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Abstract: To address the challenges posed by the narrow oxidation decomposition potential window
and the characteristic of low ionic conductivity at room temperature of solid polymer electrolytes
(SPEs), carbon dioxide (CO2), epichlorohydrin (PO), caprolactone (CL), and phthalic anhydride (PA)
were employed in synthesizing di-block copolymer PCL-b-PPC and PCL-b-PPCP. The carbonate
and ester bonds in PPC and PCL provide high electrochemical stability, while the polyether seg-
ments in PPC contribute to the high ion conductivity. To further improve the ion conductivity, we
added succinonitrile as a plasticizer to the copolymer and used the copolymer to assemble lithium
metal batteries (LMBs) with LiFePO4 as the cathode. The LiFePO4/SPE/Li battery assembled with
PCL-b-PPC electrolyte exhibited an initial discharge-specific capacity of 155.5 mAh·g−1 at 0.5 C and
60 ◦C. After 270 cycles, the discharge-specific capacity was 140.8 mAh·g−1, with a capacity retention
of 90.5% and an average coulombic efficiency of 99%, exhibiting excellent electrochemical perfor-
mance. The study establishes the design strategies of di-block polymer electrolytes and provides a
new strategy for the application of LMBs.

Keywords: lithium metal batteries; block copolymers electrolytes; ionic conductivity

1. Introduction

The application of lithium metal batteries (LMBs) is hampered by the hazardous
thermal runaway due to the inevitable lithium dendrite growth in conventional liquid
electrolytes [1,2]. The currently used liquid electrolytes struggle to achieve qualified safety
performance [3,4]. Solid polymer electrolytes (SPEs) have been considered as a promising
solution to address the aforementioned safety concerns due to their non-flammability and
ability to inhibit the growth of lithium dendrites [5,6]. SPEs can also achieve high oxida-
tion resistance and machinal strength through regulation of the polymer segments, thus
enabling compatibility with cathode materials and lithium metal anodes [7–9]. Following
the pioneering work of Armand et al., research on solid-state polymer batteries has made
tremendous progress over the past decades [10].

However, polymer electrolytes still exhibit certain limitations. Typically, SPEs are com-
posed of lithium salts and a polymer matrix capable of dissociating the lithium salts [11,12].
Poly(ethylene oxide) (PEO), due to its high dielectric constant (εr ≈ 5), relatively strong
lithium ion solvation ability, and high chain segmental flexibility [13], has been one of the
most extensively studied polymer electrolytes in recent years [14,15], but its limitations,
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such as a low lithium ion transference number (~0.2) [16], low ionic conductivity at room
temperature (≈10−6 S·cm−1) [17], and a relatively narrow electrochemical stability window
(vs. Li+/Li < 4.0 V), have limited further improvement of energy density in all-solid-state
lithium batteries [18,19]. Several solutions have been proposed to address these challenges,
including the use of polycarbonate-based polymers with good oxidation resistance, such
as poly(ethylene carbonate) (PEC) [20,21], and poly(propylene carbonate) (PPC) [22–24].
Polycarbonate-based polymers can form complexes with lithium salts and contribute to the
dissociation of Li+, thereby providing an ample number of free ions [25]. Moreover, PPC-
and PEC-based polymer chains have good flexibility, which facilitates lithium ion transport
and a higher electrochemical stability window (Li+/Li > 4.6 V) [26]. Alternatively, polyester-
based polymers like poly(ε-caprolactone) (PCL) have also been explored as electrolytes [27].
Since C.P. Fonseca et al. first used PCL as a solid electrolyte in 2006, PCL has entered the
field of solid-state batteries [28–30]. With its flexible chain structure, PCL exhibits robust
Li+ solvation capability, a low glass-transition temperature (Tg = −60 ◦C), and a broad
electrochemical stability window (5 V) [31]. Xue’s research group designed and synthesized
a brush-like poly(ε-caprolactone) (PCL) electrolyte, which exhibited an ionic conductivity
of 5.53 × 10−5 S·cm−1 at room temperature and a high lithium ion transference number
(tLi+) of 0.82 at 60 ◦C [32]. However, PCL, as a semi-crystalline polyester, has a melting
temperature range of 40 ◦C to 66 ◦C, and its ionic conductivity is limited, allowing it to
act as an SPE only at high temperatures [33–35]. To modify the semi-crystallinity, various
strategies have been employed, including the addition of plasticizers, the synthesis of graft
polymers, the incorporation of nanoparticles into the polymer, and the synthesis of copoly-
mers [12,36], where copolymers are formed by covalent bonds between two chemically
distinct segments, thus combining the characteristics of the individual homopolymers to
effectively improve the overall properties of SPEs. Xue et al. prepared block copolymers
(BCPEs) by one-step synthesis of poly(ethylene glycol methyl ether acrylate) (PEGA) and
ε-CL, and the polymer electrolytes exhibited an ionic conductivity of 1.09 × 10−4 S·cm−1

at room temperature with the tLi+ of 0.56. The block structure of BCPEs inhibits PCL
crystallinity while maintaining a balanced polymer electrolyte for effective lithium salt
dissociation and coordination, thereby enhancing both ionic conductivity and lithium ion
transference [37].

In this study, AB-type di-block copolymers, namely PCL-b-PPCP and PCL-b-PPC,
were formulated, where PCL represents the A-block, while PPC-P or PPC serves as the
B-block. Flexible PPC has low glass-transition temperature and good interfacial compat-
ibility, but it lacks mechanical properties. Phthalic anhydride groups can be introduced
into the PPC chain to synthesize PPCP with excellent mechanical properties and thermal
stability. PPC(P)-based chains have abundant carbonate groups, contributing to lithium salt
dissociation and lithium ion conduction. PCL chains have robust Li+ solvation capability,
low glass-transition temperature, and a broad electrochemical stability window. After the
addition of succinonitrile (SN) as the plasticizer, the ionic conductivity of PCL-b-PPC can
reach 1.99 × 10−4 S·cm−1 and exhibiting excellent electrochemical performance with a
discharge capacity of 140.8 mAh·g−1 after 270 cycles at 0.5 C in the LiFePO4/SPE/Li full
cell and maintaining a capacity retention of 90.5%. The copolymer has good mechanical
properties and thermal properties and a low glass-transition temperature, with a lower cost
than most of the polymers (such as PEO), indicating the potential for further application.

2. Materials and Methods
2.1. Materials

CO2 was purchased from GUANG QI (Guangzhou, China). Propylene oxide (PO, 99%),
caprolactone (CL, 99%) and triethylborane (TEB, 1 mol/L in THF) were purchased from Energy
(Shanghai, China). Succinonitrile (SN, 99%), ethyl methyl carbonate (EMC, 98%), ethylene
carbonate (EC, 98%), N-methylpyrrolidone (NMP, 99.5%), and dimethyl carbonate (DMC, 98%)
were obtained from Macklin (Shanghai, China). LiFePO4 (battery grade), Super P (battery
grade), lithium bis((trifluoromethyl)sulfonyl) azalide (LiTFSI), and PP membrane (celguard
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2500) were purchased from Canrd (Dongguan, China). Bis(triphenylphosphine)iminium
chloride (PPNCL, 97%) was obtained from Alfa Aesar, Haverhill, MA, USA.

2.2. Preparation of PCL-b-PPCP and PCL-b-PPC

The synthesis of PCL-b-PPCP is shown in Figure 1a: A one-pot two-step method
was used for the reaction. In a glove box, PO, CL, TEB, and PPNCl with a molar ratio
of 500:100:0.1:1 were stirred at 80 ◦C for 48 h in the autoclave. After cooling to room
temperature, the autoclave was brought back into the glove box, and PO, PA, CL, TEB, and
PPNCl were added with a molar ratio of 500:50:100:1.4:1; the mixture was then sealed and
taken out of the glove box, flushed with 1 MPa of CO2, and stirred at 60 ◦C for 4 h. After
the reaction, the autoclave was cooled in an ice water bath and opened, and a sample was
first taken for NMR test. Then, the reaction was quenched with 1 mol/L hydrochloric acid,
the crude product was dissolved in dichloromethane and precipitated in ethanol, and the
precipitated product was dried in a vacuum oven at 80 ◦C.

The synthesis of PCL-b-PPC is shown in Figure 1b: A one-pot two-step method was
also used. In a glove box, PO, CL, TEB, and PPNCl were added to a 50 mL stainless-steel
autoclave with a molar ratio of 1000:200:0.1:1; it was sealed and taken out of the glove box
and stirred at 80 ◦C for 48 h. After cooling to room temperature, the autoclave was brought
back into the glove box, and PO, CL, TEB, and PPNCl were added with a molar ratio of
1000:200:1.4:1; it sealed and taken out of the glove box, flushed with 1 MPa of CO2, and
stirred at 50 ◦C for 4 h. The subsequent sampling and processing were the same as above.
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Figure 1. Synthetic schematic diagram of (a) PCL-b-PPCP and (b) PCL-b-PPC.

Three polymers were selected as the base of the electrolyte membrane, among which
PCL:PPC:PPO with a molar ratio of 37:52:11 was named PCL-b-PPC-1; PCL:PPCP:PPO =
38:50:12 was named PCL-b-PPCP-2; and PCL:PPCP:PPO = 28:61:11 was named PCL-b-PPCP-3.
The molecular weights of these polymers were approximately 20,000. Three types of plasticiz-
ers are utilized: EMC, EC/EMC, and SN.

To prepare the polymer solution, 0.5 g of the above-mentioned polymer, 0.2 g of LiTFSI,
and 0.3 g of the plasticizer were dissolved in 10 mL of dichloromethane. The solution was
stirred until homogeneous.

In a glove box, a small amount of the polymer solution was applied onto the positive
electrode, and then, a celguard 2500 was placed on top. The polymer solution slowly filled
the pores of the support membrane. The assembly was left at room temperature for 24 h
to allow for solvent evaporation. Then, it was transferred to a heating pad and heated at
80 ◦C to remove the remaining solvent, resulting in a solid polymer electrolyte membrane.
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2.3. Cathode Fabrication and Cell Assembly

LiFePO4, Super P, polyvinylidene fluoride (PVDF) in the weight ratio of 8:1:1 was
dispersed in NMP and vigorously stirred for 6 h. The uniform slurry was cast onto
the carbon-coated aluminum foils and dried under vacuum at 100 ◦C for 12 h to obtain
the cathode foil. The CR2025-type cells were assembled for different test: LFP/solid
electrolyte/Li, Li/solid electrolyte/Li (SE), steel sheet/solid electrolyte/steel sheet (SS),
carbon paper electrode/solid electrolyte/Li (CL). Taking the LiFePO4/Li coin cells as an
example. The LiFePO4/Li coin cells were assembled in the order of “positive electrode
shell—LFP electrode—polymer solution—supporting membrane—lithium anode—steel
sheet—shim—negative electrode shell”; specifically, the polymer solution was directly
drop-coated onto the cathode, and the volatile solvent evaporated to form an electrolyte
film on the cathode. Then, a support film was placed on top, allowing a small amount of
electrolyte to infiltrate the electrode, creating a concentration gradient between the positive
electrode and the electrolyte to enhance interface compatibility. The entire step was finished
in an Ar-filled glove box (Mikrouna, Shanghai, China) with O2 and H2O contents below
0.1 ppm. After assembly, the cells were placed in a 60 ◦C blast oven for 24 h to enhance the
interface stability between the electrode and electrolyte.

2.4. Electrochemical Measurements

The LiFePO4/SPE/Li cells were tested by Wuhan LAND battery system(LAND,
Wuhan, China), and the coulombic efficiency was calculated as follows: (discharge-specific
capacity/charge-specific capacity) × 100%. The ionic conductivity was measured by as-
sembling SS for AC impedance spectroscopy measurements in the frequency range of
1 Hz–0.1 M Hz. The lithium transference number (tLi+) was measured by assembling
SE through the method of AC impedance with DC polarization, and the ∆V = 10 mV.
Linear sweep voltammetry was tested by assembling CL at a scan rate of 1 mV·S−1

from open-circuit voltage to 6 V. The ionic conductivity, lithium transference number,
and linear sweep voltammetry were tested via an electrochemical workstation (Metrohm,
Herisau, Switzerland).

3. Results and Discussion
3.1. Analysis of the Structure and Thermal Properties of the Polymers

As shown in Figure 2, the structures of purified PCL-b-PPCP and PCL-b-PPC copoly-
mers were carefully analyzed using 1H NMR technique. In addition to the chemical shift
from PPO, both PCL-b-PPCP and PCL-b-PPC could match all other chemical shifts.
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Figure 2. 1H Spectra of (a) PCL-b-PPCP and (b) PCL-b-PPC.

Compared to PCL-b-PPCP, due to the absence of phthalic anhydride, the glass-
transition temperature (Tg) of PCL-b-PPC-1 was lower (22.8 ◦C) (Figure 3a). This indicates
that at the same temperature, PCL-b-PPC-1 has a larger free volume, faster chain segment
movement rate, and more advantages in ion conduction. In comparison to PCL-b-PPCP-3,
PCL-b-PPCP-2 owns more PCL segments, resulting in weakened interchain interactions
and easier molecular chain movement, thereby reducing the glass-transition temperature.

Regarding the thermal stability of the polymers, the TGA curves in Figure 3b indicate
that the PCL-b-PPC-1 began to decompose around 180 ◦C and completely decomposed at
300 ◦C, which could be attributed to the poor thermal stability of PPC. On the other hand,
PCL-b-PPCP had a thermal decomposition temperature of 250 ◦C and complete decom-
position at 450 ◦C, indicating that the introduction of PA enhanced the thermodynamic
properties of the polymer. There is no significant difference in thermal stability between
PCL-b-PPCP-2 and PCL-b-PPCP-3.
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3.2. Electrochemical Performance Characterization of Electrolytes

EMC was selected as the plasticizer based on the principle of miscibility, while PP
membrane was chosen as the support film. Then, 300 µL of the polymer solution was
dispensed in the SS. This assembly was used to test the ion conductivity, and the test results
are shown in Table 1. Without the addition of the plasticizer EMC, the ion conductivity of
each electrolyte was very low (entries 1, 2, 5, 6, 9, and 10), measuring only 10−7 S·cm−1
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at room temperature and 60 ◦C. When 30% wt.% EMC was added, the ion conductivity
slightly increased but only by 10−5 S·cm−1 (entries 3 and 4).

Table 1. The ion conductivity of the polymer electrolytes with 30 wt.% EMC.

Entry Sample Temperature/◦C Thickness/µm R/Ω σ/S cm−1

1 a PCL-b-PPC-1 25 45 7600 3.10 × 10−7

2 a PCL-b-PPC-1 60 45 645 3.65 × 10−6

3 b PCL-b-PPC-1-EMC 25 36 165 1.14 × 10−5

4 b PCL-b-PPC-1-EMC 60 36 55 3.45 × 10−5

5 a PCL-b-PPCP-2 25 51 66,000 4.04 × 10−8

6 a PCL-b-PPCP-2 60 51 6700 3.98 × 10−7

7 b PCL-b-PPCP-2-EMC 25 35 810 2.26 × 10−6

8 b PCL-b-PPCP-2-EMC 60 35 134 1.37 × 10−5

9 a PCL-b-PPCP-3 25 50 49,000 5.34 × 10−8

10 a PCL-b-PPCP-3 60 50 1640 1.60 × 10−6

11 b PCL-b-PPCP-3-EMC 25 39 1260 1.62 × 10−6

12 b PCL-b-PPCP-3-EMC 60 39 194 1.05 × 10−5

a: Polymer electrolytes without plasticizer. b: The polymer electrolyte is composed of 50 wt.% polymer, 30 wt.%
EMC, and 20 wt.% LiTFSI.

However, since the ionic conductivity of the aforementioned batteries at 60 ◦C was
below 10−4 S·cm−1, which did not meet the threshold for battery operation, we replaced
different plasticizers while keeping other conditions unchanged to investigate their ef-
fects on ionic conductivity. Table 2 shows the ionic conductivity of the electrolyte with
EC/DMC (volume ratio of 1:1) as the plasticizer. Under the same conditions, EC/DMC
exhibited higher ion conductivity than EMC. However, the ionic conductivity remained at
10−5 S·cm−1 at 60 ◦C, which was inadequate for normal battery operation. Furthermore,
EC/DMC was replaced with succinonitrile (Table 3), and the ionic conductivity at 60 ◦C
increased to 10−4 S·cm−1. This increase in ionic conductivity can be attributed to three
factors: (1) the disordered molecular orientation of SN below the melting temperature,
facilitating the transfer of Li+; (2) SN significantly reducing the crystallinity of the block
copolymer, providing more amorphous regions that promote the transport of Li+ in the
polymer matrix; and (3) the strong solvation and desolvation abilities of SN compared to
ester-based plasticizers with strong solvation but weaker desolvation abilities, which may
affect the movement of free Li+. Overall, compared to PCL-b-PPCP, the absence of benzoyl
in PPC segments makes them more flexible, with a lower glass-transition temperature and
stronger segment mobility, resulting in higher ionic conductivity of the PCL-b-PPCP-based
electrolyte. Among them, PCL-b-PPC-1-SN, PCL-b-PPCP-2-SN, and PCL-b-PPCP-3-SN
solid electrolytes were selected for further battery performance studies.

Table 2. Ionic conductivity of polymer electrolyte with 30 wt.% EC/DMC.

Entry Sample Temperature/◦C Thickness/µm R/Ω σ/S cm−1

1 PCL-b-PPC-1-EC/DMC 25 34 98 1.82 × 10−5

2 PCL-b-PPC-1-EC/DMC 60 34 45 3.96 × 10−5

3 PCL-b-PPCP-2-EC/DMC 25 46 167 1.44 × 10−5

4 PCL-b-PPCP-2-EC/DMC 60 46 79 3.05 × 10−5

5 PCL-b-PPCP-3-EC/DMC 25 41 688 3.12 × 10−6

6 PCL-b-PPCP-3-EC/DMC 60 41 128 1.68 × 10−5

The polymer electrolyte is composed of 50 wt.% polymer, 30 wt.% EC/DMC, and 20 wt.% LiTFSI.
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Table 3. Ionic conductivity of polymer electrolyte with 30 wt.% SN.

Entry Sample Temperature/◦C Thickness/µm R/Ω σ/S cm−1

1 PCL-b-PPC-1-SN 25 40 40 5.24 × 10−5

2 PCL-b-PPC-1-SN 60 40 11 1.99 × 10−4

3 PCL-b-PPCP-2-SN 25 31 47 3.42 × 10−5

4 PCL-b-PPCP-2-SN 60 31 13 1.25 × 10−4

5 PCL-b-PPCP-3-SN 25 32 73 2.29 × 10−5

6 PCL-b-PPCP-3-SN 60 32 15 1.14 × 10−4

The polymer electrolyte is composed of 50 wt.% polymer, 30 wt.% SN, and 20 wt.% LiTFSI.

The electrochemical stability window of the electrolyte membrane was tested by
linear sweep voltammetry (LSV) at 60 ◦C, as shown in Figure 4. The electrochemical
decomposition of PCL-b-PPC-1-SN was 4.4 V, slightly lower than PCL-b-PPCP-2-SN and
PCL-b-PPCP-3-SN (4.5 V), which paved the way to improve the adaptability between solid
electrolytes and high-voltage cathode materials and has broad application prospects in
high-voltage solid-state lithium batteries.
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Figure 4. LSV profiles of three electrolyte membranes.

The lithium-ion transference number (tLi+) was determined by a DC polarization
combined with impedance spectroscopy by SE cells. The tests results are shown in Figure 5.
The initial current of PCL-b-PPC-1-SN was 0.138 mA, which reached a steady state after
1000 s with a stable current of 0.044 mA. The interface impedance before polarization
was 21.5 Ω, and 20.4 Ω after polarization, and the tLi+ was calculated to be 0.41 accord-
ing to Bruce–Vincent equation. The LTN for PCL-b-PPCP-2-SN and PCL-b-PPCP-3-SN
(Figure 5b,c) was 0.44 and 0.46, respectively. The high tLi+ is mainly attributed to the ad-
dition of SN, which promotes the generation of large amorphous regions and enables the
transference of Li+. Furthermore, the electronegative N atoms in SN restrict the accumu-
lation of anions, resulting in reduced polarization and increased tLi+ in PCL-b-PPCP and
PCL-b-PPC electrolytes.

To investigate the cycling stability and inhibition ability of lithium dendrites, the sym-
metric cells with PCL-b-PPC-1-SN, PCL-b-PPCP-2-SN, and PCL-b-PPCP-3-SN electrolyte
were assembled and tested at 60 ◦C and 0.1 mA·cm−2. As shown in Figure 6, the Li/
PCL-b-PPC-1-SN/Li symmetric cell exhibited stable cycling for over 900 h with an over-
potential of approximately 0.06 V. The Li/PCL-b-PPCP-2-SN/Li symmetric cell showed
stable cycling for 350 h with a stable overpotential of 0.04 V. The Li/PCL-b-PPCP-3-SN/Li
symmetric cell exhibited stable cycling for 320 h with an overpotential of 0.04 V. No apparent
short-circuit or micro-short-circuit events were observed during the cycling process. Com-
pared to PCL-b-PPCP-2-SN, the PCL-b-PPC-1-SN electrolyte was softer, exhibited better
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interface compatibility with lithium, and had higher ionic conductivity, which facilitated uni-
form deposition and stripping of lithium and suppressed the formation of lithium dendrites.
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To investigate the feasibility of the polymer electrolytes for practical application in
the full cells consisting of LFP cathode, different polymer electrolytes and Li-metal anodes
were assembled. The cycling performances of the cells were conducted at a C-rate of 0.5 C
and a temperature of 60 ◦C, with the first six cycles serving as an activation process and
with a charge–discharge at 0.1 C. As shown in Figure 7, the LFP/PCL-b-PPC-1-SN/Li
exhibited a high initial discharge capacity of 155.5 mAh·g−1 at 0.5 C and can maintain a
capacity of 140.8 mAh·g−1 after 270 cycles, resulting in a capacity retention of 90.5% and
an average coulombic efficiency of 99%. LFP/PCL-b-PPCP-2-SN/Li exhibited an initial
discharge-specific capacity of 168.2 mAh·g−1 at 0.5 C. After 270 cycles, the discharge capac-
ity decreased to 136.5 mAh·g−1, resulting in a capacity retention of 81.2%, with a coulombic
efficiency above 98%. And the LFP/PCL-b-PPCP-3-SN/Li showed 137.1 mAh·g−1 initial
discharge capacity, 121.7 mAh·g−1 after 110 cycles, and 73.3 mAh·g−1 after 270 cycles.
The PCL-b-PPCP electrolyte showed lower capacity retention than PCL-b-PPC owing to
the poor stability at electrode/electrolyte interfaces, which resulted in larger polarization
and the severe growth of lithium dendrites. These results indicated that the presence of
rigid benzene in the chain segments is not conducive to the oscillation of polymer chain
segments, thereby affecting the electrochemical performance of electrolytes. Additionally,
the long retention of coulombic efficiency at a high value in the LFP/PCL-b-PPC-1-SN/Li
cell was attributed to the much better electrochemical stability of PCL-b-PPC-1-SN com-
pared to PCL-b-PPCP-2-SN and PCL-b-PPCP-3-SN. Accordingly, the PCL-b-PPC-1-SN
effectively suppressed the side reaction with the electrodes, contributing to the consistently
maintained coulombic efficiency of 99% in the LFP/PCL-b-PPC-1-SN/Li cell throughout
the long cycles.
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Figure 7. Cycle performance (Left vertical axis) and coulombic efficiency (right vertical axis) of
LFP/PCL-b-PPC-1-SN/Li, LFP/PCL-b-PPCP-2-SN/Li, and LFP/PCL-b-PPCP-3-SN/Li batteries at
0.5 C and 60 ◦C.

Rate capability is a crucial factor in battery commercialization, as people demand
fast charging. Figure 8 showed the rate performance of LFP/PCL-b-PPC-1-SN/Li and
LFP/PCL-b-PPCP-2-SN/Li with a range of C-rates (0.1−1 C) at 60 ◦C. The initial discharge-
specific capacities of LFP/PCL-b-PPC-1-SN/Li at different rates are 161.8 mAh·g−1 (0.1 C),
159.1 mAh·g−1 (0.2 C), 155.4 mAh·g−1 (0.5 C), 150.1 mAh·g−1 (1.0 C), and 159.9 mAh·g−1

(0.2 C), and when returned to 0.1 C, the capacity was restored to a value (158.5 mAh·g−1)
similar to the initial discharge capacity of 161.8 mAh·g−1. The outstanding capacity restora-
tion indicates the excellent electrochemical stability of the PCL-b-PPC-1-SN. On the other
hand, the initial discharge-specific capacities of LFP/PCL-b-PPCP-2-SN/Li at different
charge/discharge rates are 149.5 mAh·g−1 (0.1 C), 149.8 mAh·g−1 (0.2 C), 149.3 mAh g−1

(0.5 C), 136.3 mAh·g−1 (1.0 C), mAh·g−1 (0.2 C), and 122.9 mAh·g−1 (0.1 C). The capacity
rapidly decreases at the same rates, possibly due to high interface impedance and dendritic
lithium. When the current returns to 0.1 C, the specific capacity is slightly lower compared
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to the previous cycles, indicating poor rate performance. In conclusion, PCL-b-PPC-1-SN
exhibited better rate performance than the PCL-b-PPCP-2-SN.
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Figure 8. Rate performance of (a) LFP/PCL-b-PPC-1-SN/Li and (b) LFP/PCL-b-PPCP-2-SN/Li at
60 ◦C.

4. Conclusions

To address the critical issues of low ionic conductivity and narrow oxidation decom-
position potential window for polymer electrolytes, three block copolymers, PCL-b-PPC-1,
PCL-b-PPCP-2, and PCL-b-PPCP-3 were used in a one-pot, two-step method in this work.
The carbonate and ester bonds in PPC and PCL provide high electrochemical stability, and
the polyether segments in PPC contribute to the high ion conductivity, which can help to
overcome the aforementioned challenges. These copolymers were matched with different
plasticizers to in situ generate uniform electrolyte membranes on the electrodes, resulting
in enhanced lithium ion conductivity. Compared to PCL-b-PPCP-2 and PCL-b-PPCP-3,
PCL-b-PPC-1 has a lower Tg and more flexible chain segments, which are beneficial for
lithium ion conduction. And attributed to the high dielectric constant, SN showed a better
improvement in ion conductivity compared to other plasticizers. After addition of SN,
the ion conductivities of PCL-b-PPC-1-SN, PCL-b-PPCP-2-SN, and PCL-b-PPCP-3-SN at
60 ◦C were 1.99 × 10−4 S·cm−1, 1.25 × 10−4 S·cm−1, and 1.14 × 10−4 S·cm−1; the tLi+
were 0.41, 0.44, and 0.46, respectively. Therefore, the Li/PCL-b-PPC-1-SN/Li symmetric
cell exhibited stable cycling for over 900 h at a current density of 0.1 mA·cm−2, with an
overpotential of approximately 0.06 V, demonstrating excellent interface stability with
lithium metal. Furthermore, the full cell assembled by LFP/PCL-b-PPC-1-SN/Li showed
an initial discharge-specific capacity of 155.5 mAh·g−1 at 0.5 C, and after 270 cycles, the
discharge-specific capacity was 140.8 mAh·g−1, indicating good cycle stability. Our work
provides a good optimization approach for solid-state electrolyte in lithium metal batteries.
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