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Abstract: Collision welding is a promising approach for joining conventional materials in identical
or dissimilar combinations without heat-related strength loss, thereby opening up new lightweight
potential. Widespread application of this technology is still limited by an insufficient state of knowl-
edge with respect to the underlying joining mechanisms. This paper applies collision welding to a
material combination of DC04 steel and EN AW 6016 aluminium alloy. Firstly, the welding process
window for the combination is determined by varying the collision speed and the collision angle, the
two main influencing variables in collision welding, using a special model test rig. The process
window area with the highest shear tensile strength of the welded joint is then determined using
shear tensile tests and SEM images of the weld zone. The SEM investigations reveal four distinct
metallographic structures in the weld zones, the area fractions of which are determined and correlated
with collision angle and shear tensile strength.

Keywords: collision welding; impact welding; electromagnetic pulse welding; welding window;
metallographic weld zone; multi-material construction; lightweight concepts; weight reduction;
emission reduction

1. Introduction

Mobility continues to be seen as an essential part of modern society, enabling people
to access fundamental areas of society such as education, healthcare and the labour market.
The concept of mobility covers a broad spectrum from private transport to public transport,
the transport and logistics sector and basic infrastructure [1]. In 2022, 21% of global CO2
emissions were attributable to the transport sector, 48% of which was caused by private
transport [2,3]. In addition to CO2 emissions from combustion vehicles, both electric and
conventional combustion vehicles emit harmful particulate matter in the form of brake dust
and tyre abrasion as so-called “non-exhaust particle emissions”. In total, up to ten percent
of the microplastics released into the world’s oceans can be attributed to tyre abrasion from
vehicles. The amount of non-exhaust particulate matter emitted per vehicle exceeds the
amount of exhaust particulate matter emitted by modern combustion vehicles, which is
why the future Euro 7 emission standard in Europe will also regulate “non-exhaust particle
emissions” for the first time [4–12].

One way to reduce these emissions is to reduce vehicle mass [13–15]. For example,
for small cars with internal combustion engines, a reduction in vehicle mass of 100 kg
results in a reduction in CO2 emissions of 10 gCO2/km [13]. Vehicle weight also has a
significant impact on non-exhaust particulate matter emissions. For example, the additional
weight of 318 kg in an electric car compared to a comparable petrol car leads to an increase
of up to 22% in non-exhaust particulate matter emissions. It is clear, how important
weight-optimised design is for the environment [16]. These lightweighting goals can be
achieved with the materials commonly used in automotive engineering, aluminium and
steel, through the use of multi-material construction, particularly in conjunction with
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high-strength material variants [17]. In multi-material components, the different materials
and alloys are combined to meet structural performance and weight requirements. Due
to the different properties of the materials to be joined, fusion welding processes such as
tungsten inert gas welding (TIG) or laser beam welding reach their limits in multi-material
construction. The main reason for this is the different melting temperatures of the different
materials [18,19]. If a material bond is possible at all, the melting of the materials leads to
the formation of intermetallic phases in the weld area. The associated loss of ductility in the
brittle metal joints restricts the potential of the used materials [20,21]. In order to exploit
the existing lightweight potential of multi-material construction to the maximum, a joining
process is therefore required that allows the material bonding of steels with aluminium
alloys with the lowest possible loss of strength.

In this area, the solid state welding or collision welding process group opens up new
opportunities. The joining mechanism is based on the application of sufficiently high
pressure to join similar and dissimilar material combinations without active heat input.
The formation of intermetallic phases in the joint zone is avoided [20–22]. The process
window of the respective material combinations in which joining is possible is spanned
by two variables, collision speed and collision angle. Depending on the collision angle,
the process window is divided into three sub-areas with different joining mechanisms.
These are the solid-phase joining region, the liquid-phase joining region and a hybrid
region. Both joining mechanisms occur in the hybrid region [23]. Electromagnetic pulse
welding (EMPW) exploits the advantages of collision welding in an industrial production
environment [24,25]. In EMPW, one joining partner is accelerated to a high speed by a strong
electromagnetic field and welded to the second joining partner through the subsequent
high-speed collision [19,22]. Due to transient phenomena, the collision speed and the
collision angle change dynamically during the course of the collision in the EMPW process.
The transient process conditions influence the weld properties [26,27]. The process design
in EMPW is currently exclusively iterative, which is costly and time-consuming on the
one hand and leads to uncertainties in series production on the other hand [28]. For future
optimised design of EMPW processes, it is therefore necessary to know the critical angle
profile for the joint design during the collision in order to best influence the achievable
strength properties of the joint in a robust way.

In this work, a mechanical collision welding test rig is used to investigate the formation
of the joint zone and the joining mechanisms occurring in it at different collision angles
for the material combination DC04 with EN AW 6016-T4. The aim is to identify the ideal
angle range for a joint to determine the strength values of the welded joint as a function
of collision angle and speed. In contrast to the previous work, in which the strength of
the welded joint was determined and the weld zone was observed at individual points
using microscope images, here, for the first time, the area ratios of the joint structures
are determined over the entire length of the weld zone using SEM images to correlate
the determined ratios with the tensile shear strength. This should form the basis for the
future development of an analytical approach that can be used to calculate the strength of
EMPW joints on the basis of simulated angle curves. The equipment used and the tests and
investigations carried out are presented in the following section.

2. Materials and Methods

The tests in this work are carried out on a model test rig for collision welding; see
the functional description below. The specimens used are taken from aluminium sheets
(EN AW 6016-T4, thickness: 1.5 mm, tensile strength Rm: 235 N/mm2) and steel sheets
(DC04, thickness: 2.0 mm, tensile strength Rm: 310 N/mm2) by shear cutting. For each
material, three tensile tests were performed on a Zwick Roell 100 (Zwick Roell, Ulm,
Germany) combined tensile and compression testing machine to determine tensile strength
in accordance with DIN 50125.

The model test rig for collision welding, developed at the Institute for Production
Engineering and Forming Machines (PtU) at the Technical University of Darmstadt, allows
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the collision welding process to be investigated over the time profile of the collision with
constant and precisely adjustable collision parameters thanks to its fully mechanical design.
At the same time, it offers good observability of the process and the process phenomena.
Figure 1a shows the construction of the model test rig. The specimens to be welded
(collision area: length × width: 12.5 mm × 12 mm) are mounted at the ends of the two
rotors rotating in the same direction. The EN AW 6016-T4 flyer specimen is pre-bent to set
the collision angle β. The DC04 target is flat and is additionally supported by an anvil; see
Figure 1b. To eliminate any influence on the test results from lubricant or corrosion inhibitor
residues on the specimen surfaces, the specimens are cleaned with acetone immediately
prior to testing. Both samples are accelerated in the model test rig to half of the desired
impact velocity vimp by rotating the rotors at a specified speed. The collision speed vimp
is varied in five steps from 262 m/s, 279 m/s, 305 m/s, 331 m/s and 349 m/s. For each
collision speed, the collision angle β is varied to determine the welding process window.
The collision angle is varied between 3.5◦ and 13.5◦. During the collision of flyer and target,
the collision front moves along the joining surface at the collision point velocity vc. The
following trigonometric relationship expresses the dependence between the variables [23].

tan β =
vimp

vc
(1)

As the rotors cannot reach the required speed within one revolution, both rotors
initially accelerate axially offset from each other. Once the required speed has been reached,
one rotor is shifted along its axis of rotation by means of a sliding rotor hub, as shown in
Figure 1c. This is achieved by a preloaded pin engaging a helical groove in the rotor hub.
Due to the predetermined kinematics of this cam gear, the axial offset of 15 mm between the
two rotors is achieved within one revolution and the specimens collide exactly in the centre
between the pivot points of the two rotor axes. During the collision or welding process, the
flyer sample is separated from the flyer rotor by being torn off at a predetermined breaking
point. The welded samples remain on the target rotor until the rotors come to a standstill.

Figure 1d shows the electromagnetic pulse welding (EMPW) process described in
the previous section. In contrast to the model test rig, in EMPW, the flyer is accelerated
towards the target by an electromagnetic field. When using a combination of aluminium
and steel, aluminium is always used as the flyer material. This is due to its much higher
electrical conductivity compared to steel [29]. The target, in this case, the steel sheet, is
supported in the EMPW so that the kinetic energy of the flyer is fully utilised for welding
during the collision process and the steel target is not set in motion by the collision. During
this collision process, the flyer rolls sideways to the coil on the target, causing the dynamic
change in collision angle β and collision velocity vimp described above. The mechanical
design of the model test rig thus allows the transient EMPW collision-welding process to
be studied at discrete points, each with a constant collision angle and velocity, and their
influence on the properties of the welded joint. The aluminium alloy is used as the flyer
and the steel target is supported on the back by the anvil in order to reproduce the EMPW
process for the material combination mentioned as closely as possible with the model test
rig and to be able to investigate the process behaviour.

In particular, the constant collision position of the two samples on the model test rig
allows for good observation of the process. High-speed optical observation is performed
using a hsfc pro image intensifier camera from PCO (Kelheim, Germany) and a Milvus Macro
100 mm f2.0 macro lens from Zeiss (Oberkochen, Germany). The camera allows exposure
times of <20 ns and the acquisition of up to eight images per collision. The brightness of
the high-speed images is ensured by a CAVILUX Smart illumination laser from Cavitar
(power: 400 W, wavelength: 640 nm, Tampere, Finland). The collision angle β is determined
from the high-speed images using a MATLAB script (MathWorks, version: 2022b, Natick,
Massachusetts, USA) based on edge detection. Detailed information on process monitoring
and image processing of the high-speed images can be found in [30–32].
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Figure 1. (a) The model test rig consists of two synchronised rotating rotors and an engaging
mechanism. (b) The specimens are mounted at the end of each rotor. The target specimen is
supported at the rear by an anvil. The flyer specimen is pre-bent to set the collision angle β. (c) In the
engaging mechanism, a pin is preloaded by an electromagnet and a spring. When the electromagnet
is deactivated, the pin engages in the helical groove and the entire rotor hub is shifted within one
revolution so that both rotors are in one plane and the specimens collide. (d) Process setup for EMPW
according to [33]. The initially flat flyer is accelerated by the electric field of the coil towards the
stationary target, which is also supported on its back. The collision speed vimp and angle β change
during the collision.

In order to analyse the weld zone, the mounting face and lateral edge areas of the
collision welded specimens are first cut off using a wet cut-off grinder in order to remove
any effects of specimen manufacture in the edge areas of the weld and to shorten the overall
length of the specimen for microscopic examination; see Figure 2. The samples are cut to
a width of 8 mm ± 1 mm and a length of 14 ± 1 mm. The cut surfaces of the specimens
are then ground on grinding and polishing machines with SiC paper (grit size P320, P400,
P600, P800, P1200, P2500 and P4000) and polished with diamond suspension (3 µm and
1 µm). During grinding, the sample width is further reduced to 5 ± 1 mm. The weld zone
is examined microscopically using a Phenom ProX scanning electron microscope (SEM),
manufactured by Phenom-World (Waltham, MA, USA). If different joint structures occur
along the length of the weld zone, the lengths of the corresponding areas are measured
with the microscope in order to analyse correlations between the occurring joint structures
and the shear tensile strength of the welded joint.
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Figure 2. Graphic visualisation of the specimen cutting process and exemplary representation of
different joint structures along the length of the weld zone.

The tensile shear strength of the welded joint is determined using a fixture developed at
PtU on a Zwick Roell 100 combined tensile and compression testing machine. In the fixture,
the specimens (lateral edge areas and mounting face separated) are clamped between a
clamping element and a hardened steel shear plate. The testing machine then moves at
a test speed of 0.1 mm/s and applies shear to the welded joint via a second shear plate
until the joint fails. All moving parts of the fixture are guided on bronze sliding plates
with embedded graphite to reduce the effect of friction on the tensile shear test results. The
repeatability of tensile shear tests depends on the overall Zwick Roell 100 combined tensile
and compression testing machine with an integrated force sensor. For further information
on the method used to test joint strength in the tensile shear test, see [23].

3. Results
3.1. Welding Process Window

This section presents the welding process window determined by collision welding
tests for the material combination of aluminium EN AW 6016-T4 as the flyer and steel DC04
as the target. The materials have sheet thicknesses of 1.5 mm (EN AW 6016-T4) and 2.0 mm
(DC04). As explained in the previous section, the collision welding tests are carried out
at the five collision speeds vimp of 262 m/s, 279 m/s, 305 m/s, 331 m/s and 349 m/s. The
process window determined is shown in Figure 3. In determining the process window, a
collision weld test is defined as joined if the two specimens cannot be manually separated
after the test. To improve the clarity of the process window diagram, the tests in which a
joint is achieved are shifted 2 m/s to the left on the collision velocity axis.

At the two lowest collision speeds of 262 m/s and 279 m/s, there are still no bonds
between the two materials. The first bonds between the two materials occur at a collision
speed of 305 m/s. The lower limit angle is 7.3◦ and the upper limit angle is 8.3◦. The
angular range of the process window at this collision speed is 1.0◦. At a collision speed
of 331 m/s, a smaller lower limit angle of 6.8◦ is determined, while the upper limit angle
increases to 9.8◦. Even at the highest collision speed analysed, 349 m/s, there is again a
slight reduction in the lower limit angle to 6.5◦ and a greater increase in the upper limit
angle to 11.2◦. The welding process window identified shows a clear separation of the
areas where there is a bond or no bond between the two materials, both at the lower and
upper limit angles.
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Figure 3. Welding process window of the material combination EN AW 6016-T4 (flyer, thickness:
1.5 mm) and DC04 (target, thickness: 2.0 mm).

3.2. Tensile Shear Strength of Welded Joints in the Center of the Welding Window at 305 m/s,
331 m/s and 349 m/s

Once the process window has been determined, it is first investigated whether the
tensile shear strength of the welded joints of the material combination that can be produced
by collision welding is dependent on the respective collision speed or whether the tensile
shear strength values of the welded joints are independent of the collision speed. The
tensile shear strength is compared at three different collision speeds (305 m/s, 331 m/s and
349 m/s). Only specimens that are in the centre of the process window at each speed are
used for this comparison.

However, the collision angle can only be preset in 0.5◦ increments by pre-bending
the flyer samples. In addition, due to the dynamics of the process in the model test rig,
elastic deformations of the rotors occur, e.g., due to the engagement process, air resistance
and aerodynamic turbulence in the rotor protection housing. These result in a deviation
of the actual measured collision angle from the preset collision angle. For these reasons, a
larger number of samples are welded at each of the three collision speeds and then three
samples are selected for each collision speed that are within a range of ±0.3◦ around the
mean collision angle of the process window. For the process window shown in Figure 3,
the mean collision angle at a collision speed of 305 m/s is 7.8◦. At 331 m/s the angle is 8.3◦

and at 349 m/s 8.8◦.
The values obtained show an increase in tensile shear strength with increasing collision

speed. At 305 m/s, the average tensile shear strength is 22 N/mm2, and at 331 m/s, it is
55 N/mm2. At both collision speeds, the welded joints shear or slide against each other
in the weld zone. A strength of 130 N/mm2 is determined for the specimens welded at
a collision speed of 349 m/s. Compared to the other specimens, these show a combined
failure pattern when the maximum shear strength is reached. Along the length of the weld
zone, there are areas where the specimens are separated by shear in the weld zone or slide
against each other (similar to the specimens at 305 m/s and 331 m/s) and areas where
shear occurs within the aluminium material, which is less strong than steel. The strength
of the welded joint in these areas is therefore greater than the tensile shear strength of
the aluminium material. Viewed over the length of the weld zone, shear failure in the
aluminium material occurs predominantly in the middle, whereas shear or sliding in the
weld zone occurs predominantly at the beginning and end; see Figure 4d,e.
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Figure 4. Images of the welded specimens (vimp: 349 m/s, β: 9,2◦, welding direction: left to right)
of steel DC04 (bottom) and aluminium EN AW 6016-T4 (top): (a) flyer and target in initial state;
(b) welded specimens, with traces of ejected jet and particle cloud in area of mounting hole; (c) cut
sample (grinding and polishing still to be carried out); (d,e) macro-image of welded specimens after
tensile shear test, shear or sliding failure at the beginning and end of the weld zone and shear failure
in the aluminium material in the middle of the weld zone.

3.3. Joint Structures in the Weld Zone

The investigations in the previous section show that the highest tensile shear strength
values in the middle angular ranges of the welding process window are achieved for the
weld joints produced at a collision speed of 349 m/s. In order to obtain a more precise
statement about the tensile shear strength over the entire angular range of the welding
process window at 349 m/s, further investigations are carried out. For this purpose, welded
specimens from the entire angular range are first metallographically prepared according
to the procedure described in Section 2. The weld zone of the prepared specimens is then
examined by SEM. If different joint structures are observed along the entire length of the
weld zone of the cut specimens, the position and length of the corresponding areas are
measured; see Figure 2. These values are used to extrapolate the area ratios of the different
joint structures to the total area Aw of the welded joint. If the length ratios of the structures
are unequal on both sides, the area is calculated using non-square geometries such as a
trapezoid. The following Section 3.4 presents the evaluation of the tensile shear strength
values in relation to the extrapolated area fractions of the joint structures in the weld zone.
Four characteristic joint structures are observed when the weld zones are examined by
SEM, as shown in Figure 5 and briefly explained below.

Figure 5a shows the characteristic joint structure of a weld without an interlayer. The
steel material DC04 (dark grey) and the aluminium material EN AW 6016-T4 (light grey)
lie directly on top of each other. The transition between the two materials in this structure
is very smooth and no voids are visible. The SEM image in Figure 5b shows the structure
where there is an interlayer (medium grey) between the aluminium material and the steel
material. This area differs from the two base materials in both colour and structure. The
interlayer is much smoother on the side facing the steel material (the bottom in the image)
than on the top. In contrast, the top of the interlayer, i.e., the side facing the aluminium
material, has a much more uneven or wavy surface. Similar to the structure shown in
Figure 5a, no voids are visible. The thickness of the interlayer varies from 5 µm to 50 µm.
However, the layer thickness is predominantly in the range of 10 µm. In the SEM images,
lighter streaks or more sharply defined lighter areas can be seen in the interlayer, the colour
of which is similar to that of the aluminium material. In addition, the interlayer resembles
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the aluminium–steel solid solution structure shown in [33]. For this reason, the structure
shown here is assumed to be an aluminium solid solution.
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Figure 5. SEM images of the characteristic joint structures of the weld zone between steel DC04 (dark
grey) and aluminium EN AW 6016-T4 (light grey): (a) weld zone without interlayer; (b) weld zone
with interlayer (medium grey); (c) weld zone with cracked interlayer; (d) no contact between joining
parts in the weld zone.

The structures shown in Figures 5c,d both have voids of different shapes. The structure
shown in Figure 5c will be referred to in the following as a weld zone with a cracked
interlayer. The cracks occur only in the interlayer and not in the two base materials. The
dimensions and optical composition of the interlayer correspond to the crack-free state
shown in Figure 5b, so that an aluminium solid solution is also assumed here only in the
cracked state. In addition, the SEM examination of the weld zones in some of the specimens
reveals areas where there is no bond or direct contact between the two base materials.
Figure 5d shows an example of such an area.

3.4. Tensile Shear Strength as a Function of Collision Angle

As described in the previous section, the tests for the collision speed of 349 m/s are
carried out on a significantly larger number of specimens, covering the full angular range
of the process window. The diagram in Figure 6 shows the curve of tensile force and
crosshead travel determined with the combined tensile and compression testing machine
for three specimens welded at different collision angles β at a collision speed vimp of
349 m/s. The specimens with a collision angle of 7.3◦ and 11.2◦ fail after a short travel
distance of the testing machine due to slipping in the welding zone. The specimen with a
collision angle of 9.2◦, i.e., in the centre of the process window, can withstand a significantly
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higher maximum force. This results in failure of the welded joint due to shearing in the
weaker aluminium material; see Figure 4d,e.
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Figure 6. Force–travel diagram showing crosshead travel and tensile force in the tensile shear test
for the material combination EN AW 6016-T4 (flyer, thickness: 1.5 mm) and DC04 (target, thickness:
2.0 mm) for a collision speed vimp of 349 m/s in dependence of the collision angle β.

The tensile shear strength and area ratios (see Section 3.5) of the joint structures present
in the weld zone are determined for a total of 27 specimens. These 27 specimens divide
the process window into three angular areas. Area I covers the angle range 6–8◦, area II
covers the angle range 8–10◦ and area III covers the angle range 10–12◦. Figure 7 shows the
mean values of the tensile shear strength determined for the three areas. Area II has the
highest tensile shear strength with a mean value of 131 N/mm2. The strength values drop
sharply towards the lower and upper limits of the process window, i.e., area I and area III,
respectively. For example, a mean tensile shear strength of 40 N/mm2 is measured in area
III, while area I has the lowest mean value of 30 N/mm2. The parabolic line shown in the
figure is an interpolated trend line through the points of the three mean values determined.
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Figure 7. Tensile shear strength of the material combination EN AW 6016-T4 (flyer, thickness:
1.5 mm) and DC04 (target, thickness: 2.0 mm) in the angular areas for a collision speed vimp of 349 m/s.



Materials 2024, 17, 3863 10 of 14

3.5. Area Ratios of the Joint Structures as a Function of Collision Angle

By analysing the SEM images of the 27 samples, the area fractions of the compound
structures shown and described in Section 3.3 are determined using the procedure described
there. The results of the analysis are shown in the diagram in Figure 8. In the diagram, the
two joint structures weld zone with cracked interlayer (Figure 5c) and no contact between
joining parts in the weld zone (Figure 5d) are combined into the superordinate structure no
contact or cracked, as neither structure can transfer any forces in the weld zone between
the aluminium and steel materials. Different joint structures dominate depending on the
angle area. In area I (6–8◦), the no contact or cracked joint structure has the largest area
ratio at 73%, whereas in areas II (8–10◦) and III (10–12◦), it has an area ratio of only 10%
and 13%, respectively. In area II, the weld zone with interlayer (Figure 5b) joint structure
dominates with 73%. In contrast, it has a much lower proportion of 23% in area I and a
strikingly low proportion of 2% in area III. Area III is dominated by the weld zone without
interlayer (Figure 5a) joint structure. Its area ratio increases from 3% in area I to 17% in area
II and 85% in area III.
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Figure 8. Area ratios of the joint structures of the material combination EN AW 6016-T4 (flyer,
thickness: 1.5 mm) and DC04 (target, thickness: 2.0 mm) in the angular areas for a collision speed
vimp of 349 m/s.

4. Discussion

The results presented in this paper show, for a collision speed vimp of 349 m/s, a
correlation between the collision angle β, the shear strength determined in tensile shear
tests and the joint structures in the weld zones determined from SEM images. In the angle
range near the lower limit (6–8◦) of the welding process window, the largest area fractions
in the weld zone are determined for the joint structures summarised in the superordinate
structure no contact or cracked (see Figure 5c,d). This correlation can be attributed to the
highly dynamic phenomena in the closing collision gap during the collision. Small collision
angles lead to the highest collision point velocities vc (see Equation (1)), i.e., the fastest
closing collision gap. In particular, unevenness and irregularities on the surfaces of the
joining partners lead to strong turbulence. These impede the exit of the jet and particle
cloud from the closing collision gap and lead to gas entrapment in the weld zone [23]. These
entrapments are visible in the SEM images in the form of the observed cracked interlayer
or in the form of areas of no contact between the base materials.

In the medium angle range (8–10◦), the lower collision point velocity ensures that the
jet and particles exit the closing collision gap, significantly reducing the area of cracked and
unconnected structures. This can also be observed in the upper angular range. In addition,
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due to the conditions in the collision gap (pressure, compression of the medium in the
collision gap, gas friction due to the escaping jet, etc.), the temperatures in the collision gap
in the medium angular range are sufficiently high for a sufficiently long time to exceed
the melting temperature of the base materials and melt them. The melting leads to the
formation of a weld zone with an aluminium solid solution as an intermediate layer (see
Figure 5b and [33]). At the upper end of the angle range (10–12◦), there is not enough
heating in the collision gap to cause the base materials to melt. The result is a smooth joint
structure with no interlayer between the two base materials (see Figure 5a).

A comparison of the tensile shear strength values determined in relation to the surface
areas of the four joint structures shows that the welded joints have the highest strength
values in the middle angle range, although the described joint structure with an interlayer
of aluminium solid solution dominates there. It is assumed that the strength values of the
aluminium solid solution are lower than those of the two base materials. The high shear
strength values of the joint are explained by the increase in surface area due to the wavy
interlayer through which the solid solution is locally strongly interlocked with the two base
materials. The occurrence of a wavy microstructure is also associated with favourable joint
properties in terms of strength in [34,35], among others.

However, the correlation of the shear strength values with the surface areas of the four
joint structures must always be considered against the background that the area shares
determined are an extrapolation. The extrapolation is based on the analysis of two cut
surfaces for each welded specimen using SEM images. It is not possible to accurately
determine the area fractions between the two cut surfaces analysed using this method. For
example, voids that are only present in the central area of the specimen and are not visible
in the SEM images will reduce the tensile shear strength values determined, as these areas
will also be incorrectly assumed to be joined.

Furthermore, the comparison of the observed joint structures with the schematic
representation of the characteristic areas of different joint structures in the process window
from [36] shows that the formation of the smooth joint structure without an intermediate
layer (see Figure 5a) occurs in the upper angular range of the process window. In [36], this
region shifts to larger collision angles β with increasing collision point velocity vc. The low
tensile shear strength of the specimens with this joint structure of 40 N/mm2 on average
(see Section 3.4) is attributed to the fact that the collision velocity vimp of 349 m/s is at
the lower limit of the occurrence of this joint structure. It is expected that an increase in
collision velocity will increase the welding process window for the material combination
of EN AW 6016-T4 and DC04, particularly in the direction of the upper limit angle. Based
on the statements in [36], it is expected that at higher collision speeds for the upper angle
range, the specimens with a smooth joint structure without an intermediate layer will have
higher tensile shear strengths.

It is not possible to verify the expected results described above with the current model
test rig for collision welding as the maximum collision speed is limited to 349 m/s by
design. A planned extension of the model test rig should allow a maximum collision speed
of 500 m/s. The approach presented and successfully applied in this paper to correlate
the shear strength with the percentage area of the different joint structures must be carried
out in the future with a significantly larger sample size in order to reduce the influence
of strength scatter. In addition, the angular areas need to be much smaller. In the context
of the electromagnetic pulse welding (EMPW) process, it is therefore possible to simulate
the transient behaviour of the collision angle and speed and use this approach to draw
conclusions about the strength of the resulting welded joint.

5. Conclusions

This study comprehensively investigates the collision welding process for the material
combination DC04 steel and EN AW 6016-T4 aluminium. Using a mechanical collision
welding test rig, different collision angles are analysed to determine their effect on the
formation of the joint structure of the weld zone and the tensile shear strength of the welded
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joints. The results show that medium collision angles (8–10◦) at a collision speed of 349 m/s
produce the most favourable welding conditions, characterised by minimal cracking and
unconnected structures, resulting in higher tensile shear strength. In further research, the
interlayer in the weld zone, which varies in appearance depending on the collision angle,
will be analysed by EDX analysis in order to determine the metallurgical composition of
this layer as a function of the collision angle. The planned extension of the model test rig
to collision speeds of 500 m/s will allow the potential further increase in strength of the
welded joint at higher collision speeds to be investigated in the future.
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