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Abstract: This study aims to develop systematic multiscale models to accurately predict the compres-
sive strength of cement mortar for tile adhesive applications, specifically tailored for applications
in the construction industry. Drawing on data from 200 cement mortar tests conducted in previous
studies, various factors such as cement/water ratios, curing times, cement/sand ratios, and chemical
compositions were analyzed through static modeling techniques. The model selection involved
utilizing various approaches, including linear regression, pure quadratic, interaction, M5P tree,
and artificial neural network models to identify the most influential parameters affecting mortar
strength. The analysis considered the water/cement ratio, testing ages, cement/sand ratio, and
chemical compositions, such as silicon dioxide, calcium dioxide, iron (III) oxide, aluminum oxide,
and the pH value. Evaluation metrics, such as the determination coefficient, mean absolute error,
root-mean-square error, objective function, scatter index, and a-20 index, were employed to ensure
the accuracy of the compressive strength estimates. Additionally, empirical equations were utilized
to predict flexural and tensile strengths based on the compressive strength of the cement mortar for
tile adhesive applications.

Keywords: water/cement; cement/sand ratio; pH curing; chemical composition; mechanical proper-
ties; modeling

1. Introduction

Cement mortar comprises cementitious substances, fine materials, and water, which
can exist in either a soft or solid state [1]. Mortar is an adhesive that fills the space between
construction elements and is used for decorative purposes. Cement mortar possesses three
essential characteristics: workability, strength, and durability [2]. Haach et al. conducted a
study in 2011 to explore how the variation in sand grading and the water/cement (w/c)
ratio impacts both the fluidity and compressive strength (CS) of cement mortar [3]. It was
found that as the w/c ratio increases, the mechanical characteristics of the mortar decrease,
but the ease of handling rises [3]. Materials based on ordinary Portland cement (OPC) have
been extensively utilized and remain a popular choice for construction since its inception
in the 18th century; currently, concrete and cement mortar are perceived as unsustainable
and have limited compatibility with natural materials. Therefore, metamaterials like lime
cement are being explored as alternatives [4]. The consistency of a mortar mixture in its
raw or fresh state is crucial. The quantity of beneficial internal effort required to achieve
complete compaction is a key aspect of this consistency. A mortar mixture that is easy to
place and compress without segregation is considered manageable. This trait is essential
as it is closely linked to both compaction and strength. The ease of handling varies across
different varieties of mortar. Unlike a large concrete mass or cement mortar structure,
higher manageability is necessary for thin, hard-to-reach, or substantially reinforced areas.
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The compressive strength of hardened cement mortar is a crucial indicator of its
quality and performance in construction projects. In addition, the properties of tension,
flexural, and bond strengths show a corresponding improvement as the compressive
strength increases [5]. The tensile strength reduces by 55–60% as the fineness modulus
of sand transitions from 3.21 to 1.72 [6]. Mineral additives enhance hardened cement
mortar performance, mechanical characteristics, and durability. In addition, the inclusion
of mineral additives has the effect of decreasing the emission of carbon dioxide (CO2)
and potentially mitigating the adverse environmental impact associated with cement
production [7]. Various research studies have examined the elements that affect the tensile
strength of cement mortar. The addition of micro- and nano-silica into cement mortar results
in an improvement in its split tensile strength [8]. Speciality cement is being developed
by grinding clinker with elastomer polymeric latexes, such as styrene-butadiene rubber
(SBR) or polyvinyl acetate (PVA), to improve its tensile and bond properties. This specific
kind of pre-mixed cement is necessary for adhesive applications needing more robust
adherence to substrates. Some examples of these uses are tile adhesives and repairing
mortars. Waterproofing slurries are necessary for improving the longevity and adhesion
of repair and injection works on implanted steel bars. The test results demonstrated that
latexes retain their efficacy even after undergoing grinding, leading to alterations in cement
properties such as improved workability and better flexural and pull-off bond strengths.
To avoid any detrimental effects on the ability of clinker to be ground, the inclusion rates
of SBR and PVA should be limited to less than 0.4% and 0.3% of the total cement mass,
respectively. The topic of discussion revolves around the use of polymer-modified cement
for the manufacturing of tile adhesives according to the specifications outlined in the EN
12004 standard [9].

Various research studies investigated the mechanical properties of cement mortar [10–12].
The laboratory determines the cement mortar samples’ compressive, flexural, and tensile
strengths by crushing standardized cylinders or cubes [13]. The experimental methodology
complies with international standards. However, laboratory testing is considered inefficient
and requires many resources, mostly because of its expensive and time-consuming na-
ture. Currently, by harnessing the progress in artificial intelligence (AI), machine learning
algorithms (ML) have recently become a new tool for forecasting particular mechanical
characteristics of cement mortar [14,15]. Regression, clustering, and classification are ma-
chine learning techniques that may estimate many elements with varying levels of success.
These techniques assist with effectively forecasting the compressive strength of cement
mortar. Soft computing (SC) has been extensively researched and applied, particularly in
structural engineering, due to its ability to tackle complicated issues, including uncertainty
and different parameters. The characteristics of cement mortar can be modeled using
several methods, such as computational modeling and statistical techniques, and devel-
oping tools like regression analysis, artificial neural networks (ANN), and the M5P-tree
model [16].

The link between curing temperature and the compressive strength of cement mortar
is intricate and influenced by multiple factors. Raising the temperature during the curing
process can decrease the long-term compressive strength of mortar mixtures [17]. However,
this impact is less significant in combinations that include fly ash. The elevated curing
temperature can hurt the mechanical strength of specific cement asphalt mortars while
enhancing the compressive strength of others [18].

The chemical composition of cement has a substantial influence on the strength of
cement, mortar, and concrete. Exceeding a particular threshold of CaO content hinders its
ability to react with other compounds due to free lime in the clinker [19]. The pH value
of water used during the curing process can substantially affect the compressive strength
of cement mortar and concrete. According to Wicaksono and Nurwidayati [20], acid wa-
ter with low pH can reduce the compressive strength of concrete, particularly when exposed
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to wet–dry curing situations. Similarly, Dauda et al. noted a decrease in the compres-
sive strength of concrete when it was cured in polluted water [21]. Moreover, a higher
proportion of wastewater resulted in a more significant reduction in strength. However, ac-
cording to Bediako et al., curing in lime-saturated water results in more significant strength
growth in mortar specimens than in freshwater [22].

This study aims to evaluate the influence of the chemical composition of cement, pH
levels, curing temperature, and mixture ratios on the compressive strength of cement mor-
tar. Several modeling techniques, including linear regression, pure quadratic, interaction,
M5P-tree, and ANN models, were utilized on a dataset of 200 samples collected from
various research sources. The primary objectives are: (i) to perform statistical analysis to
determine the impact of various mixture compositions, cement chemical composition, pH,
and curing temperature on the compressive strength of cement mortar, (ii) to develop a
reliable model for predicting the compressive strength of cement mortar using different
accuracy performance metrics for the models’ prediction, and (iii) to identify the most accu-
rate model for evaluating the compressive strength of cement mortar. The data gathered
from previous research investigations is condensed and presented in Table 1.

Table 1. Summary of the collected dataset used for modeling.

Variables
References

[7] [23] [24] [25] [26] [27] [28] [29] [30] [31]

Water-to-
cement ratio,

w/c
0.5 0.4 0.3–0.65 0.5 0.5 0.56 0.5–1.2 1 0.4 0.5 Ranged between

0.3–1.2

Curing time,
t (days) 7–365 1–90 3, 7, 28 2, 28 7, 28 7, 28, 90 28 7, 14, 28 7, 28 7, 28 Ranged between

1–365

Cement-to-
sand ratio, c/s 0.333 0.333 0.33–0.5 0.333 0.408 0.333 0.14–0.33 0.333 - 0.333 Ranged between

0.14–0.408

Temperature
(T ◦C) 20, 23 20 20 20 20 22 20 20 -- 20 Ranged between

20–23

pH value 3.5, 7 7 7.85 7 7 7 7 7 - 7 Ranged between
3.5–7.85

Silicon dioxide,
SiO2 (wt %) 13.48 20.33 18.91 18.95 22 20.8 30 18.91 20.5 - Varied between

13.48–30

Calcium
dioxide,

CaO (wt %)
67.46 69.93 66.67 63.83 60.1 61.94 42 63.83 62.3 - Ranged between

42–69.93

Iron oxide,
Fe2O3 (wt %) 7.28 5.56 6.5 4.5 2.1 4 5.55 4.94 3.4 - Varied between

2.1–7.28

Aluminum
oxide,

Al2O3 (wt %)
3.69 4.2 4.51 5.89 6.6 5.52 8.5 4.51 4 - Ranged between

3.69–8.5

Compressive
strength,
CS (MPa)

34.47–
54.85

13.21–
24.45 8.5–46.4 39.1–53 18.3–25.6 27–40.7 3.1–23 4–7 35.15–

37.72 30.7–41.6 Ranged between
3.1–54.85

Flexural
strength,
FS (MPa)

- - - 6.3–7.8 - 4.6–6.87 - - 6.23–6.81 3.92 Ranged between
3.92–7.8

Tensile
strength,
TS (MPa)

- - 1.85–2.51 - - - 0.41–1.78 - - - Ranged between
0.41–2.51

The Novelty of the Study

1. The work presents a systematic multiscale modeling strategy to precisely forecast
the compressive strength of cement mortar, particularly designed for tile adhesive
applications in the construction sector;
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2. This study employs data from 200 cement mortar experiments completed in prior
research and thoroughly examines several parameters, such as cement/water ratios,
curing durations, cement/sand ratios, and chemical compositions;

3. The study utilizes various modeling tools, including linear regression, pure quadratic
models, interaction models, M5P trees, and artificial neural networks, to determine
the most relevant elements that impact mortar strength. The variety of modeling
approaches available contributes to a strong and reliable foundation for making
predictions;

4. The examination includes comprehensive chemical compositions, such as silicon
dioxide, calcium dioxide, iron (III) oxide, aluminum oxide, and pH value, contributing
to a more profound comprehension of their influence on mortar strength;

5. Employing several assessment metrics, such as determination coefficient, mean abso-
lute error, root-mean-square error, objective function, scatter index, and a-20 index,
guarantees the precision and dependability of the compressive strength estimations;

6. The study forecasts the compressive strength and utilizes empirical equations to
forecast the flexural and tensile strengths, which depend on cement mortar’s com-
pressive strength. This comprehensive strategy greatly enhances the value of the
building sector;

7. The research focuses on applying tile adhesive, a specialized and crucial aspect of the
building industry. It addresses the unique requirements and difficulties connected
with this field.

2. Material and Methods

The study examined the effects of various water-to-cement (w/c) ratios and curing
durations of up to 365 days, as well as varied chemical compositions of cement and pH
levels of curing water, on the compressive strength of cement mortar [7,23–29,32–49]. Silicon
dioxide and calcium oxide levels were investigated, with silicon dioxide being tested at
levels up to 30% and calcium oxide at levels up to 76.5%. The training dataset comprised
66% of the entire dataset and was utilized for developing the model, while the remaining
subset was utilized for evaluating the model. The main input variables consisted of the
water-to-cement ratio (w/c), curing time (t), cement-to-sand ratio (c/s), curing temperature
(T), pH of the curing water (pH), and the chemical composition of the cement, with a
particular focus on silicon dioxide (SiO2), calcium oxide (CaO), aluminum oxide (Al2O3),
and iron (III) oxide (Fe2O3). During the modeling procedure, many statistical evaluations
were used to evaluate the correctness of the model and determine the most dependable
one. These assessments included the determination coefficient (R2), mean absolute error
(MAE), root-mean-square Error (RMSE), objective function (OBJ), scatter index (SI), and
a-20 index. In addition, the study employed two empirical equations to determine the
flexural and tensile strengths by relying on the compressive strength. Figure 1 illustrates
the study flow chart.
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Figure 1. The flowchart diagram for the study.

2.1. Modelling and Statistical Assessment

In this study, five models, which are linear regression, pure quadratic, interaction,
M5P, and ANN models, were used to estimate the compressive strength of cement mortar
as follows [50,51]:

CS = β1(w/b) +β2(t) + β3(c/s) + β4(T) + β5(pH) + β6 (SiO2) + β7(CaO)
+β8(Al2O3) + β9 (Fe2O3) + β10

(1)

CS = β0 + β1(w/b) + β2(t) + β3(c/s) + β4(T) + β5(pH) + β6(SiO2)

+β7(CaO) + β8(Al2O3) + β9 (Fe2O3) + β11(w/c) + β12(t)
2

+β13(c/s) + β14(T)
2+ β15(pH)2+ β16(SiO2)

2 + β17(CaO)

+β18(Al2O3)
2 + β19(Fe2O3)

2

(2)
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CS = β1 +β2(w/c) + β3(t) + β4(c/s) + β5(T) + β6(pH) + β7(SiO2) + β8(CaO) + β9(Al2O3)
+ β10(Fe2O3) + β11(w/c)(t) + β12(w/c)(c/s) + β13(w/c)(T) + β14(w/c)(pH)
+ β15(w/c)(SiO2) + β16(w/c)(CaO) + β17(w/c)(Al2O3) + β18(w/c)(Fe2O3) + β19(t)(c/s)
+ β20(t)(T) + β21(t)(pH) + β22(t)(SiO2) + β23(t)(CaO) + β24(t)(Al2O3)
+ β25(t)(Fe2O3) + β26(c/s)(T) + β27(c/s)(pH) + β28(c/s)(SiO2) + β29(c/s)(CaO)
+ β30(c/s)(Al2O3) + β31(c/s)(Fe2O3) + β32(T)(pH) + β33(T)(SiO2) + β34(T)(CaO)
+ β35(T)(Al2O3) + β36(T)(Fe2O3) + β37(pH)(SiO2) + β38(pH)(CaO) + β39(pH)(Al2O3)
+ β40(pH)(Fe2O3) + β41(SiO2)(CaO) + β42(SiO2)(Al2O3) + β43(SiO2)(Fe2O3)
+ β44(CaO)(Al2O3) + β45(CaO)(Fe2O3) + β46(Al2O3)(Fe2O3)

(3)

The M5P-tree model, based on Quinlan’s M5 approach, is specifically designed to
efficiently handle large datasets with many characteristics [1,30,31,50–55]. Each node in this
model offers error estimates and provides specific information about the criteria employed
for tree division. The evaluation of a node’s related function is determined by minimizing
the expected error using the feature that results in the most significant decrease. The
division criteria in the M5P tree are based on error estimations at the individual node
level, where the node error is measured by its standard deviation. The splitting of nodes
occurs depending on the property that achieves the lowest expected decrease in error. This
branching leads to offspring nodes with a lower standard deviation. Parent nodes with
larger sizes assess the available structures and choose the one most likely to reduce errors,
resulting in a hierarchical structure that may promote overfitting.

Artificial neural networks (ANNs), opposite feed-forward neural networks, function
based on different principles [56–59]. This system receives signals for processing in its input
layer, one of its three main layers—input, hidden, and output. The output layer performs
crucial functions such as making predictions and doing classifications. The essence of
genuine computational artificial neural networks resides in their numerous intermediate
layers positioned between the input and output. Data is transmitted from the input layer
through the hidden layers to the output layer, replicating the data flow in a feed-forward
network of artificial neural networks (ANNs). The model’s performance was enhanced
through multiple trial cycles by optimizing the number of hidden layers. This optimization
aimed at reducing errors and improving the R2 score. Equations (5) and (6) illustrate an
artificial neural network (ANN) equation that consists of a single hidden layer [55–59].

βn = an(w/c) + bn(t) + cn(c/s) + dn(T) + en(pH) + fn(SiO2) + gn(CaO) + hn(Fe2O3) + in(Al2O3) + in (4)

CS =
Node1

1 + e−α1 +
Node2

1 + e−α2 + . . . +
Noden

1 + e−αn + Treshold (5)

Different statistical assessments were used to evaluate the performance of the devel-
oped models, such as CS, t, c/s, curing temperature, water pH, and the cement’s chemical
composition [56–59]:

RMSE =

√
∑n

i=1(yi − xi)2

n
(6)

R2 =

 ∑i(xi − x ) ∗ (yi − y)√
∑i(xi − x)2 ∗

√
∑i(yi − y)2

2

(7)

MAE =
∑n

i=1(yi − xi)2

n
(8)

OBJ =
(

ntr

nall
∗ RMSEtr + MAEtr

R2
tr + 1

)
+

(
ntst

nall
∗ RMSEtst + MAEtst

R2
tst + 1

)
(9)

SI =
RMSE

yi
(10)
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a20 index (%) =
∑ Ymeasured/Ypredicted

N
(11)

2.2. Statistical Evaluation

A statistical analysis was performed to identify the input parameters that impact the
compressive strength of cement mortar. The marginal plot of the input variable of the
cement mortar with the compressive strength is shown in Figure 2. Thus, the plots of all
considered parameters of the compressive strength of cement mortar, including (a) w/c
ratios, (b) curing time, (c) cement/sand ratio, (d) SiO2, (e) CaO, (f) Fe2O3, and (g) Al2O3,
are shown in Figure 2.
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The w/c ratio of cement mortar mixtures ranged from 0.30 to 1.2, and they were tested
from an early age up to 365 days with a c/s ratio from 0.14 to 0.408.

The chemical composition of the cement also varied across the studies, with SiO2
content ranging from 13.48% to 20%, CaO content ranging from 42% to 76.5%, Fe2O3
content ranging from 1.2% to 7.78%, and Al2O3 content ranging from 3% to 8.71%. Table 2
summarizes the statistical analysis.

Table 2. An overview of the statistical analysis conducted on the mortar mixtures.

Variables w/c T (days) c/s SiO2 (%) CaO (%) Fe2O3 (%) Al2O3 (%) CS (MPa)

Mean 0.55 28.80 0.35 20.20 63.26 5.22 5.26 27.19-

Median 0.50 28.00 0.33 18.91 66.67 4.51 5.55 24.84

Mode 0.50 28.00 0.33 18.91 66.67 4.51 6.50 33.01

SD 0.20 48.05 0.09 5.28 11.01 1.85 1.28 13.13

Var 0.04 2308.55 0.01 27.90 121.31 3.44 1.63 172.43

Kurt 2.81 24.38 1.98 −0.23 −0.04 −0.70 0.28 −0.38

Skew 1.82 4.44 0.34 0.72 −0.96 0.69 −0.44 0.44

Min 0.30 1.00 0.14 13.48 42.00 3.00 1.20 3.11

Max 1.20 365.00 0.408 30.00 76.50 8.71 7.78 62.50

No. of data 278 280 275 261 242 266 266 280

3. Measured and Predicted Compressive Strength

As shown in Figure 3, no direct correlations were observed between the input variables
and the compressive strength of cement mortar (output variable).
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3.1. Linear Model

To model the connection between the CS of cement mortar and w/c, t, curing temper-
ature, pH, and the cement chemical composition and to find the impact of the dependent
variables on the cement mortar compressive strength, the linear model (Equation (12))
was developed.

CS = −21.5(w/c) + 0.084(t) + 45.4(c/s) + 0.85(T)− 0.56 (pH)− 2.9 (SiO2)− 2.19 (CaO)− 5.68 (Al2O3)
−4.75 (Fe2O3)− 259.8

(12)

Based on the result obtained, the cement mortar compressive strength can be predicted
with R2 of 0.77, as shown in Figure 4a. Based on the developed model parameters, the
cement/sand ratio, followed by w/c and Al2O3, has the highest impact on the compressive
strength of cement. The residual error is shown in Figure 4b.

Materials 2024, 17, x FOR PEER REVIEW 12 of 30 
 

 

 

 
Figure 4. A comparative of measured and predicted CS is conducted using the LR model across both 
training and testing datasets. (a) Modeling and (b) residual error assessment. 

3.2. Pure Quadratic Model 
A pure quadratic or quadratic regression model describes the connection between 

the CS of cement mortar and w/c, t, c/s, curing temperature, water pH, and chemical com-
position of cement using a quadratic equation (Equation (13)), as shown in Figure 5a,b. 

Figure 4. Cont.



Materials 2024, 17, 3807 12 of 26

Materials 2024, 17, x FOR PEER REVIEW 12 of 30 
 

 

 

 
Figure 4. A comparative of measured and predicted CS is conducted using the LR model across both 
training and testing datasets. (a) Modeling and (b) residual error assessment. 

3.2. Pure Quadratic Model 
A pure quadratic or quadratic regression model describes the connection between 

the CS of cement mortar and w/c, t, c/s, curing temperature, water pH, and chemical com-
position of cement using a quadratic equation (Equation (13)), as shown in Figure 5a,b. 

Figure 4. A comparative of measured and predicted CS is conducted using the LR model across both
training and testing datasets. (a) Modeling and (b) residual error assessment.

3.2. Pure Quadratic Model

A pure quadratic or quadratic regression model describes the connection between
the CS of cement mortar and w/c, t, c/s, curing temperature, water pH, and chemical
composition of cement using a quadratic equation (Equation (13)), as shown in Figure 5a,b.

CS = 584 + 0.003
( c

s
)

+ 0.3(t)− 0.002
( c

s
)
− 56 (T) + 2.60 (pH)− 11.5 (SiO2) + 7(CaO)− 6.8 (Al2O3)− 4.7 (Fe2O3)

−0.006 (t)2 + 1.34 (T)2− 0.0015 (pH)2+ 0.25 (SiO2)
2 − 0.063(CaO)− 0.007 (Fe 2O3)

2 (13)
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Figure 5. A comparison of measured and predicted CS is conducted using the PQ model across both
training and testing datasets. (a) Modeling and (b) residual error assessment.

3.3. Interaction Model

In statistical analysis and regression modeling, an interaction model is a model that
incorporates interaction terms involving two or more independent variables such as CS, t,
c/s, curing temperature, pH of water, and the chemical composition of cement. Interaction
terms contain the collective impact or influence of many variables on the CS of cement
mortar, and they determine if the correlation between one independent variable (input vari-
ables) and the dependent variable (compressive strength) is contingent upon the magnitude
of another independent variable (Equation (14)).

CS = 419.4 + 75.8 (w/c)− 4.43 (t)− 23.16 (c/s)− 22.2 (T)− 0.175 (pH) + 0.47 (SiO2) + 3.8(CaO)
−104(Al2O3) + 61.8(Fe2O3) + 1.23(w/s)(t)− 3.22(w/s)(SiO2)− 2.07β16(w/s)(CaO)
+11.4 (w/s)(Fe2O3) + 0.32 (t)(c/s)− 0.024(t)(T) + 0.026(t)(pH) + 0.020(t)(SiO2)
+0.055(t)(CaO) + 0.032(t)(Al2O3) + 0.013(t)(Fe2O3) + 0.0009(c/s)(T) + 0.07(c/s)(pH)
+2.42(c/s)(SiO2) + 0.19(c/s)(CaO)− 0.083(c/s)(Al2O3) + 0.00007(c/s)(Fe2O3)
+0.05(T)(pH) + 0.087(T)(SiO2)− 0.003(T)(CaO) + 2.64(T)(Al2O3) + 2.11(T)(Fe2O3)
+0.001(pH)(SiO2) + 0.001(pH)(CaO)− 0.09(SiO2)(CaO) + 0.005(SiO2)(Al2O3)
−0.043 (SiO2)(Fe2O3) + 0.65(CaO)(Al2O3)− 1.76(CaO)(Fe2O3) + 0.4(Al2O3)(Fe2O3)

(14)

Compared to linear and pure quadratic models, the interaction model predicts the
compressive strength of cement mortar very well (Figure 6).
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3.4. M5P Tree Model

In this study, a novel M5P tree model was developed with an established value of
m. This model was utilized to forecast the compressive strength of cement mortar using a
dataset of 200 mix-design data points. To assure the stability and reliability of the model,
two-thirds of the dataset was randomly chosen for training, while the remaining one-third
was set aside for evaluating the model’s ability to make accurate predictions. The training
and testing sets underwent a thorough evaluation utilizing multiple metrics to assess their
prediction accuracy, such as R2, MAE, and RMSE. The equation Y = b0 + b1 × X1 + b2 × X2
represents these functions, where b0, b1, and b2 are constants in linear regression that
indicate the model parameters. Figure 7 depicts the correlation between the anticipated
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and actual compressive strength. Significantly, the dataset displays a line representing an
error margin of 30%, which means that all recorded values are within this range. The model
coefficient of determination, R2, is calculated to be 0.82, indicating that it performs better
than the LR model [57–59].

CS = −18.3 × w
c
+ 0.1 × t + 43.5 × c

s
− 3.35 × SiO2 − 1.4 × CaO − 3.9 × Fe2O3 + 197.2 (15)
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3.5. Artificial Neural Network (ANN)

Developing an artificial neural network (ANN) model is a step-by-step process that
requires setting the number of neurons in the hidden layer, the learning rate, momentum,
and the number of iterations. This study utilized seven neural networks to represent the
hidden layers. The learning rate, training length, and momentum were assigned the values
of 0.1, 5000, and 0.1, respectively. The number of epochs, a hyperparameter, determines
the maximum number of iterations the learning algorithm goes through on the training
dataset. As the number of epochs increases, the R2 values also grow while the RMSE values
fall. This suggests a reduction in errors. Figure 8 depicts a comparison of projected and
absolute CS values. The selected input variables should encompass all essential information
related to the target values. This study examined nine specific parameters for assessing the
compressive strength of cement mortar [58].

CS = −3.67
1+e−α1 + −3.18

1+e−α2 +
2.05

1+e−α3 +
2.10

1+e−α4
2.02

1+e−α5 +
−1.2

1+e−α6
−2.56

1+e−α7 +
−2.98

1+e−β8
−1.76

1+e−α9

+ −1.77
1+e−α10

2.68
1+e−α11 +

2.69
1+e−α12

2.30
1+e−α13 +

−2.42
1+e−α14 +

−2.59
1+e−α15

1.94
1+e−α16 + 0.34

(16)



−0.28 −1.67 −0.35 2.91 2.15 2.38 1.92 0.63 0.28 −2.43 2.66 −2.12
3.99 1.15 3.68 1.53 2.19 1.51 −6.09 2.75 6.63 6.54 0.10 1.0
3.16 −0.30 2.65 −0.33 −3.31 11.3 4.87 0.66 4.17 −4.41 −2.18 2.14
0.97 0.23 0.49 2.19 8.08 0.58 −2.24 4.02 0.08 −0.76 0.02 −1.27
2.25 −1.92 −1.80 4.78 −0.87 6.34 4.21 −2.79 8.91 −3.63 1.02 −1.07
0.10 0.64 0.38 0.96 0.54 1.94 1.10 −0.26 0.34 0.001 −1.52 −1.88
1.99 1.77 4.59 6.76 3.54 2.98 −7.16 1.06 0.48 −1.56 −0.09 −3.96
1.61 0.17 1.10 2.24 0.89 2.56 0.51 0.83 −0.69 0.49 0.003 −1.69
−0.62 3.94 −0.39 0.95 0.045 −1.70 5.88 −4.03 −0.15 −3.77 −0.75 −3.26
0.29 3.16 1.73 −0.12 −0.067 −0.68 1.91 −0.086 −1.19 2.61 −0.56 −2.55
−1.41 1.44 1.34 3.32 1.74 −2.12 −0.40 −0.37 −1.19 6.25 −5.48 −2.97
−0.71 1.43 −2.24 3.64 6.80 6.33 −0.77 5.49 0.24 6.13 0.92 0.49
2.50 0.50 3.81 −0.37 −2.22 2.70 −0.21 −0.23 3.07 1.16 −0.74 −1.43
2.10 −2.01 −2.29 −4.87 −2.55 3.26 −0.67 −0.25 3.53 −10.3 −3.07 −12.1
1.55 −2.27 −2.66 −7.63 2.39 2.89 −1.32 1.68 2.30 1.83 0.44 −2.81
−0.02 −0.008 −0.041 −2.28 −0.58 0.22 3.26 1.58 −0.95 −1.73 −0.44 −2.16



×



w/c
t

c/s
T

pH
SiO2
CaO

Fe2O3
Al2O3

1
1
1



=



α1
α2
α3
α4
α5
α6
α7
α8
α9
α10
α11
α12
α13
α14
α14
α16

Materials 2024, 17, x FOR PEER REVIEW 18 of 30 
 

 

 

 
Figure 8. A comparative of measured and predicted CS is conducted using the ANN model across 
training and testing datasets. (a) Modeling and (b) residual error assessment. 

CS = −3.671 + eି஑ଵ + −3.181 + eି஑ଶ + 2.051 + eି஑ଷ + 2.101 + eି஑ସ 2.021 + eି஑ହ + −1.21 + eି஑଺ −2.561 + eି஑଻ + −2.981 + eିஒ଼ −1.761 + eି஑ଽ+ −1.771 + eି஑ଵ଴ 2.681 + eି஑ଵଵ + 2.691 + eି஑ଵଶ 2.301 + eି஑ଵଷ + −2.421 + eି஑ଵସ + −2.591 + eି஑ଵହ 1.941 + eି஑ଵ଺ + 0.34 
(16)

Figure 8. Cont.



Materials 2024, 17, 3807 17 of 26

Materials 2024, 17, x FOR PEER REVIEW 18 of 30 
 

 

 

 
Figure 8. A comparative of measured and predicted CS is conducted using the ANN model across 
training and testing datasets. (a) Modeling and (b) residual error assessment. 

CS = −3.671 + eି஑ଵ + −3.181 + eି஑ଶ + 2.051 + eି஑ଷ + 2.101 + eି஑ସ 2.021 + eି஑ହ + −1.21 + eି஑଺ −2.561 + eି஑଻ + −2.981 + eିஒ଼ −1.761 + eି஑ଽ+ −1.771 + eି஑ଵ଴ 2.681 + eି஑ଵଵ + 2.691 + eି஑ଵଶ 2.301 + eି஑ଵଷ + −2.421 + eି஑ଵସ + −2.591 + eି஑ଵହ 1.941 + eି஑ଵ଺ + 0.34 
(16)

Figure 8. A comparative of measured and predicted CS is conducted using the ANN model across
training and testing datasets. (a) Modeling and (b) residual error assessment.

4. Statistical Assessment

Different statistical assessments were used to evaluate the developed models’ pre-
dictions and compare the developed models’ results. The residual error of the developed
models shows that the error range in the prediction was less than 2.5 MPa, as shown in
Figure 8. The OBJ values of the training and testing data set are shown in Figure 9a. The
OBJ value of the linear model was 6.39 MPa and 1.92 MPa for the training and testing data,
respectively. With 6.45 MPa, the OBJ of the pure quadratic model was the highest. The
interaction model has the lowest OBJ value at 27% and 28.3% less than the linear and pure
quadratic models.

Figure 9b shows the developed models’ mean absolute error (MAE). The interaction
model has the lowest MAE with 3.72 MPa and 4.18 for the training and testing data set.
The MAE for the linear and pure quadratic models were near each other, with 5.37 MPa
and 5.28 MPa (Figure 9b).

The normalized error measurement is known as the scatter index (SI), and is given as
a percentage. The value of the scatter index of the developed model is shown in Figure 9c.
Based on the SI values, the interaction model is more reliable in predicting cement mortar
CS than linear and pure quadratic models.

The number of samples that fit the prediction values with a variance of ±20% from the
experimental values is displayed by the a-20 index-evaluated measure. To put it another
way, the a-20 metric calculates the percentage of instances in which the absolute difference
between the actual and projected values is 20% or less of the actual value. Since the model
may produce more precise predictions closer to the actual value, a higher a-20 score denotes
better predictive accuracy. Also, based on a-20 index values, the interaction model will be
used to predict the cement mortar CS, as shown in Figure 9d. The R2 and RMSE of the
developed models are shown in Figure 10.
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5. Correlation between Compressive with Flexural and Tensile Strengths

The flexural and tensile strength of cement mortar were estimated using the Vipu-
lanandan correlation model and Hoek–Brown model (Equations (17) and (18)) [60–62],
which relates the estimated strengths to the compressive strength. This relationship is
illustrated in Figures 11 and 12. With a rise in compressive strength from 7 MPa to 45 MPa,
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the flexural and tensile strength of the cement mortar also increased from 1 MPa to 7.6 MPa
and from 0.5 MPa to 2.3 MPa, respectively (Figures 11 and 12).

FS = −1.45 +
CS

4.21 + 0.021 CS
(17a)

FS = CS − (0.003 × (
−0.79 CS
−0.003

+ 2.05)) (17b)

where FS is the flexural strength and CS is the compressive strength.

TS = 0.2 +
CS

12.45 + 0.14 CS
(18a)

TS = CS − (0.0009 ×
(
−0.72 CS
−0.0009

− 18.7
)
) (18b)

where TS is the tensile strength and CS is the compressive strength.
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6. Sensitivity Analysis

A sensitivity analysis was conducted using a Pareto chart to evaluate each independent
variable’s influence on cement mortar’s compressive strength value (Table 3). A Pareto
chart is an effective instrument that facilitates comprehension of the primary elements
that have the most significant impact on the dependent variable, which is the compressive
strength of cement mortar. Based on the Pareto chart analysis, iron oxide has a high effect
on the compressive strength of cement mortar, followed by silicon dioxide and calcium
dioxide, respectively, as shown in Figure 13.
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Table 3. A summary of the criteria used to evaluate the efficiency of the developed models.

Model Fig. (No) Eq. (No.)
Training Testing

RankingRMSE
(MPa)

MAE
(MPa) R2 RMSE

(MPa)
MAE
(MPa) R2

LR 4 12 6.32 5.55 0.77 5.55 4.65 0.81 4

PQ 5 13 6.22 5.28 0.78 4.57 5.20 0.83 5

IN 6 14 4.57 3.72 0.90 5.08 4.18 0.85 1

M5P-tree 7 15 5.85 4.73 0.80 5.46 4.42 0.82 3

ANN 8 16 5.07 3.91 0.85 5.52 4.15 0.82 2

7. Limitations of the Study

1. The study relies on data from 200 cement mortar experiments, which, although
substantial, may need to be more exhaustive to encompass all the differences and
intricacies in cement mortar behavior. An expanded dataset has the potential to yield
more reliable and widely applicable findings;

2. The findings are derived from precise test settings and mixtures. Due to variations in
local materials, ambient conditions, and construction procedures, the results may not
apply to other areas or situations;

3. Various modeling approaches were used, including linear regression, pure quadratic
interaction, M5P tree, and artificial neural networks. However, it is important to note
that each methodology has specific assumptions and limits. It is not possible for any
one model to completely understand and explain the intricate behavior of cement
mortar in tile adhesive applications in all situations;

4. The study primarily focuses on the exact chemical compositions of silicon dioxide,
calcium dioxide, iron (III) oxide, aluminum oxide, and the pH value. Other potentially
relevant components or additions in cement mortar were unaccounted for, which
might impact the overall knowledge of material behavior;

5. The long-term environmental consequences, such as freeze-thaw cycles, chemical
exposure, and other durability factors, that might potentially affect the performance
of cement mortar over lengthy periods;

6. Empirical equations are mathematical equations derived from observation or experi-
mentation rather than theoretical principles;

7. The curing conditions employed in the experiments, such as temperature and humid-
ity, could not encompass the whole spectrum of real-world circumstances, impacting
the prediction models’ precision and relevance;

8. The data obtained from prior research may exhibit discrepancies or changes in mea-
suring methodologies, which might impact the reliability and precision of the analysis
and subsequent models;

9. Validation measures, such as determination coefficient, mean absolute error, root-
mean-square error, objective function, scatter index, and a-20 index, were used. How-
ever, further validation using external datasets might enhance the dependability of
the models.

8. Conclusions

The following conclusions are drawn based on the data gathered from various re-
search investigations and the simulation of the compressive strength of cement mortar at
200 different water/cement (w/b), cement/sand (c/s), curing temperature (T), water pH,
the different chemical composition of cement, and curing time.

1. Silicon and calcium dioxide were tested up to 30% and 76.5%, respectively. The pH
of water curing varied between 3.5 and 7.6. The medium values of the iron and
aluminum oxides were 4.51% and 5.55%, respectively;
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2. According to the dataset gathered, the water/cement ratio, cement/sand ratio, and
curing duration varied from 0.3 to 1.2, 0.14 to 0.408, and 1 day to 365 days. An
ideal ratio of 0.34 cement to sand is recommended for achieving optimal compressive
strength in cement mortar;

3. The interaction model was employed to forecast the strength of cement mortar. It
was trained using 2/3 of the 200 data points collected from the literature. The IN
model accurately predicted the CS of the testing data, achieving a high coefficient
of determination (R2 = 0.90). Both the linear relation (LR) and pure quadratic (PQ)
models were developed using identical variables;

4. In addition to the conventional curing period, this research’s findings demonstrate
that the IQ model can forecast the cement mortar’s CS. The PQ models accurately
predicted the CS based on the training and testing datasets, outperforming other
models regarding R2, RSME, MAE, OBJ, SI, and the a-20 index;

5. Based on the Vipulanandan correlation model and the Hoek–Brown model, the flexu-
ral and tensile strengths of the cement mortar can be predicted as a function of the
compressive strength;

6. According to the Pareto chart, the cement chemical compositions have a high effect
on the compressive strength of cement mortar.
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