Crystal Structural Characteristics and Electrical Properties of Novel Sol-Gel Synthesis of Ceramic Bi0.75Ba0.25(FeMn)0.5O3
Abstract
:1. Introduction
2. Experimental Details
2.1. Sample Preparation
2.2. Sample Characterization
3. Results and Discussion
3.1. Phase Identification and Crystal Structure
3.2. Morphological Analysis
3.3. Impedance Spectroscopy
3.3.1. Cole-Cole Plots
3.3.2. DC Conductivity
3.3.3. AC Conductivity
3.4. Dielectric Study
3.5. Thermodynamics Parameters
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, M.T.; Greenwood, K.B.; Taylor, G.A.; Poeppelmeier, K.R. B-cation arrangements in double perovskites. Prog. Solid State Chem. 1993, 22, 197–233. [Google Scholar] [CrossRef]
- Philipp, J.B.; Majewski, P.; Alff, L.; Erb, A.; Gross, R.; Graf, T.; Brandt, M.S.; Simon, J.; Walther, T.; Mader, W.; et al. Structural and doping effects in the half-metallic double perovskite A2CrWO6 (A= Sr, Ba, and Ca). Phys. Rev. B 2003, 68, 144431. [Google Scholar] [CrossRef]
- Ramesh, R.; Spaldin, N.A. Multiferroics: Progress and prospects in thin films. Nat. Mater. 2007, 6, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Fiebig, M.; Spaldin, N.A. Current trends of the magnetoelectric effect. Eur. Phys. J. B 2009, 71, 293–297. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Cheong, S.-W.; Ramesh, R. Multiferroics: Past, present, and future. Phys. Today 2010, 63, 38–43. [Google Scholar] [CrossRef]
- Salomon, M.B.; Jaime, M. The physics of manganites: Structure and transport. Rev. Mod. Phys. 2001, 73, 583. [Google Scholar] [CrossRef]
- Nagaev, E.L. Colossal-magnetoresistance materials: Manganites and conventional ferromagnetic semiconductors. Phys. Rep. 2001, 346, 387. [Google Scholar] [CrossRef]
- Jin, S.; Tiefel, T.H.; McCormack, M.; Ramesh, R.; Chen, L.H. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 1994, 264, 413. [Google Scholar] [CrossRef]
- Zener, C. Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure. Phys. Rev. 1951, 82, 403. [Google Scholar] [CrossRef]
- Chao, X.L.; Ma, D.F.; Gu, R.; Yang, Z.P. Effects of CuO addition on the electrical responses of the low-temperature sintered Pb (Zr0.52Ti0. 48)O3–Pb (Mg1/3Nb2/3)O3–Pb (Zn1/3Nb2/3) O3 ceramics. J. Alloys Compd. 2010, 491, 698–702. [Google Scholar] [CrossRef]
- Chao, X.L.; Yang, Z.P.; Chang, Y.F.; Dong, M.Y. Temperature dependence piezoelectric properties of low temperature sintered PZT–PFW–PMN ceramics with additive LiSbO3. J. Alloys Compd. 2009, 477, 243–249. [Google Scholar] [CrossRef]
- Hao, H.; Zhang, S.J.; Liu, H.X.; Shrout, T.R. Dielectric, piezoelectric, and electromechanical properties of morphotropic phase boundary compositions in the Pb (Mg1/3Ta2/3) O3–PbZrO3–PbTiO3 ternary system. J. Appl. Phys. 2009, 105, 024104. [Google Scholar] [CrossRef]
- Zhu, Z.G.; Li, B.S.; Li, G.R.; Zhang, W.Z.; Yin, Q.R. Microstructure and piezoelectric properties of PMS–PZT ceramics. Mater. Sci. Eng. B 2005, 117, 216–220. [Google Scholar] [CrossRef]
- Benamara, M.; Iben Nassar, K.; Rivero-Antúnez, P.; Essid, M.; Soreto Teixeira, S.; Zhao, S.; Serrà, A.; Esquivias, L. Study of Electrical and Dielectric Behaviors of Copper-Doped Zinc Oxide Ceramic Prepared by Spark Plasma Sintering for Electronic Device Applications. Nanomaterials 2024, 14, 402. [Google Scholar] [CrossRef]
- Triyono, D.; Kafa, C.A.; Laysandra, H. Effect of Sr-substitution on the structural and dielectric properties of LaFeO3 perovskite materials. J. Adv. Dielectr. 2018, 8, 1850036. [Google Scholar] [CrossRef]
- Jebli, M.; Dhahri, J.; Albedah, M.A.; Henda, M.B.; Belmabrouk, H.; Bouazizi, M.L.; Hamdi, A. An investigation of the temperature- and frequency- dependent conductivity behavior and electrical properties of Ba0.97La0.02Ti0.9Nb0.08O3 compound using impedance spectroscopy. J. Mol. Struct. 2022, 1254, 132238. [Google Scholar] [CrossRef]
- Bhatnagar, D.; Chatterjee, R. High temperature dielectric relaxation and impedance spectroscopy studies on BaBiO3. Adv. Mater. Lett. 2016, 7, 604–609. [Google Scholar] [CrossRef]
- Tayari, F.; Benamara, M.; Lal, M.; Essid, M.; Thakur, P.; Kumar, D.; Nassar, K.I. Exploring Enhanced Structural and Dielectric Properties in Ag-Doped Sr(NiNb)0.5O3 Perovskite Ceramic for Advanced Energy Storage. Ceramics 2024, 7, 958–974. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Ingram, M.D. Ionic conductivity in glass. Phys. Chem. Glas. 1987, 28, 215–234. [Google Scholar]
- Ramezanipour, F.; Cowie, B.; Derakhshan, S.; Greedan, J.E.; Cranswick, L.M. Crystal and magnetic structures of the brownmillerite compound Ca2Fe1.039 (8) Mn0.962 (8) O5. J. Solid State Chem. 2009, 182, 153. [Google Scholar] [CrossRef]
- Benamara, M.; Nassar, K.I.; Soltani, S.; Kallekh, A.; Dhahri, R.; Dahman, H.; El Mir, L. Light-enhanced electrical behavior of a Au/Al-doped ZnO/p-Si/Al heterostructure: Insights from impedance and current–voltage analysis. RSC Adv. 2023, 13, 28632–28641. [Google Scholar] [CrossRef]
- Nassar, K.I.; Tayari, F.; Benamara, M.; Teixeira, S.S.; Graça, M.P.F. Exploring bismuth-doped polycrystalline ceramic Ba0.75Bi0.25Ni0.7Mn0.3O3: Synthesis, structure, and electrical properties for advanced electronic applications. RSC Adv. 2023, 13, 24023–24030. [Google Scholar] [CrossRef]
- Olofsson, Y.; Groot, J.; Katrašnik, T.; Tavcar, G. Impedance spectroscopy characterisation of automotive NMC/graphite Li-ion cells aged with realistic PHEV load profile. In Proceedings of the 2014 IEEE International Electric Vehicle Conference (IEVC), Florence, Italy, 19 December 2014; pp. 1–6. [Google Scholar]
- Tayari, F.; Nassar, K.I.; Benamara, M.; Essid, M.; Teixeira, S.S.; Graça, M.P. Sol–gel synthesized (Bi0.5Ba0.5Ag)0.5 (NiMn)0.5O3 perovskite ceramic: An exploration of its structural characteristics, dielectric properties and electrical conductivity. Ceram. Int. 2024, 50, 11207–11215. [Google Scholar] [CrossRef]
- Mohamed, Z.; Brahem, R.; Dhahri, J.; Khirouni, K.; Hlil, E.K. Electrical properties of La0.67Sr0.16Ca0.17MnO3 perovskite. Phase Transit. 2016, 89, 958–969. [Google Scholar] [CrossRef]
- Gerhardt, R. Impedance and dielectric spectroscopy revisited: Distinguishing localized relaxation from long-range conductivity. J. Phys. Chem. Solids 1994, 55, 1491–1506. [Google Scholar] [CrossRef]
- Adrian, R.; Dariusz, L.; Marek, K.; Jaroslaw, M.; Patryk, W. Electrical Conduction Mechanism and Dielectric Properties of Spherical Shaped Fe3O4 Nanoparticles Synthesized by Co-Precipitation Method. Materials 2018, 11, 735. [Google Scholar] [CrossRef]
- Kumari, R.; Ahlawat, N.; Agarwal, A.; Sanghi, S.; Sindhu, M. Structural transformation and investigation of dielectric properties of Ca substituted (Na0.5Bi0.5) 0.95 − xBa0.05CaxTiO3 ceramics. J. Alloys Compd. 2017, 695, 3282–3289. [Google Scholar] [CrossRef]
- Iben Nassar, K.; Rammeh, N.; Teixeira, S.S.; Graça, M.P.F. Physical properties, complex impedance, and electrical conductivity of double perovskite LaBa0.5Ag0.5FeMnO6. J. Electron. Mater. 2022, 51, 370–377. [Google Scholar] [CrossRef]
- Almond, D.P.; West, A.R. Mobile ion concentrations in solid electrolytes from an analysis of ac conductivity. Solid State Ion. 1983, 10, 277–282. [Google Scholar] [CrossRef]
- Jilani, W.; Bouzidi, A.; Yahia, I.S.; Guermazi, H.; Zahran, H.Y.; Saker, G. Effect of organic dyes on structural properties, linear optics and impedance spectroscopy of methyl orange (CI acid orange 52) doped polyvinyl alcohol composite thin films. J. Mater. Sci. Mater. Electron. 2018, 29, 16446–16453. [Google Scholar]
- Tayari, F.; Iben Nassar, K.; Maalem, M.B.; Teixeira, S.S.; Graça, M.P.F. Structural, morphology, Raman spectroscopy, magnetic and electrical proprieties of BaNi0.5Mn0.25Fe0.25O3 ceramic for electronic applications. Indian J. Phys. 2023, 97, 3545–3555. [Google Scholar] [CrossRef]
- Mathe, V.L.; Patankar, K.K.; Lotke, S.D.; Joshi, P.B.; Patil, S.A. Structural, dielectric and transport properties of Pb(Mn0.5W0.5)O3. Bull. Mater. Sci. 2002, 25, 347–350. [Google Scholar] [CrossRef]
- Qu, J.-J.; Li, S.; Liu, F.; Liu, X.; Chen, Z.X.; Yuan, C.L.; Liu, X.Y.; Zhao, Y.Y.; Zhou, D.J. Effect of phase structures and substrate temperatures on NTC characteristics of Cu-modified Ba–Bi–O-based perovskite-type thermistor thin films. Mater. Sci. Semicond. Process. 2021, 121, 105375. [Google Scholar] [CrossRef]
- Funke, K. Jump relaxation in solid electrolytes. Prog. Solid State Chem. 1993, 22, 111. [Google Scholar] [CrossRef]
- Mishra, S.; Choudhary, R.N.P.; Parida, S.K. Microstructure, dielectric relaxation, optical, and ferroelectric studies of a lead-free double perovskite: BaLiFeMoO6. J. Korean Ceram. Soc. 2023, 60, 310–330. [Google Scholar] [CrossRef]
- Rockstad, H.K.; Pike, G.E. Comment on “AC Conductivity of Scandium Oxide and a New Hopping Model for Conductivity”. Phys. Rev. B 1973, 8, 4026–4027. [Google Scholar] [CrossRef]
- Elliott, S.R. A theory of ac conduction in chalcogenide glasses. Philos. Mag. 1977, 36, 1291–1304. [Google Scholar] [CrossRef]
- Slonopas, A.; Ryan, H.; Norris, P. Ultrahigh energy density CH3NH3PbI3 perovskite based supercapacitor with fast discharge. Electrochim. Acta 2019, 307, 334–340. [Google Scholar] [CrossRef]
- Ghosh, A. Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors. J. Phys. Rev. B 1990, 41, 1479. [Google Scholar] [CrossRef]
- Praveen, K.; Banarji, B.; Srinivas, V.; Choudhary, R.N.P. Complex Impedance Spectroscopic Properties of Ba3V2O8. Ceram. Res. Lett. 2008, 10, 1–5. [Google Scholar]
- Saidi, K.; Kamoun, S.; Ayedi, H.F.; Arous, M. Crystal structure, NMR study, dielectric relaxation and AC conductivity of a new compound [Cd3(SCN)2Br6(C2H9N2)2]n. J. Phys. Chem. Solids 2013, 74, 1560–1569. [Google Scholar] [CrossRef]
- Eyring, H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 1936, 4, 283–291. [Google Scholar] [CrossRef]
- Hashem, H.A.; Abouelhassan, S. The Proteomics Protocols Handbook; Springer: Berlin/Heidelberg, Germany, 2005; Volume 43, pp. 955–966. [Google Scholar]
- Sarode, A.V.; Kumbharkhane, A.C. Dielectric relaxation study of poly(ethylene glycols) using TDR technique. J. Mol. Liq. 2011, 164, 226–232. [Google Scholar] [CrossRef]
Compound | Bi0.75Ba0.25(FeMn)0.5O3 |
---|---|
a = b (Å) | 5.3986 |
c (Å) | 13.7685 |
V (Å3) | 373.326 |
χ2 | 1.26 |
Rf | 1.31 |
RB | 1.82 |
α = β (°) | 90° |
γ (°) | 120° |
(Bi, Ba) (x, y, z) | (0, 0, 0.248), (0, 0, 0.248) |
(Fe, Mn) (x, y, z) | (0, 0, 0), (0, 0, 1/2) |
O (x, y, z) | (0.558, 0.987, 0.248) |
T (K) | 200 | 220 | 240 | 260 | 280 | 300 | 320 |
R1 (104) | 460 | 365 | 254 | 233 | 188 | 157 | 123 |
CPE1 (10−12 F) | 4.38 | 4.33 | 4.32 | 4.92 | 5.34 | 4.71 | 3.20 |
C1 (10−11 F) | 0.87 | 0.84 | 1.12 | 1.08 | 1.14 | 1.26 | 2.26 |
Q (10−10 F) | 0.62 | 0.66 | 0.76 | 0.85 | 0.95 | 1.01 | 1.09 |
α | 0.647 | 0.685 | 0.714 | 0.733 | 0.725 | 0.813 | 0.837 |
T (K) | σ (S/m) | A | s |
---|---|---|---|
200 | 2.19 × 10−6 | 2.13 | 0.986 |
220 | 3.24 × 10−6 | 1.69 | 0.953 |
240 | 1.52 × 10−5 | 1.28 | 0.846 |
260 | 4.36 × 10−5 | 1.25 | 0.788 |
280 | 1.48 × 10−4 | 0.878 | 0.752 |
300 | 4.33 × 10−4 | 0.845 | 0.755 |
320 | 2.80 × 10−3 | 0.721 | 0.671 |
340 | 4.50 × 10−3 | 0.698 | 0.667 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayari, F.; Dhahri, R.; Elkenany, E.B.; Teixeira, S.S.; Graça, M.P.F.; Al-Syadi, A.M.; Essid, M.; Iben Nassar, K. Crystal Structural Characteristics and Electrical Properties of Novel Sol-Gel Synthesis of Ceramic Bi0.75Ba0.25(FeMn)0.5O3. Materials 2024, 17, 3797. https://doi.org/10.3390/ma17153797
Tayari F, Dhahri R, Elkenany EB, Teixeira SS, Graça MPF, Al-Syadi AM, Essid M, Iben Nassar K. Crystal Structural Characteristics and Electrical Properties of Novel Sol-Gel Synthesis of Ceramic Bi0.75Ba0.25(FeMn)0.5O3. Materials. 2024; 17(15):3797. https://doi.org/10.3390/ma17153797
Chicago/Turabian StyleTayari, Faouzia, Ramzi Dhahri, Elkenany Brens Elkenany, Sílvia Soreto Teixeira, Manuel Pedro Fernandes Graça, A. M. Al-Syadi, Manel Essid, and Kais Iben Nassar. 2024. "Crystal Structural Characteristics and Electrical Properties of Novel Sol-Gel Synthesis of Ceramic Bi0.75Ba0.25(FeMn)0.5O3" Materials 17, no. 15: 3797. https://doi.org/10.3390/ma17153797
APA StyleTayari, F., Dhahri, R., Elkenany, E. B., Teixeira, S. S., Graça, M. P. F., Al-Syadi, A. M., Essid, M., & Iben Nassar, K. (2024). Crystal Structural Characteristics and Electrical Properties of Novel Sol-Gel Synthesis of Ceramic Bi0.75Ba0.25(FeMn)0.5O3. Materials, 17(15), 3797. https://doi.org/10.3390/ma17153797