The Motility of β-Cyclodextrins Threaded on the Polyrotaxane Based Triblock Polymer and Its Influences on Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Synthesis of Distal 2-Bromopropionyl End-Capped Pluronic F68(BrP-F68-PBr)
2.4. Synthesis of PR-Based Triblock Copolymer (PR Copolymer, PBMA-b-PR-b-PBMA)
2.5. Preparation of F68 Copolymer (PBMA-b-F68-b-PBMA, Control Sample)
2.6. Preparation of PR and F68 Copolymers Films
2.7. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Characterization of PR Copolymer
3.2. The Characterization of PR Copolymer
3.3. The Motility of Threaded CDs in PR Copolymers
3.4. The Influence of CD’s Motility on Mechanical Properties of PR Copolymers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, R.; Bao, T.; Kong, D.; Zhang, Q.; Jia, X. Cyclodextrins-Based Polyrotaxanes: From Functional Polymers to Applications in Electronics and Energy Storage Materials. ChemPlusChem 2024, 89, e202300706. [Google Scholar] [CrossRef]
- Higashi, T.; Taharabaru, T.; Motoyama, K. Synthesis of cyclodextrin-based polyrotaxanes and polycatenanes for supramolecular pharmaceutical sciences. Carbohydr. Polym. 2024, 337, 122143. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Sheng, X.; Li, G.; Huang, F. Mechanically interlocked polymers based on rotaxanes. Chem. Soc. Rev. 2022, 51, 7046–7065. [Google Scholar] [CrossRef] [PubMed]
- Harada, A. Cyclodextrin-based molecular machines. Acc. Chem. Res. 2001, 34, 456–464. [Google Scholar] [CrossRef]
- Zhang, P.; Qian, X.; Zhang, Z.; Li, C.; Xie, C.; Wu, W.; Jiang, X. Supramolecular amphiphilic polymer-based micelles with seven-armed polyoxazoline coating for drug delivery. ACS Appl. Mater. Interfaces 2017, 9, 5768–5777. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Zhang, X. Polyrotaxane-Based Functional Materials Enabled by Molecular Mobility and Conformational Transition. Chin. J. Chem. 2023, 41, 2715–2729. [Google Scholar] [CrossRef]
- Masuda, H.; Arisaka, Y.; Hakariya, M.; Iwata, T.; Yoda, T.; Yui, N. Molecular Mobility of Polyrotaxane Surfaces Alleviates Oxidative Stress-Induced Senescence in Mesenchymal Stem Cells. Macromol. Biosci. 2023, 23, 2300053. [Google Scholar] [CrossRef] [PubMed]
- Arisaka, Y.; Yui, N. Polyrotaxane-based biointerfaces with dynamic biomaterial functions. J. Mater. Chem. B 2019, 7, 2123–2129. [Google Scholar] [CrossRef] [PubMed]
- Mayumi, K.; Liu, C.; Yasuda, Y.; Ito, K. Softness, elasticity, and toughness of polymer networks with slide-ring cross-links. Gels 2021, 7, 91. [Google Scholar] [CrossRef]
- Liu, C.; Yokoyama, H.; Mayumi, K.; Ito, K. Crack velocity dependent toughness of polyrotaxane networks: The sliding dynamics of rings on polymer under stretching. Mech. Mater. 2021, 156, 103784. [Google Scholar] [CrossRef]
- Liu, C.; Morimoto, N.; Jiang, L.; Kawahara, S.; Noritomi, T.; Yokoyama, H.; Mayumi, K.; Ito, K. Tough hydrogels with rapid self-reinforcement. Science 2021, 372, 1078–1081. [Google Scholar] [CrossRef]
- Liu, S.; Hayashi, T.; Hara, M.; Seki, T.; Ito, K.; Takeoka, Y. Optimal conditions for the use of polyrotaxane as a cross-linker in preparing elastomers with high toughnesses. Polym. J. 2024, 56, 589–598. [Google Scholar] [CrossRef]
- Huang, J.; Ren, L.; Chen, Y. pH-/temperature-sensitive supramolecular micelles based on cyclodextrin polyrotaxane. Polym. Int. 2008, 57, 714–721. [Google Scholar] [CrossRef]
- Han, Z.; Zhou, Q.; Li, Y. Self-assembled (pseudo) rotaxane and polyrotaxane through host–guest chemistry based on the cucurbituril family. J. Incl. Phenom. Macrocycl. Chem. 2018, 92, 81–101. [Google Scholar] [CrossRef]
- Seo, J.H.; Yui, N. The effect of molecular mobility of supramolecular polymer surfaces on fibroblast adhesion. Biomaterials 2013, 34, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Arisaka, Y.; Masuda, H.; Yoda, T.; Yui, N. Delayed senescence of human vascular endothelial cells by molecular mobility of supramolecular biointerfaces. Macromol. Biosci. 2021, 21, 2100216. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Zhang, S.; Wang, H.; Wang, M.; Feng, Z.; Su, W.; Wang, J.; Liu, Z.; Ye, L. Dynamic RGD ligands derived from highly mobile cyclodextrins regulate spreading and proliferation of endothelial cells to promote vasculogenesis. Int. J. Biol. Macromol. 2024, 267, 131667. [Google Scholar] [CrossRef] [PubMed]
- Sekiya-Aoyama, R.; Arisaka, Y.; Yui, N. Mobility tuning of polyrotaxane surfaces to stimulate myocyte differentiation. Macromol. Biosci. 2020, 20, 1900424. [Google Scholar] [CrossRef]
- Liu, Z.; Ye, L.; Xi, J.; Wang, J.; Feng, Z.-G. Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Prog. Polym. Sci. 2021, 118, 101408. [Google Scholar] [CrossRef]
- Arunachalam, M.; Gibson, H.W. Recent developments in polypseudorotaxanes and polyrotaxanes. Prog. Polym. Sci. 2014, 39, 1043–1073. [Google Scholar] [CrossRef]
- Tu, C.; Zhang, Y.; Xiao, Y.; Xing, Y.; Jiao, Y.; Geng, X.; Zhang, A.; Ye, L.; Gu, Y.; Feng, Z. Hydrogel-complexed small-diameter vascular graft loaded with tissue-specific vascular extracellular matrix components used for tissue engineering. Biomater. Adv. 2022, 142, 213138. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Xu, Z.Q.; Tu, C.Z.; Peng, J.; Jin, X.; Ye, L.; Zhang, A.Y.; Gu, Y.Q.; Feng, Z.G. Hydrogel complex electrospun scaffolds and their multiple functions in in situ vascular tissue engineering. ACS Appl. Bio Mater. 2021, 4, 2373–2384. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Takagi, T.; Tu, C.; Hagiwara, A.; Geng, X.; Feng, Z. The performance of heparin modified poly (ε-caprolactone) small diameter tissue engineering vascular graft in canine—A long-term pilot experiment in vivo. J. Biomed. Mater. Res. Part A 2021, 109, 2493–2505. [Google Scholar] [CrossRef] [PubMed]
- Duan, N.; Geng, X.; Ye, L.; Zhang, A.; Feng, Z.; Guo, L.; Gu, Y. A vascular tissue engineering scaffold with core–shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation. Biomed. Mater. 2016, 11, 035007. [Google Scholar] [CrossRef] [PubMed]
- Inomata, A.; Ishibashi, H.; Nakajima, T.; Sakai, Y.; Kidowaki, M.; Shimomura, T.; Ito, K. Dielectric relaxation of liquid-crystalline polyrotaxane. Europhys. Lett. 2007, 79, 66004. [Google Scholar] [CrossRef]
- Inomata, A.; Kidowaki, M.; Sakai, Y.; Yokoyama, H.; Ito, K. Orientational motions in mesogenic polyrotaxane and local mode relaxations of polymer segments in solid state polyrotaxane. Soft Matter 2011, 7, 922–928. [Google Scholar] [CrossRef]
- Inomata, A.; Sakai, Y.; Zhao, C.; Ruslim, C.; Shinohara, Y.; Yokoyama, H.; Amemiya, Y.; Ito, K. Crystallinity and Cooperative Motions of Cyclic Molecules in Partially Threaded Solid-State Polyrotaxanes. Macromolecules 2010, 43, 4660–4666. [Google Scholar] [CrossRef]
- Jiang, R.R.; Kong, T.; Ye, L.; Zhang, A.Y.; Feng, Z.G. Preparation of beta-Cyclodextrin-based Polyrotaxane Block Copolymers and Their Solvent-responsibily. Acta Polym. Sin. 2015, 7, 800–807. [Google Scholar]
- Jiang, L.; Gao, Z.M.; Ye, L.; Zhang, A.Y.; Feng, Z.G. A Polyrotaxane-based pH-labile Drug Delivery System. Period. Polytech. Chem. Eng. 2014, 58, 55–60. [Google Scholar] [CrossRef]
- Tong, X.; Gao, P.; Zhang, X.; Ye, L.; Zhang, A.Y.; Feng, Z.G. End-capping double-chain stranded polypseudorotaxanes using lengthily tunable poly (2-hydroxyethyl methacrylate) blocks via atom transfer radical polymerization. Polym. Int. 2010, 59, 917–922. [Google Scholar] [CrossRef]
- Wang, P.J.; Wang, J.; Ye, L.; Zhang, A.Y.; Feng, Z.G. Synthesis and characterization of polyrotaxanes comprising α-cyclodextrins and poly (ε-caprolactone) end-capped with poly (N-isopropylacrylamide) s. Polymer 2012, 53, 2361–2368. [Google Scholar] [CrossRef]
- Lin, J.; Kong, T.; Ye, L.; Zhang, A.Y.; Feng, Z.G. Self-assemblies of γ-CDs with pentablock copolymers PMA-PPO-PEO-PPO-PMA and endcapping via atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine. Beilstein J. Org. Chem. 2015, 11, 2267–2277. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, J.; Gao, P.; Ye, L.; Zhang, A.; Feng, Z.G. Polyrotaxane-based triblock copolymers synthesized via ATRP of N-isopropylacrylamide initiated from the terminals of polypseudorotaxane of Br end-capped pluronic 17R4 and β-cyclodextrins. Sci. China Chem. 2012, 55, 1115–1124. [Google Scholar] [CrossRef]
- Tong, X.; Zhang, X.; Ye, L.; Zhang, A.Y.; Feng, Z.G. Synthesis and characterization of block copolymers comprising a polyrotaxane middle block flanked by two brush-like PCL blocks. Soft Matter 2009, 5, 1848–1855. [Google Scholar] [CrossRef]
- ISO 527-3:2018; Plastics—Determination of Tensile Properties: Part 3: Test Conditions for Films and Sheets. ISO: Geneva, Switzerland, 2018.
- Wang, J.; Gao, P.; Ye, L.; Zhang, A.Y.; Feng, Z.G. Dual thermo-responsive polyrotaxane-based triblock copolymers synthesized via ATRP of N-isopropylacrylamide initiated with self-assemblies of Br end-capped Pluronic F127 with β-cyclodextrins. Polym. Chem. 2011, 2, 931–940. [Google Scholar] [CrossRef]
- Jiang, L.; Gao, Z.M.; Ye, L.; Zhang, A.Y.; Feng, Z.G. A tumor-targeting nano doxorubicin delivery system built from amphiphilic polyrotaxane-based block copolymers. Polymer 2013, 54, 5188–5198. [Google Scholar] [CrossRef]
- Bergman, R.; Alvarez, F.; Alegrıa, A.; Colmenero, J. Dielectric relaxation in PMMA revisited. J. Non-Cryst. Solids 1998, 235, 580–583. [Google Scholar] [CrossRef]
- Yan, Z.; Ye, L.; Zhang, A.Y.; Feng, Z.G. The mobility of threaded α-cyclodextrins in PR copolymer and its influences on mechanical properties. Chin. J. Polym. Sci. 2017, 35, 752–763. [Google Scholar] [CrossRef]
Name | Molar Composition F68:β-CD:BMA | Molecular Weight and Polydispersity Index | Yield /% | Tensile Strength/MPa | Elongation at Break/% | Yield Strength/Mpa | |||
---|---|---|---|---|---|---|---|---|---|
Feed Ratio | Found Ratio a | Mn’ 103 a | Mn × 103 b | PDI | |||||
PR copolymer | 1:15:700 | 1:3.5:787 | 125 | 87 | 1.14 | 55.2 | 12.3 ± 1.7 | 73.1 ± 11 | 6.6 ± 0.9 |
F68 copolymer | 1:700 | 1:738 | 119 | 76 | 1.21 | 63.7 | 11.9 ± 1.3 | 114.7 ± 39 | 8.8 ± 0.8 |
F68 initiator | N/A | N/A | 43 | 40 | 1.29 | 50.2 | N/A | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Niu, Y.; Geng, X.; Feng, Z.; Ye, L. The Motility of β-Cyclodextrins Threaded on the Polyrotaxane Based Triblock Polymer and Its Influences on Mechanical Properties. Materials 2024, 17, 3757. https://doi.org/10.3390/ma17153757
Wang Y, Niu Y, Geng X, Feng Z, Ye L. The Motility of β-Cyclodextrins Threaded on the Polyrotaxane Based Triblock Polymer and Its Influences on Mechanical Properties. Materials. 2024; 17(15):3757. https://doi.org/10.3390/ma17153757
Chicago/Turabian StyleWang, Yufei, Yafang Niu, Xue Geng, Zengguo Feng, and Lin Ye. 2024. "The Motility of β-Cyclodextrins Threaded on the Polyrotaxane Based Triblock Polymer and Its Influences on Mechanical Properties" Materials 17, no. 15: 3757. https://doi.org/10.3390/ma17153757
APA StyleWang, Y., Niu, Y., Geng, X., Feng, Z., & Ye, L. (2024). The Motility of β-Cyclodextrins Threaded on the Polyrotaxane Based Triblock Polymer and Its Influences on Mechanical Properties. Materials, 17(15), 3757. https://doi.org/10.3390/ma17153757