, S.S.; de Rijk, W.G. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli: International Journal of Prosthodontics. Int. J. Prosthodont. 1993, 6, 462–467. [Google Scholar]
- Xiao, W.; Chen, C.; Yang, T.; Zhu, Z. Influence of Different Marginal Forms on Endodontically Treated Posterior Teeth Restored with Lithium Disilicate Glass-Ceramic Onlays: Two-Year Follow-up. Int. J. Prosthodont. 2020, 33, 22–28. [Google Scholar] [CrossRef]
- Zarone, F.; Di Mauro, M.I.; Ausiello, P.; Ruggiero, G.; Sorrentino, R. Current status on lithium disilicate and zirconia: A narrative review. BMC Oral Health 2019, 19, 134. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.Q.; Hong, N.R.; Zou, L.Y.; Wu, S.Y.; Li, Y. Estimation of stress distribution and risk of failure for maxillary premolar restored by occlusal veneer with different CAD/CAM materials and preparation designs. Clin. Oral Investig. 2020, 24, 3157–3167. [Google Scholar] [CrossRef]
- Spitznagel, F.A.; Prott, L.S.; Hoppe, J.S.; Manitckaia, T.; Blatz, M.B.; Zhang, Y.; Langner, R.; Gierthmuehlen, P.C. Minimally invasive CAD/CAM lithium disilicate partial-coverage restorations show superior in-vitro fatigue performance than single crowns. J. Esthet. Restor. Dent. 2024, 36, 94–106. [Google Scholar] [CrossRef]
- von Stein-Lausnitz, M.; Mehnert, A.; Bruhnke, M.; Sterzenbach, G.; Rosentritt, M.; Spies, B.C.; Bitter, K.; Naumann, M. Direct or Indirect Restoration of Endodontically Treated Maxillary Central Incisors with Class III Defects? Composite vs. Veneer or Crown Restoration. J. Adhes. Dent. 2018, 20, 519–526. [Google Scholar]
- Atlas, A.; Grandini, S.; Martignoni, M. Evidence-based treatment planning for the restoration of endodontically treated single teeth: Importance of coronal seal, post vs. no post, and indirect vs. direct restoration. Quintessence Int. 2019, 50, 772–781. [Google Scholar]
- Ploumaki, A.; Bilkhair, A.; Tuna, T.; Stampf, S.; Strub, J.R. Success rates of prosthetic restorations on endodontically treated teeth; a systematic review after 6 years. J. Oral Rehabil. 2013, 40, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Sedrez-Porto, J.A.; da Rosa, W.L.D.O.; Da Silva, A.F.; Münchow, E.A.; Pereira-Cenci, T. Endocrown restorations: A systematic review and meta-analysis. J. Dent. 2016, 52, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Afrashtehfar, K.I.; Ahmadi, M.; Emami, E.; Abi-Nader, S.; Tamimi, F. Failure of single-unit restorations on root filled posterior teeth: A systematic review. Int. Endod. J. 2017, 50, 951–966. [Google Scholar] [CrossRef]
- AlSaleh, E.; Dutta, A.; Dummer, P.M.H.; Farnell, D.J.J.; Vianna, M.E. Influence of remaining axial walls on of root filled teeth restored with a single crown and adhesively bonded fibre post: A systematic review and meta-analysis. J. Dent. 2021, 114, 103813. [Google Scholar] [CrossRef] [PubMed]
- Edelhoff, D.; Brix, O. All-ceramic restorations in different indications: A case series. J. Am. Dent. Assoc. 2011, 142 (Suppl. S2), 14S–19S. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Fan, J.; Wang, L.; Xu, B.; Wang, L.; Chai, L. Onlays/partial crowns versus full crowns in restoring posterior teeth: A systematic review and meta-analysis. Head. Face Med. 2022, 18, 36. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, G.; Zarone, F.; Dellificorelli, G.; Cannistraro, G.; De Lorenzi, M.; Mosca, A.; Leone, R.; Sorrentino, R. A 13- to 17-year Retrospective Evaluation of the Clinical Performances of Anterior and Posterior Lithium Disilicate Restorations onto Teeth and Implants. Int. J. Periodontics Restor. Dent. 2024, 1–34, online ahead of print. [Google Scholar] [CrossRef]
- Otto, T. Computer-aided direct all-ceramic crowns: Preliminary 1-year results of a prospective clinical study. Int. J. Periodontics Restor. Dent. 2004, 24, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Zarone, F.; Sorrentino, R.; Apicella, D.; Valentino, B.; Ferrari, M.; Aversa, R.; Apicella, A. Evaluation of the biomechanical behavior of maxillary central incisors restored by means of endocrowns compared to a natural tooth: A 3D static linear finite elements analysis. Dent. Mater. 2006, 22, 1035–1044. [Google Scholar] [CrossRef]
- Tay, F.R.; Pashley, D.H. Monoblocks in root canals: A hypothetical or a tangible goal. J. Endod. 2007, 33, 391–398. [Google Scholar] [CrossRef]
- Lempel, E.; Gyulai, S.; Lovász, B.V.; Jeges, S.; Szalma, J. Clinical evaluation of lithium disilicate versus indirect resin composite partial posterior restorations—A 7.8-year retrospective study. Dent. Mater. 2023, 39, 1095–1104. [Google Scholar] [CrossRef]
- Ciobanu, P.; Manziuc, M.M.; Buduru, S.D.; Dudea, D. Endocrowns—A literature review. Med. Pharm. Rep. 2023, 96, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Sahebi, M.; Ghodsi, S.; Berahman, P.; Amini, A.; Zeighami, S. Comparison of retention and fracture load of endocrowns made from zirconia and zirconium lithium silicate after aging: An in vitro study. BMC Oral Health 2022, 22, 41. [Google Scholar] [CrossRef]
- Schwartz, R.S.; Robbins, J.W. Post placement and restoration of endodontically treated teeth: A literature review. J. Endod. 2004, 30, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Magne, P.; Goldberg, J.; Edelhoff, D.; Güth, J.F. Composite Resin Core Buildups With and Without Post for the Restoration of Endodontically Treated Molars Without Ferrule. Oper. Dent. 2016, 41, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Magne, P.; Lazari, P.C.; Carvalho, M.A.; Johnson, T.; Del Bel Cury, A.A. Ferrule-Effect Dominates Over Use of a Fiber Post When Restoring Endodontically Treated Incisors: An In Vitro Study. Oper. Dent. 2017, 42, 396–406. [Google Scholar] [CrossRef]
- Zicari, F.; Van Meerbeek, B.; Scotti, R.; Naert, I. Effect of ferrule and post placement on fracture resistance of endodontically treated teeth after fatigue loading. J. Dent. 2013, 41, 207–215. [Google Scholar] [CrossRef]
- Bitter, K.; Noetzel, J.; Stamm, O.; Vaudt, J.; Meyer-Lueckel, H.; Neumann, K.; Kielbassa, A.M. Randomized clinical trial comparing the effects of post placement on failure rate of postendodontic restorations: Preliminary results of a mean period of 32 months. J. Endod. 2009, 35, 1477–1482. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Peng, M.; Wu, G.; Yao, C.; Huang, C.; Liang, S. Does an incomplete ferrule affect the fracture of endodontically treated teeth? A systematic review of in vitro studies. J. Dent. 2024, 146, 105068. [Google Scholar] [CrossRef]
- Assiri, A.Y.K.; Saafi, J.; Al-Moaleem, M.M.; Mehta, V. Ferrule effect and its importance in restorative dentistry: A literature Review. J. Popul. Ther. Clin. Pharmacol. 2022, 29, e69–e82. [Google Scholar]
- Sorensen, J.A.; Engelman, M.J. Ferrule design and fracture resistance of endodontically treated teeth. J. Prosthet. Dent. 1990, 63, 529–536. [Google Scholar] [CrossRef]
- Al-Wahadni, A.; Gutteridge, D.L. An in vitro investigation into the effects of retained coronal dentine on the strength of a tooth restored with a cemented post and partial core restoration. Int. Endod. J. 2002, 35, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Dikbas, I.; Tanalp, J.; Ozel, E.; Koksal, T.; Ersoy, M. Evaluation of the effect of different ferrule designs on the fracture resistance of endodontically treated maxillary central incisors incorporating fiber posts, composite cores and crown restorations. J. Contemp. Dent. Pract. 2007, 8, 62–69. [Google Scholar]
- Mamoun, J.S. On the ferrule effect and the biomechanical stability of teeth restored with cores, posts, and crowns. Eur. J. Dent. 2014, 8, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Dotto, L.; Girotto, L.P.S.; Correa Silva Sousa, Y.T.; Pereira, G.K.R.; Bacchi, A.; Sarkis-Onofre, R. Factors influencing the clinical performance of the restoration of endodontically treated teeth: An assessment of systematic reviews of clinical studies. J. Prosthet. Dent. 2022, 131, 1043–1050. [Google Scholar] [CrossRef]
- Al-Sanabani, F.A.; Al-Makramani, B.M.; Alaajam, W.H.; Al-Ak’hali, M.S.; Alhajj, M.N.; Nassani, M.Z.; Assad, M.; Al-Maweri, S.A. Effect of partial ferrule on fracture resistance of endodontically treated teeth: A meta-analysis of in-vitro studies. J. Prosthodont. Res. 2023, 67, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.B.A.; Andrade GS de Abu Hasna, A.; Souza JR de Tribst, J.P.M.; Borges, A.L.S. Can the Remaining Coronal Tooth Structure Influence the Mechanical Behavior of Nonpost Full Crowns? Eur. J. Dent. 2024, 18, 652–664. [Google Scholar] [CrossRef]
- Schmitter, M.; Hamadi, K.; Rammelsberg, P. Survival of two post systems—Five-year results of a randomized clinical trial. Quintessence Int. 2011, 42, 843–850. [Google Scholar] [PubMed]
- Torbjörner, A.; Fransson, B. A literature review on the prosthetic treatment of structurally compromised teeth. Int. J. Prosthodont. 2004, 17, 369–376. [Google Scholar]
- Bergamo, E.T.P.; Lopes, A.C.O.; Campos, T.M.B.; Amorim, P.H.; Costa, F.; Benalcázar Jalkh, E.B.; Carvalho, L.F.; Zahoui, A.; Piza, M.M.; Gutierres, E.; et al. Probability of survival and failure mode of endodontically treated incisors without ferrule restored with CAD/CAM fiber-reinforced composite (FRC) post-cores. J. Mech. Behav. Biomed. Mater. 2022, 136, 105519. [Google Scholar] [CrossRef]
- Reddy, S.N.; Harika, K.; Manjula, S.; Chandra, P.; Vengi, L.; Koka, K.M. Evaluation of occlusal fracture resistance of three different core materials using the Nayyar core technique. J. Int. Soc. Prev. Community Dent. 2016, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- van Dijken, J.W.V.; Pallesen, U. Posterior bulk-filled resin composite restorations: A 5-year randomized controlled clinical study. J. Dent. 2016, 51, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Akiya, S.; Sato, K.; Kibe, K.; Tichy, A.; Hiraishi, N.; Prasansuttiporn, T.; Hosaka, K.; Foxton, R.M.; Shimada, Y.; Nakajima, M. Polymerization shrinkage of light-cured conventional and bulk-fill composites-The effect of cavity depth and post-curing. Dent. Mater. J. 2023, 42, 426–432. [Google Scholar] [CrossRef]
- Martins, L.C.; Oliveira, L.R.S.; Braga, S.S.L.; Soares, C.J.; Versluis, A.; Borges, G.A.; Verissimo, C. Effect of Composite Resin and Restorative Technique on Polymerization Shrinkage Stress, Cuspal Strain and Fracture Load of Weakened Premolars. J. Adhes. Dent. 2020, 22, 503–514. [Google Scholar] [PubMed]
- Cocco, F.; Packaeser, M.G.; Machry, R.V.; Tribst, J.P.M.; Kleverlaan, C.J.; Pereira, G.K.R.; Valandro, L.F. Conventional-, bulk-fill- or flowable-resin composites as prosthetic core build-up: Influence on the load-bearing capacity under fatigue of bonded leucite-reinforced glass-ceramic. J. Mech. Behav. Biomed. Mater. 2024, 151, 106365. [Google Scholar] [CrossRef]
- Oliveira, C.R.d.M.; Reis, É.G.J.; Tanomaru-Filho, M.; dos Santos Nunes Reis, S.N. Fracture strength of teeth with coronal destruction after core build-up restoration with bulk fill materials. J. Esthet. Restor. Dent. 2022, 34, 541–549. [Google Scholar] [CrossRef]
- Zarow, M.; Dominiak, M.; Szczeklik, K.; Hardan, L.; Bourgi, R.; Cuevas-Suárez, C.E.; Zamarripa-Calderón, J.E.; Kharouf, N.; Filtchev, D. Effect of Composite Core Materials on Fracture Resistance of Endodontically Treated Teeth: A Systematic Review and Meta-Analysis of In Vitro Studies. Polymers 2021, 13, 2251. [Google Scholar] [CrossRef]
- Zenthöfer, A.; Bermejo, J.L.; Bömicke, W.; Frese, C.; Gülmez, R.; Rammelsberg, P.; Ohlmann, B. Early failures when using three different adhesively retained core build-up materials—A randomized controlled trial. Clin. Oral Investig. 2022, 26, 1927–1936. [Google Scholar] [CrossRef]
- Selvaraj, H.; Krithikadatta, J.; Shrivastava, D.; Onazi, M.A.A.; Algarni, H.A.; Munaga, S.; Hamza, M.O.; Al-Fridy, T.S.; Teja, K.V.; Janani, K.; et al. Systematic review fracture resistance of endodontically treated posterior teeth restored with fiber reinforced composites- a systematic review. BMC Oral Health 2023, 23, 566. [Google Scholar] [CrossRef] [PubMed]
- Eskitaşcioğlu, G.; Belli, S.; Kalkan, M. Evaluation of two post core systems using two different methods (fracture strength test and a finite elemental stress analysis). J. Endod. 2002, 28, 629–633. [Google Scholar] [CrossRef]
- Fousekis, E.; Lolis, A.; Marinakis, E.; Oikonomou, E.; Foros, P.; Koletsi, D.; Eliades, G. Short fiber-reinforced composite resins as post-and-core materials for endodontically treated teeth: A systematic review and meta-analysis of in vitro studies. J. Prosthet. Dent. 2023. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Garoushi, S.; Gargoum, A.; Vallittu, P.K.; Lassila, L. Short fiber-reinforced composite restorations: A review of the current literature. J. Investig. Clin. Dent. 2018, 9, e12330. [Google Scholar] [CrossRef]
- Attik, N.; Colon, P.; Gauthier, R.; Chevalier, C.; Grosgogeat, B.; Abouelleil, H. Comparison of physical and biological properties of a flowable fiber reinforced and bulk filling composites. Dent. Mater. 2022, 38, e19–e30. [Google Scholar] [CrossRef] [PubMed]
- Wierichs, R.J.; Kramer, E.J.; Wolf, T.G.; Naumann, M.; Meyer-Lueckel, H. Longevity of composite build-ups without posts-10-year results of a practice-based study. Clin. Oral Investig. 2019, 23, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Zenthöfer, A.; Rues, S.; Rammelsberg, P.; Ohlmann, B.; Bömicke, W. Influence of geometric dimensions on early failures of adhesively retained composite resin core build-ups. J. Esthet. Restor. Dent. 2023, 35, 435–441. [Google Scholar] [CrossRef]
- Cloet, E.; Debels, E.; Naert, I. Controlled Clinical Trial on the Outcome of Glass Fiber Composite Cores Versus Wrought Posts and Cast Cores for the Restoration of Endodontically Treated Teeth: A 5-Year Follow-up Study. Int. J. Prosthodont. 2017, 30, 71–79. [Google Scholar] [CrossRef]
- Ellner, S.; Bergendal, T.; Bergman, B. Four post-and-core combinations as abutments for fixed single crowns: A prospective up to 10-year study. Int. J. Prosthodont. 2003, 16, 249–254. [Google Scholar]
- Ferrari, M.; Vichi, A.; García-Godoy, F. Clinical evaluation of fiber-reinforced epoxy resin posts and cast post and cores. Am. J. Dent. 2000, 13, 15B–18B. [Google Scholar] [PubMed]
- Cheung, W. A review of the management of endodontically treated teeth: Post, core and the final restoration. J. Am. Dent. Assoc. 2005, 136, 611–619. [Google Scholar] [CrossRef]
- Bateman, G.; Ricketts, D.N.J.; Saunders, W.P. Fibre-based post systems: A review. Br. Dent. J. 2003, 195, 43–48; discussion 37. [Google Scholar] [CrossRef]
- Fathi, A.; Ebadian, B.; Dezaki, S.N.; Mardasi, N.; Mosharraf, R.; Isler, S.; Tabatabaei, S.S. An Umbrella Review of Systematic Reviews and Meta-Analyses Evaluating the Success Rate of Prosthetic Restorations on Endodontically Treated Teeth. Int. J. Dent. 2022, 2022, 4748291. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Q. Comparison of Fracture Resistance between Cast Posts and Fiber Posts: A Meta-analysis of Literature. J. Endod. 2013, 39, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Opdam, N.J.M.; van de Sande, F.H.; Bronkhorst, E.; Cenci, M.S.; Bottenberg, P.; Pallesen, U.; Gaengler, P.; Lindberg, A.; Huysmans, M.C.D.N.J.M.; van Dijken, J.W. Longevity of posterior composite restorations: A systematic review and meta-analysis. J. Dent. Res. 2014, 93, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Da Rosa Rodolpho, P.A.; Donassollo, T.A.; Cenci, M.S.; Loguércio, A.D.; Moraes, R.R.; Bronkhorst, E.M.; Opdam, N.J.M.; Demarco, F.F. 22-Year clinical evaluation of the performance of two posterior composites with different filler characteristics. Dent. Mater. 2011, 27, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Landys Borén, D.; Jonasson, P.; Kvist, T. Long-term survival of endodontically treated teeth at a public dental specialist clinic. J. Endod. 2015, 41, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, F.E.D.; Martins-Filho, P.R.S.; Faria-E-Silva, A.L. Do metal post-retained restorations result in more root fractures than fiber post-retained restorations? A systematic review and meta-analysis. J. Endod. 2015, 41, 309–316. [Google Scholar] [CrossRef]
- Martins, M.D.; Junqueira, R.B.; de Carvalho, R.F.; Lacerda, M.F.L.S.; Faé, D.S.; Lemos, C.A.A. Is a fiber post better than a metal post for the restoration of endodontically treated teeth? A systematic review and meta-analysis. J. Dent. 2021, 112, 103750. [Google Scholar] [CrossRef] [PubMed]
- Andrade, S.A. Cast metal posts versus glass fibre posts: Which treatment of choice based on cost-minimisation analysis? Evid. Based Dent. 2021, 22, 128–129. [Google Scholar] [CrossRef]
- Gloria, A.; Maietta, S.; Richetta, M.; Ausiello, P.; Martorelli, M. Metal Posts and the Effect of Material–Shape Combination on the Mechanical Behavior of Endodontically Treated Anterior Teeth. Metals 2019, 9, 125. [Google Scholar] [CrossRef]
- Kharouf, N.; Sauro, S.; Jmal, H.; Eid, A.; Karrout, M.; Bahlouli, N.; Haikel, Y.; Mancino, D. Does Multi-Fiber-Reinforced Composite-Post Influence the Filling Ability and the Bond Strength in Root Canal? Bioengineering 2021, 8, 195. [Google Scholar] [CrossRef]
- Santos, T.d.S.A.; Abu Hasna, A.; Abreu, R.T.; Tribst, J.P.M.; de Andrade, G.S.; Borges, A.L.S.; Torres, C.R.G.; Carvalho, C.A.T. Fracture resistance and stress distribution of weakened teeth reinforced with a bundled glass fiber–reinforced resin post. Clin. Oral Investig. 2022, 26, 1725–1735. [Google Scholar] [CrossRef] [PubMed]
- Haralur, S.B.; Al Ahmari, M.A.; AlQarni, S.A.; Althobati, M.K. The Effect of Intraradicular Multiple Fiber and Cast Posts on the Fracture Resistance of Endodontically Treated Teeth with Wide Root Canals. BioMed Res. Int. 2018, 2018, 1671498. [Google Scholar] [CrossRef] [PubMed]
- Richert, R.; Robinson, P.; Viguie, G.; Farges, J.C.; Ducret, M. Multi-Fiber-Reinforced Composites for the Coronoradicular Reconstruction of Premolar Teeth: A Finite Element Analysis. BioMed Res. Int. 2018, 2018, e4302607. [Google Scholar] [CrossRef] [PubMed]
- Alkhalidi, E. Fracture Resistance of New Fiber Post System (Rebilda GT). Indian J. Forensic Med. Toxicol. 2020, 14, 2632–2638. [Google Scholar] [CrossRef]
- Yanık, D.; Turker, N. Stress distribution of a novel bundle fiber post with curved roots and oval canals. J. Esthet. Restor. Dent. 2022, 34, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Sturm, R.; Prates Soares, A.; Sterzenbach, G.; Bitter, K. Interface analysis after fatigue loading of adhesively luted bundled fiber posts to human root canal dentin. J. Mech. Behav. Biomed. Mater. 2021, 119, 104385. [Google Scholar] [CrossRef]
- Bitter, K.; Falcon, L.; Soares, A.P.; Sturm, R.; von Stein-Lausnitze, M.; Sterzenbach, G. Effect of Application Mode on Bond Strength of Adhesively Luted Glass-fiber Bundles Inside the Root Canal. J. Adhes. Dent. 2019, 21, 517–524. [Google Scholar]
- Kul, E.; Yanıkoğlu, N.; Yeşildal Yeter, K.; Bayındır, F.; Sakarya, R.E. A comparison of the fracture resistance of premolars without a ferrule with different post systems. J. Prosthet. Dent. 2020, 123, e1–e523. [Google Scholar] [CrossRef]
- Ranjkesh, B.; Haddadi, Y.; Krogsgaard, C.A.; Schurmann, A.; Bahrami, G. Fracture resistance of endodontically treated maxillary incisors restored with single or bundled glass fiber-reinforced composite resin posts. J. Clin. Exp. Dent. 2022, 14, e329–e333. [Google Scholar] [CrossRef]
- Setzer, F.C.; Kratchman, S.I. Present status and future directions: Surgical endodontics. Int. Endod. J. 2022, 55, 1020–1058. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Saidi, A.R.; Amini, P.; Hashemipour, M.A. Influence of inhomogeneous dental posts on stress distribution in tooth root and interfaces: Three-dimensional finite element analysis. J. Prosthet. Dent. 2017, 118, 742–751. [Google Scholar] [CrossRef]
- Gloria, A.; Maietta, S.; Martorelli, M.; Lanzotti, A.; Watts, D.C.; Ausiello, P. FE analysis of conceptual hybrid composite endodontic post designs in anterior teeth. Dent. Mater. 2018, 34, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, R.; Di Mauro, M.; Ferrari, M.; Leone, R.; Zarone, F. Complications of endodontically treated teeth restored with fiber posts and single crowns or fixed dental prostheses-a systematic review: Clinical Oral Investigations. Clin. Oral Investig. 2016, 20, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Onay, E.O.; Korkmaz, Y.; Kiremitci, A. Effect of adhesive system type and root region on the push-out bond strength of glass-fibre posts to radicular dentine. Int. Endod. J. 2010, 43, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Marques de Melo, R.; Galhano, G.; Barbosa, S.H.; Valandro, L.F.; Pavanelli, C.A.; Bottino, M.A. Effect of adhesive system type and tooth region on the bond strength to dentin. J. Adhes. Dent. 2008, 10, 127–133. [Google Scholar]
- Ohlmann, B.; Fickenscher, F.; Dreyhaupt, J.; Rammelsberg, P.; Gabbert, O.; Schmitter, M. The effect of two luting agents, pretreatment of the post, and pretreatment of the canal dentin on the retention of fiber-reinforced composite posts. J. Dent. 2008, 36, 87–92. [Google Scholar] [CrossRef]
- Wang, V.J.J.; Chen, Y.M.; Yip, K.H.K.; Smales, R.J.; Meng, Q.F.; Chen, L. Effect of two fiber post types and two luting cement systems on regional post retention using the push-out test. Dent. Mater. 2008, 24, 372–377. [Google Scholar] [CrossRef]
- Mobilio, N.; Borelli, B.; Sorrentino, R.; Catapano, S. Effect of fiber post length and bone level on the fracture resistance of endodontically treated teeth. Dent. Mater. J. 2013, 32, 816–821. [Google Scholar] [CrossRef]
- Matsumoto, M.; Miura, J.; Takeshige, F.; Yatani, H. Mechanical and morphological evaluation of the bond-dentin interface in direct resin core build-up method. Dent. Mater. 2013, 29, 287–293. [Google Scholar] [CrossRef] [PubMed]
- de Morais, D.C.; Butler, S.; Santos, M.J.M.C. Current Insights on Fiber Posts: A Narrative Review of Laboratory and Clinical Studies. Dent. J. 2023, 11, 236. [Google Scholar] [CrossRef]
- Maravić, T.; Mazzitelli, C.; Mancuso, E.; Del Bianco, F.; Josić, U.; Cadenaro, M.; Breschi, L.; Mazzoni, A. Resin composite cements: Current status and a novel classification proposal. J. Esthet. Restor. Dent. 2023, 35, 1085–1097. [Google Scholar] [CrossRef] [PubMed]
- Farina, A.P.; Cecchin, D.; da Fonseca Roberti Garcia, L.; Naves, L.Z.; de Carvalho Panzeri Pires-de-Souza, F. Bond strength of fibre glass and carbon fibre posts to the root canal walls using different resin cements. Aust. Endod. J. 2011, 37, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Sterzenbach, G.; Karajouli, G.; Naumann, M.; Peroz, I.; Bitter, K. Fiber post placement with core build-up materials or resin cements-an evaluation of different adhesive approaches. Acta Odontol. Scand. 2012, 70, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Angnanon, W.; Thammajaruk, P.; Guazzato, M. Effective luting agents for glass-fiber posts: A network meta-analysis. Dent. Mater. 2023, 39, 1180–1189. [Google Scholar] [CrossRef] [PubMed]
- Foxton, R.M.; Nakajima, M.; Tagami, J.; Miura, H. Bonding of photo and dual-cure adhesives to root canal dentin. Oper. Dent. 2003, 28, 543–551. [Google Scholar] [PubMed]
- Abdel-Gawad, S.; Dursun, E.; Ceinos, R.; Le Goff, S.; Fasham, T.; Attal, J.P.; Francois, P. Touch-cure activation by marketed universal resin luting cements of their associated primer to dentin. J. Oral Sci. 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Jurema, A.L.B.; Correia, A.M.D.O.; Spinola, M.D.S.; Bresciani, E.; Caneppele, T.M.F. Influence of different intraradicular chemical pretreatments on the bond strength of adhesive interface between dentine and fiber post cements: A systematic review and network meta-analysis. Eur. J. Oral Sci. 2022, 130, e12881. [Google Scholar] [CrossRef]
- Knight, B.; Love, R.M.; George, R. Evaluation of the influence of time and concentration of sodium hypochlorite on the bond strength of glass fibre post. Aust. Endod. J. 2018, 44, 267–272. [Google Scholar] [CrossRef]
- Dilts, W.E.; Miller, R.C.; Miranda, F.J.; Duncanson, M.G. Effect of zinc oxide-eugenol on shear bond strengths of selected core/cement combinations. J. Prosthet. Dent. 1986, 55, 206–208. [Google Scholar] [CrossRef]
- Klosa, K.; Shahid, W.; Aleknonytė-Resch, M.; Kern, M. Cleaning and Conditioning of Contaminated Core Build-Up Material before Adhesive Bonding. Materials 2020, 13, 2880. [Google Scholar] [CrossRef]
- Plotino, G.; Abella Sans, F.; Duggal, M.S.; Grande, N.M.; Krastl, G.; Nagendrababu, V.; Gambarini, G. Present status and future directions: Surgical extrusion, intentional replantation and tooth autotransplantation. Int. Endod. J. 2022, 55 (Suppl. S3), 827–842. [Google Scholar] [CrossRef]
- Reichardt, E.; Krug, R.; Bornstein, M.M.; Tomasch, J.; Verna, C.; Krastl, G. Orthodontic Forced Eruption of Permanent Anterior Teeth with Subgingival Fractures: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 12580. [Google Scholar] [CrossRef] [PubMed]
- Pilalas, I.; Tsalikis, L.; Tatakis, D.N. Pre-restorative crown lengthening surgery outcomes: A systematic review. J. Clin. Periodontol. 2016, 43, 1094–1108. [Google Scholar] [CrossRef] [PubMed]
- Samartzi, T.K.; Papalexopoulos, D.; Ntovas, P.; Rahiotis, C.; Blatz, M.B. Deep Margin Elevation: A Literature Review. Dent. J. 2022, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Dietschi, D.; Spreafico, R. Current clinical concepts for adhesive cementation of tooth-colored posterior restorations. Pract. Periodontics Aesthet. Dent. 1998, 10, 47–54; quiz 56. [Google Scholar] [PubMed]
- Juloski, J.; Köken, S.; Ferrari, M. Cervical margin relocation in indirect adhesive restorations: A literature review. J. Prosthodont. Res. 2018, 62, 273–280. [Google Scholar] [CrossRef]
- Falahchai, M.; Musapoor, N.; Mokhtari, S.; Babaee Hemmati, Y.; Neshandar Asli, H. Fracture resistance and failure mode of endodontically treated premolars reconstructed by different preparation approaches: Cervical margin relocation and crown lengthening with complete and partial ferrule with three different post and core systems. J. Prosthodont. 2023. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Bresser, R.A.; Gerdolle, D.; van den Heijkant, I.A.; Sluiter-Pouwels, L.M.A.; Cune, M.S.; Gresnigt, M.M.M. Up to 12 years clinical evaluation of 197 partial indirect restorations with deep margin elevation in the posterior region. J. Dent. 2019, 91, 103227. [Google Scholar] [CrossRef]
- Vertolli, T.J.; Martinsen, B.D.; Hanson, C.M.; Howard, R.S.; Kooistra, S.; Ye, L. Effect of Deep Margin Elevation on CAD/CAM-Fabricated Ceramic Inlays. Oper. Dent. 2020, 45, 608–617. [Google Scholar] [CrossRef]
- Bresser, R.A.; van de Geer, L.; Gerdolle, D.; Schepke, U.; Cune, M.S.; Gresnigt, M.M.M. Influence of Deep Margin Elevation and preparation design on the fracture strength of indirectly restored molars. J. Mech. Behav. Biomed. Mater. 2020, 110, 103950. [Google Scholar] [CrossRef]
- Eggmann, F.; Ayub, J.M.; Conejo, J.; Blatz, M.B. Deep margin elevation-Present status and future directions. J. Esthet. Restor. Dent. 2023, 35, 26–47. [Google Scholar] [CrossRef] [PubMed]
- Sarfati, A.; Tirlet, G. Deep margin elevation versus crown lengthening: Biologic width revisited. Int. J. Esthet. Dent. 2018, 13, 334–356. [Google Scholar] [PubMed]
- Ferrari, M.; Koken, S.; Grandini, S.; Ferrari Cagidiaco, E.; Joda, T.; Discepoli, N. Influence of cervical margin relocation (CMR) on periodontal health: 12-month results of a controlled trial. J. Dent. 2018, 69, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Farouk, A.T.; Hassanein, O.E.S.; Fahmy, O.I.; Elkady, A.M.; ElNahass, H. Biological evaluation of indirect restorations in endodontically treated posterior teeth with deeply located proximal margins following deep margin elevation versus surgical crown lengthening: A randomized controlled trial. Clin. Oral. Investig. 2023, 28, 24. [Google Scholar] [CrossRef]
- Ilgenstein, I.; Zitzmann, N.U.; Bühler, J.; Wegehaupt, F.J.; Attin, T.; Weiger, R.; Krastl, G. Influence of proximal box elevation on the marginal quality and fracture behavior of root-filled molars restored with CAD/CAM ceramic or composite onlays. Clin. Oral Investig. 2015, 19, 1021–1028. [Google Scholar] [CrossRef]
- Grubbs, T.D.; Vargas, M.; Kolker, J.; Teixeira, E.C. Efficacy of Direct Restorative Materials in Proximal Box Elevation on the Margin Quality and Fracture Resistance of Molars Restored With CAD/CAM Onlays. Oper. Dent. 2020, 45, 52–61. [Google Scholar] [CrossRef]
- Baldi, A.; Scattina, A.; Ferrero, G.; Comba, A.; Alovisi, M.; Pasqualini, D.; Peroni, L.; Muggeo, M.; Germanetti, F.; Scotti, N. Highly-filled flowable composite in deep margin elevation: FEA study obtained from a microCT real model. Dent. Mater. 2022, 38, e94–e107. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caussin, E.; Izart, M.; Ceinos, R.; Attal, J.-P.; Beres, F.; François, P. Advanced Material Strategy for Restoring Damaged Endodontically Treated Teeth: A Comprehensive Review. Materials 2024, 17, 3736. https://doi.org/10.3390/ma17153736
Caussin E, Izart M, Ceinos R, Attal J-P, Beres F, François P. Advanced Material Strategy for Restoring Damaged Endodontically Treated Teeth: A Comprehensive Review. Materials. 2024; 17(15):3736. https://doi.org/10.3390/ma17153736
Chicago/Turabian StyleCaussin, Elisa, Mathieu Izart, Romain Ceinos, Jean-Pierre Attal, Fleur Beres, and Philippe François. 2024. "Advanced Material Strategy for Restoring Damaged Endodontically Treated Teeth: A Comprehensive Review" Materials 17, no. 15: 3736. https://doi.org/10.3390/ma17153736
APA StyleCaussin, E., Izart, M., Ceinos, R., Attal, J. -P., Beres, F., & François, P. (2024). Advanced Material Strategy for Restoring Damaged Endodontically Treated Teeth: A Comprehensive Review. Materials, 17(15), 3736. https://doi.org/10.3390/ma17153736