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Abstract: The remarkable stability, suitable thermomechanical characteristics, and acceptable electri-
cal properties of donor-doped strontium titanates make them attractive materials for fuel electrodes,
interconnects, and supports of solid oxide fuel and electrolysis cells (SOFC/SOEC). The present
study addresses the impact of processing and thermochemical treatment conditions on the electrical
conductivity of SrTiO3-derived ceramics with moderate acceptor-type substitution in a strontium
sublattice. A-site-deficient Sr0.85La0.10TiO3−δ and cation-stoichiometric Sr0.85Pr0.15TiO3+δ ceramics
with varying microstructures and levels of reduction have been prepared and characterized by XRD,
SEM, TGA, and electrical conductivity measurements under reducing conditions. The analysis of
the collected data suggested that the reduction process of dense donor-doped SrTiO3 ceramics is
limited by sluggish oxygen diffusion in the crystal lattice even at temperatures as high as 1300 ◦C. A
higher degree of reduction and higher electrical conductivity can be obtained for porous structures
under similar thermochemical treatment conditions. Metallic-like conductivity in dense reduced
Sr0.85La0.10TiO3−δ corresponds to the state quenched from the processing temperature and is propor-
tional to the concentration of Ti3+ in the lattice. Due to poor oxygen diffusivity in the bulk, dense
Sr0.85La0.10TiO3−δ ceramics remain redox inactive and maintain a high level of conductivity under
reducing conditions at temperatures below 1000 ◦C. While the behavior and properties of dense
reduced Sr0.85Pr0.15TiO3+δ ceramics with a large grain size (10–40 µm) were found to be similar,
decreasing grain size down to 1–3 µm results in an increasing role of resistive grain boundaries
which, regardless of the degree of reduction, determine the semiconducting behavior and lower total
electrical conductivity of fine-grained Sr0.85Pr0.15TiO3+δ ceramics. Oxidized porous Sr0.85Pr0.15TiO3+δ

ceramics exhibit faster kinetics of reduction compared to the Sr0.85La0.10TiO3−δ counterpart at tem-
peratures below 1000 ◦C, whereas equilibration kinetics of porous Sr0.85La0.10TiO3−δ structures can
be facilitated by reductive pre-treatments at elevated temperatures.

Keywords: perovskite; titanate; SrTiO3; donor doping; electrical conductivity; SOFC; SOEC; redox
stability; grain boundary

1. Introduction

Solid oxide cells are an advanced electrochemical energy conversion and storage
technology that can be used for generating electrical energy in fuel cell mode (solid oxide
fuel cell, SOFC) [1], converting excess green renewable power into fuels or chemicals in
electrolysis mode (solid oxide electrolysis cell, SOEC) [2], and balancing electrical grids
in a reversible regime (reversible solid oxide cell, rSOC) [3]. The development of solid
oxide cell technology faces significant material challenges, including the requirements
for high-temperature stability, compatibility of different cell components, and long-term
durability under operation conditions.

Remarkable stability in a wide range of thermochemical conditions, moderate thermal
expansion, and acceptable electrical conductivity (≥10 S/cm) attracted significant inter-
est to donor-doped SrTiO3 ceramics as prospective components for SOFC anodes [4–8].
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Resistance to carbon deposition and sulfur poisoning makes these materials promising
candidates for anodes operating in harsh environments—in SOFCs fueled by natural gas or
biogas [9–12] and direct-carbon SOFCs [13–15]. In the last decade, donor-doped strontium
titanates were also explored as prospective materials for SOEC cathodes [16–19], inter-
connects and current collectors for SOFC/SOEC [20–23], and supports for thin-electrolyte
cells [24–27].

An acceptable level of electrical conductivity is one of the main requirements for all
mentioned applications in solid oxide cells. The high electrical conductivity of components
is a prerequisite to minimize the ohmic losses during SOFC/SOEC operation. In addition,
insufficient electrical conductivity of electrode material may be a factor limiting its electro-
chemical performance [28,29]. The target electrical conductivity for electrode materials is
often set to be around 100 S/cm in a dense form (and one order of magnitude lower for
porous structures) [30]. Even higher electrical conductivity is preferable for interconnect
materials to satisfy the ASR (area-specific resistance) requirement of <10 mΩ × cm2 [31].
While undoped SrTiO3 is a wide-bandgap semiconductor with a comparatively low electrical
conductivity [32,33], donor-type substitutions into either the Sr2+ sublattice (e.g., by rare-earth
cations Ln3+) or into the Ti4+ sublattice (e.g., by Nb5+ or Ta5+) promote a significant increase
in the n-type electronic conductivity under reducing conditions [5–8,34–36]. At the same time,
the literature reports provide very non-uniform data on electrical conductivity even for the
ceramics of the same composition which is caused by diverse conditions used for fabrication
and thermochemical treatments of ceramic samples and their electrical characterization. As an
example, Figure 1 and Table 1 summarize the literature data [35–43] on the electrical conduc-
tivity of Sr0.90La0.10TiO3±δ ceramics measured under reducing conditions, in hydrogen-based
atmospheres. The plot shows that, depending on ceramic processing conditions, the reported
values of electrical conductivity may vary within 2–2.5 orders of magnitude under reducing
conditions and temperatures relevant for SOFC/SOEC operation.
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Table 1. Literature data on the electrical conductivity of donor-doped Sr0.90La0.10TiO3±δ ceramics.

Sintering Reductive Treatment Measurement
Atmosphere

σ, S/cm
(900 ◦C) Ref.

dry H2, 1450 ◦C dry H2 125 Moos [37]
2%H2-N2, 1650 ◦C/8 h 4%H2-Ar 1 104 Marina [36]

air, 1700 ◦C/10 h 10%H2-N2, 1500 ◦C/10 h 10%H2-N2 90 Yaremchenko [35]
5%H2-Ar, 1500 ◦C/10 h humidified 5%H2-Ar 87 Li [38]

air, 1450 ◦C/10 h H2 + 1.2%H2O, 900 ◦C/10 h H2 + 1.2%H2O 15 Lv [39]
air, 1650 ◦C/10 h humidified 30%H2-N2 14 Wang [40]
air, 1650 ◦C/8 h 4%H2-Ar 1 3.2 2 Marina [36]

air, 1550 ◦C/50 h H2-Ar 3 2.3 Niwa [41]
air, 1400 ◦C/5 h 30%H2-N2 1.9 Park [42]

air, 1450–1650 ◦C/10 h 9%H2-N2 0.7 Hashimoto [43]
1 p(O2) = 10−18 atm at 1000 ◦C; 2 T = 1000 ◦C; 3 p(O2) = 10−22 atm at 900 ◦C.

The present work aims to explore the effects of thermochemical processing conditions
and microstructure on the electrical conductivity of two SrTiO3-derived compositions with
moderate levels of donor-type substitution in the strontium sublattice but different defect
chemistry: Sr0.85La0.10TiO3−δ and Sr0.85Pr0.15TiO3±δ. A-site-deficient Sr0.85La0.10TiO3−δ is
a representative of the Sr1−1.5xLnxTiO3−δ series. Donor-type substitution in these series of
titanates under oxidizing conditions is charge-compensated by strontium vacancies:

[Ln3+
Sr ] = 0.5[VSr] or [Ln·

Sr] = 0.5[V′′
Sr], (1)

The reduction process involves partial reduction of titanium cations from the 4+ to 3+
oxidation state accompanied by the formation of vacancies in the oxygen sublattice:

Sr1−1.5xLnxTi4+O3
red

−−−−→Sr1−1.5xLnxTi4+1−2δTi3+2δ O3−δ, (2)

Nominally cation-stoichiometric Sr0.85Pr0.15TiO3±δ belongs to the Sr1−xLnxTiO3+δ series
with the donor dopant charge-compensated by oxygen excess in the structure. In this
case, defect chemistry may involve either (i) simultaneous formation of Sr vacancies and
extended defects—SrO shear planes characteristic of layered Ruddlesden–Popper structures
or (ii) oxygen-rich Ln3+

Sr · · · O2−
i defect clusters [6,44–46]. When Sr vacancies and SrO shear

plains are prevailing defects, the formula of oxidized oxide can be expressed as follows:

Sr1−xLnxTiO3+δ ≡ Sr1−1.5xLnxTiO3∗(SrO)0.5x, (3)

and the full reduction at elevated temperatures may also involve the dissolution of
extended defects:

Sr1−1.5xLnxTi4+O3 ∗ (SrO)0.5x
red

−−−−→Sr1−xLnxTi4+1−x−2δTi3+x+2δO3−δ, (4)

At lower temperatures, when the cation diffusivity is negligible, the reduction should still
be limited to a process similar to Equation (2).

In this study, powders of both compositions were synthesized in a similar manner.
Ceramic samples with varying morphologies and degrees of reduction were prepared
under different thermochemical processing conditions. Their electrical conductivity was
examined under reducing conditions typical for the fuel electrodes in solid oxide cells.
The results aim to identify the factors that may affect the electrical properties of strontium
titanate-derived ceramics and provide guidelines for optimizing donor-doped SrTiO3-based
components for solid oxide cell applications.
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2. Materials and Methods

Sr0.85La0.10TiO3−δ (S85L10) and Sr0.85Pr0.15TiO3±δ (S85P15) titanates were synthesized
by the solid-state reaction method. SrCO3 (≥99.9%, Sigma-Aldrich,), TiO2 (anatase, 99.8%,
Sigma-Aldrich,), La2O3 (99.9%, Sigma-Aldrich), and Pr6O11 (99.9%, Sigma-Aldrich) were
used as starting reagents. Before weighing, oxides were calcined at 1000 ◦C for 2 h in air to
remove adsorbates. The mixtures of precursors were calcined at 900–1300 ◦C, increasing the
temperature in a stepwise manner with a step of 100 ◦C, duration of 5 h at each temperature,
and regrinding in a mortar between the steps. Then, the synthesized powders were ball-
milled (Retsch S1 planetary mill (Retsch GmbH, Haan, Germany), nylon containers with
tetragonal zirconia balls) with ethanol for 4 h at 150 rpm, dried, and compacted into
disk-shaped pellets (Ø 18 mm, thickness of ~3 mm). The green compacts were either
sintered in air with subsequent reductive treatment in the flow of 10%H2-N2 gas mixture
or sintered directly in a reducing 10%H2-N2 atmosphere. The conditions of sintering and
thermochemical treatments as well as corresponding notations of the samples are listed in
Table 2.

Table 2. Processing conditions and properties of reduced Sr(Ln)TiO3±δ ceramics.

Notation Sintering Reduction Density,
g/cm3

Relative
Density, % Grain Size, µm

Sr0.85La0.10TiO3−δ

S85L10-1700-R-1500 air, 1700 ◦C, 10 h 10%H2-N2, 1500 ◦C, 10 h 4.89 96 5–31
S85L10-1700-R-1400 air, 1700 ◦C, 10 h 10%H2-N2, 1400 ◦C, 10 h 4.91 96 5–31
S85L10-1700-R-1300 air, 1700 ◦C, 10 h 10%H2-N2, 1300 ◦C, 10 h 4.88 95 5–31
S85L10-1320-R-1300 air, 1320 ◦C, 10 h 10%H2-N2, 1300 ◦C, 10 h 3.57 70 0.6–6.5

S85L10-H-1450 10%H2-N2, 1450 ◦C, 10 h 4.65 91 0.7–6.8

Sr0.85Pr0.15TiO3±δ

S85P15-1700-R-1500 air, 1700 ◦C, 10 h 10%H2-N2, 1500 ◦C, 10 h 4.80 90 10–38
S85P15-1350-R-850 air, 1350 ◦C, 10 h 10%H2-N2, 850 ◦C, 24 h 3.94 73 0.6–3.0

S85P15-H-1500 10%H2-N2, 1500 ◦C, 10 h 4.74 89 0.8–3.5
S85P15-H-1350 10%H2-N2, 1350 ◦C, 10 h 3.44 65 0.6–3.2

The prepared ceramic pellets were polished and cut into rectangular bars (approximate
dimensions 2.5 mm × 2.5 mm × 12 mm) for electrical measurements. The experimental
density was calculated from the mass and geometric dimensions of polished samples.
Powdered samples for X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were
prepared by grinding sintered pellets in a mortar.

XRD patterns were recorded at room temperature using a PANalytical X’Pert PRO
MRD diffractometer (PANalytical, Almelo, The Netherlands, CuKα radiation) in the range
2θ = 20–80◦. Unit cell parameters were calculated using FullProf software (version March
2021) (profile match method). Microstructural characterization was conducted by scanning
electron microscopy (SEM, Hitachi SU-70 (Hitachi, Tokyo, Japan)). The grain sizes were
estimated by analyzing the collected SEM images of fractured ceramics using ImageJ 1.54
software [47,48]. Thermogravimetric analysis (TGA, Setaram SetSys 16/18 instrument
(Setaram, Caluire, France), sensitivity 0.4 µg, initial sample weight 0.4–0.5 g) was carried
out in flowing air or 10%H2-N2 mixture at 25–1100 ◦C with a constant heating/cooling rate
of 2 ◦C/min.

The electrical conductivity was determined by the 4-probe DC technique as a function
of temperature at 300–1000 ◦C in a 10%H2-N2 atmosphere and function of oxygen partial
pressure at 900 ◦C in a H2-H2O-N2 atmosphere. The measurements were performed with a
stepwise change in temperature (cooling regime) or p(O2) (in the regime of increasing oxy-
gen partial pressure) and equilibration for 1–2 h at each step. Variations in the conductivity
of ceramic samples on isothermal redox cycling between air and 10%H2-N2 atmospheres
were measured by pseudo-4-probe AC impedance spectroscopy (Agilent 4284A precision
LCR meter (Agilent, Santa Rosa, CA, USA)) using bar-shaped samples with porous Pt
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electrodes applied onto the end faces of the bars. The flow rates of gases in the course of
electrical measurements were controlled using Bronkhorst mass-flow controllers (Ruurlo,
The Netherlands).

Oxygen partial pressure p(O2) in the flowing gas mixtures during the preparation and
characterization of ceramic materials was monitored using 8 mol.% yttria-stabilized zirconia
(YSZ) solid-electrolyte sensors. Oxygen partial pressure in the H2-H2O-N2 atmosphere was
defined by the p(H2O)/p(H2) ratio and the equilibrium constant of the hydrogen oxidation
reaction; the total fraction of H2 + H2O in nitrogen corresponded to ~10 vol.%. In the case
of the 10%H2-N2 mixture, the p(O2) was determined by residual water content and by leaks
of oxygen from the ambient atmosphere; the representative value of p(O2) in the nominal
10%H2-N2 atmosphere corresponded to ~10−21 atm at 900 ◦C.

3. Results and Discussion
3.1. Crystal Structure and Microstructure of Prepared Ceramics

As-synthesized powder of S85L10 was phase-pure after calcinations at 1300 ◦C and
had a cubic perovskite-type structure (space group Pm3m) (Figure 2A), in agreement with
the literature data [35,49]. The cubic perovskite structure was maintained after sintering
and thermochemical treatment under different conditions (e.g., Figure 2B); no evidence of
phase impurities could be detected by XRD.
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Figure 2. Examples of XRD patterns of S85L10 and S85P15 samples. Note that S85L10-1300 indicates
the powder as synthesized in air at 1300 ◦C, and S85P15-1350 corresponds to the ceramic sample
sintered in air at 1350 ◦C. The notations of other samples are listed in Table 2.

The sintering of S85L10 in air at 1700 ◦C promoted grain growth, up to 5–31 µm, and
densification. The microstructure was preserved after subsequent reductive treatment
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at 1300–1500 ◦C in a 10%H2-N2 atmosphere (Figure 3A); the samples were dense with a
residual closed porosity of 4–5 vol.% (Table 2). Direct sintering in a reducing 10%H2-N2
gas mixture at 1450 ◦C yielded a different microstructure (Figure 3B). The temperature
was not high enough to induce significant grain growth; the maximum grain size of
prepared ceramics was limited to 6.8 µm (Table 2). Still, S85L10-H-1450 ceramics had a
relative density of 91% with a comparatively low fraction of closed porosity. On the other
hand, pre-sintering and reduction at lower temperatures, 1300–1320 ◦C, produced porous
S85L10-1320-R-1300 ceramic samples with a similar grain size but with a volume fraction
of interconnected pores of 30% (Table 2). The individual grains were mostly combined into
larger agglomerates (Figure 3C).
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Figure 3. SEM images of fractured cross-sections of S85L10 ceramics prepared under different conditions.

XRD analysis of S85P15 samples sintered at 1350 ◦C either in air or in a 10%H2-N2
atmosphere confirmed the formation of single-phase perovskite ceramics (Figure 2C,D). The
shape of selected XRD reflections (at 2θ = 46.3–46.7◦ and 77.0–77.5◦) implied, however, that the
symmetry of the crystal lattice is lower than cubic. The XRD patterns of S85P15 were success-
fully indexed in the tetragonal I4/mcm space group (Figure 2C). This is in agreement with the
literature data showing that increasing praseodymium content in the Sr1−xPrxTiO3±δ series
induces a transition from cubic to tetragonal structure at x~0.10 [34,50,51]. The phase-pure
tetragonally distorted perovskite structure was preserved after thermochemical treatments of
S85P15 samples at higher temperatures (1500–1700 ◦C).

Similar to S85L10 ceramics, the microstructure of prepared S85P15 samples was
mainly defined by the sintering temperature. Sintering in air at an elevated temperature,
1700 ◦C, promoted densification and substantial grain growth, with grain sizes varying
in the range between 10 and 38 µm. The microstructure was not altered by subsequent
reduction at 1500 ◦C (Figure 4A); the estimated relative density of the samples was 90%
(Table 2). Direct sintering in a reducing atmosphere at 1500 ◦C yielded ceramic sam-
ples with a similar relative density (Table 2) but substantially smaller grain size in the
range of 0.8–3.5 µm (Figure 4C). A similar grain size was obtained after sintering at a
lower temperature, 1350 ◦C, in either an oxidizing or reducing atmosphere (Table 2 and
Figure 4B,D), although the produced ceramic samples were porous with the estimated
fraction of open porosity corresponding to 27–35 vol.%. One should note that the relative
density of prepared S85P15 ceramics may be somewhat underestimated. While all prepared
S85P15 samples were oxygen-overstoichiometric (as discussed below) with excess oxygen
and a fraction of cations accommodated presumably as extended defects, the estimations
of theoretical density based on the lattice parameters did not take into account the presence
of such defects and were done assuming the nominal elemental composition.
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3.2. Electrical Conductivity of S85L10 Ceramics

Figure 5A shows the temperature dependence of the electrical conductivity of S85L10
ceramics prepared under different conditions. Dense samples (i.e., with relative
density > 90%) demonstrate metallic-like behavior in the studied temperature range be-
tween 200 and 1000 ◦C with the conductivity decreasing on heating. The level of electrical
conductivity correlates with the temperature of thermochemical treatment under reduc-
ing conditions. The values of conductivity at 600–1000 ◦C increase nearly linearly with
increasing processing temperature from 1400 to 1500 ◦C but drop for the S85L10-1700-R-
1300 sample reduced at 1300 ◦C. The conductivity of porous S85L10-1320-R-1300 ceramics
reduced at 1300 ◦C also shows metallic-like temperature dependence above 300 ◦C but
tends to semiconducting behavior at low temperatures. At the same time, the conductivity
of the porous S85L10-1320-R-1300 sample exceeds that of the dense S85L10-1700-R-1300
sample by ~2 times despite the identical reduction conditions.

These results imply that two main factors define the level of electrical conductivity
in prepared S85L10 ceramics: the temperature of thermochemical treatment under re-
ducing conditions and the morphology of the samples (porous or dense). The reduction
process in S85L10 involves the formation of two types of point defects—Ti3+ cations and
oxygen vacancies:

2Ti×Ti + O×
O

red
⇄

ox
2Ti′Ti + V··

O + 0.5O2, (5)
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atmosphere and (B) oxygen partial pressure under reducing conditions at 900 ◦C.

The kinetics of reduction are expected to be governed by the diffusion of oxygen
vacancies from the surface into the bulk of ceramics (or oxygen ions from the interior to the
surface). The experimental data on oxygen diffusivity in donor-doped titanates are scarce.
Kiessling et al. [52] reported that oxygen tracer diffusion coefficients D in single-crystal
lanthanum-doped SrTiO3 are in the range between 2 × 10−15 and 1 × 10−13 cm2/min at
700–900 ◦C. Estimations made by the approximation of these data to higher temperatures
suggest that the spatial scale of the oxygen diffusion process, ~

√
2Dt, corresponds to

~6.7 µm at 1300 ◦C and ~13.3 µm at 1500 ◦C in a timescale t of 10 h. This indicates that the
reduction kinetics of ceramics with grain sizes up to 31 µm (Table 2) may be limited by
sluggish diffusion even at the grain size scale (even if diffusion along the grain boundaries
is substantially faster than in the grain interior). Analysis of electrical conductivity data
seems to imply that, regardless of the grain size, the samples are likely to attain a state close
to equilibrium in the course of processing at 1400–1500 ◦C in a reducing atmosphere. At
the same time, the reduction of dense S85L10-1700-R-1300 is not accomplished at 1300 ◦C
due to slower diffusion kinetics and insufficient time. This should result in a combination
of reduced shells and oxidized cores at different scales, creating radial gradients of redox
states from the surface to the interior of individual grains at the microscale and throughout
the entire dense ceramic sample at the macroscale. On the contrary, comparatively small
grain size and porous morphology with easy access of the gas phase to the individual
grains ensures faster reduction and, as a result, higher conductivity of S85L10-1320-R-1300
reduced at the same temperature.

Considering the sluggish kinetics of equilibration even at 1300 ◦C, the state of dense
S85L10 ceramics characterized at temperatures ≤ 1000 ◦C should be regarded as quenched
from the processing temperatures. This is supported by the results of the measurements of
electrical conductivity as a function of oxygen partial pressure (Figure 5B). All dense S85L10
samples showed p(O2)-independent conductivity at 900 ◦C in the studied oxygen partial
pressure range. This implies that possible oxygen exchange processes are limited to the
thin surface layer while electrical properties are determined by the quenched reduced state
of the sample interior. On the contrary, porous S85L10-1320-R-1300 ceramics were found
to be redox-active (Figure 5B). Increasing oxygen partial pressure results in a decrease
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in conductivity of this sample due to a decrease in the concentration of n-type electronic
charge carriers according to Equation (5) which can rewritten as follows:

2e′ + V··
O + 0.5O2

red
⇄

ox
O×

O , (6)

The concentration of n-type charge carriers is equivalent to the concentration of Ti3+

cations and is interrelated with the oxygen deficiency through the electroneutrality condition:

n = [Ti3+] = 2δ, (7)

These values can be estimated from the results of thermogravimetric studies. Figure 6A
shows an example of thermogravimetric data collected for powdered S85L10-H-1450
ceramics. The variations in the sample weight were negligible on cooling in a 10%H2-N2
atmosphere. On heating in air, the oxidation started above 400 ◦C and was accomplished
when the temperature approached 1100 ◦C. The sample was kept at 1100 ◦C for 5 h to
ensure that the sample weight was constant. The weight changes were insignificant on
subsequent cooling. Assuming that all titanium cations in the oxidized sample are in the 4+
oxidation state, one may estimate oxygen nonstoichiometry and the fraction of Ti3+ cations
in the original reduced ceramics from the weight gain on oxidation (Figure 6A).
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Figure 6. (A) Example of thermogravimetric data recorded for powdered S85L10 (Sr0.85La0.10TiO3−δ)
ceramics on cooling in 10%H2-N2 atmosphere and subsequent heating/cooling cycle in air. (B) Elec-
trical conductivity of dense S85L10 ceramics vs. fraction of Ti3+ cations in the titanium sublattice.

Figure 6B shows the electrical conductivity of dense S85L10 ceramics at 800 ◦C plotted
vs. the estimated fraction of Ti3+ (or concentration of electronic charge carriers). The data
show a nearly linear relationship as expected from the following definition:

σ = e µe n, (8)

where e is the elementary charge, and µe is electron mobility. Interestingly, the linear
dependence is observed even though the estimated concentration of electronic charge
carriers in the dense S85L10-1700-R-1300 is not uniform (due to non-uniform reduction)
and the obtained value is rather average for the sample.

Figure 7 compares the relaxation of electrical conductivity of two samples with ex-
pectedly identical porous morphology on redox cycling at 900 ◦C. S85L10-1320 is a sample
sintered in air at 1320 ◦C, while S85L10-1320-R-1300 is a similar sample that was reduced in
10%H2-N2 atmosphere at 1300 ◦C. The porous S85L10-1320 sample showed a low electrical
conductivity in air, 3 × 10−3 S/cm at 900 ◦C (Figure 7A). Switching to reducing 10%H2-N2
atmosphere results in a rapid rise in conductivity by approximately two orders of mag-
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nitude followed by a slower further increase with time. This can be interpreted as a fast
initial reduction of the surface of individual grains and agglomerated particles followed by
a sluggish propagation of the reduction front into the interior of grains. After more than
25 h of reduction, the conductivity reaches 3.0 S/cm and continues to grow, with no evident
tendency to a constant equilibrium value. The reduced S85L10-1320-R-1300 sample exhib-
ited an initial conductivity of 54 S/cm in a reducing atmosphere which drops by nearly
five orders of magnitude, down to 1 × 10−3 S/cm, on oxidation in air at 900 ◦C (Figure 7B).
Switching back to a reducing atmosphere induces a sharp increase in the conductivity by
around four orders of magnitude followed by a slower further drift to higher values. After
50 h of re-reduction at 900 ◦C, the conductivity reached 19 S/cm and continued to increase
slowly, but it was evident that it would not return to the initial value. These observations
confirm the slow kinetics of reduction of donor-doped titanates at temperatures below
1000 ◦C reported earlier [34,39,40,44,53,54]. It seems also that, similar to dense ceramics,
the as-processed porous S85L10-1320-R-1300 sample remains in a state partly quenched
from processing temperature, and the conductivity value after the oxidation–reduction
cycle is closer to equilibrium. Preliminary reduction at elevated temperatures induces faster
kinetics of equilibration on oxidation–reduction compared to original oxidized ceramics
despite a similar porous morphology and microstructure. The reasons for that are not
evident from the collected experimental data.
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Figure 7. Relaxation of electrical conductivity of (A) oxidized S85L10-1320 ceramics on reduction and
(B) reduced S85L10-1320-R-1300 ceramics on redox cycling at 900 ◦C.

3.3. Electrical Conductivity of S85P15 Ceramics

Figure 8A compares the electrical conductivity of S85P15 ceramics processed under
different conditions. The impact of processing conditions on the behavior of this “cation-
stoichiometric” oxide is more complex compared to the A-site-deficient S85L10. Only dense
S85P15-1700-R-1500 ceramics exhibited metallic-like conductivity at elevated temperatures
but showed a transition to semiconducting behavior below 400 ◦C. In the high-temperature
range, above 680 ◦C, the conductivity of this sample exceeds that of the S85L10 counter-
part. Despite the similar relative density, the S85P15-H-1500 sample sintered directly in a
reducing atmosphere showed noticeably lower conductivity; due to the thermally activated
character of conductivity, the difference substantially increases on cooling. Compared to
the S85P15-H-1500 sample, S85P15-H-1350 ceramics exhibited approximately one order
of magnitude lower electrical conductivity in the entire studied temperature range. The
shape of conductivity curves is similar for both samples in Arrhenius coordinates, with a
change in slope at 550–600 ◦C. The measured conductivity of the porous S85P15-1350-R-850
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sample reduced at a lower temperature, 850 ◦C, exceeded that of S85P15-H-1350 ceramics.
The activation energy EA of electrical conductivity of this sample remained nearly constant
in the entire studied temperature range and was similar to the corresponding EA values for
the S85P15-H ceramics at lower temperatures (Figure 8A).
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In order to examine relationships between the concentration of electronic charge
carriers and the level of electrical conductivity, the degree of reduction of S85P15 ceramics
prepared under different conditions was evaluated by TGA in a similar manner as it was
conducted for S85L10 samples. Figure 9 shows the estimated relative changes in oxygen
nonstoichiometry caused by oxidation on heating in air. The S85P15-1350-R-850 sample
was preliminarily heated to 1100 ◦C in the 10%H2-N2 atmosphere; this promoted a stronger
reduction compared to the initial sample reduced at 850 ◦C but better describes the state of
the sample during electrical conductivity measurements (Figure 8A). Another note is that,
in the case of S85P15 ceramics, titanium is not the only cation that may undergo a change in
oxidation state. The gain in the oxygen content may be partially contributed by Pr3+ → Pr4+

oxidation. Earlier, XPS studies revealed that praseodymium cations in the bulk of oxidized
Sr0.90−xPr0.10TiO3±δ (x = 0 and 0.05) ceramics have a preference for the 3+ oxidation state
and that the fraction of Pr4+ did not exceed ~20 at.% of the total praseodymium content [44].
Therefore, the contribution of the Pr3+ → Pr4+ process to the total oxygen uptake can be up
to ∆δ~0.015. The changes in oxygen content in S85P15 samples on oxidation (and, therefore,
the degree or reduction and concentration of Ti3+) were found to reasonably increase with
the increasing temperature of reductive processing (Figure 9). An exception is S85P15-1700-
R-1500 ceramics, which showed an intermediate level of reduction compared to the other
samples despite being reduced at 1500 ◦C. This can be explained by a substantially larger
grain size compared to the other samples (Table 2) and dense morphology combined with
sluggish oxygen diffusion in donor-doped strontium titanates (as discussed above).
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Figure 9. Changes in oxygen nonstoichiometry of S85P15 (Sr0.85Pr0.15TiO3+δ) ceramics on oxidation
in air estimated from the thermogravimetric data.

The analysis of the results suggests that the variations in the electrical conductivity of
S85P15 cannot be interpreted exclusively in terms of the concentration of electronic charge
carriers in the bulk of the ceramics. S85P15-1700-R-1500 ceramics with a moderate degree of
reduction exhibit the highest electrical conductivity, while the well-reduced S85P15-H-1350
sample shows the lowest conductivity. This implies that other factors play an important role
including microstructural aspects and resistive grain boundaries. An evident distinction of
S85P15-1700-R-1500 ceramics from other samples is an order of magnitude larger grain size
(Table 2) and, therefore, a comparatively low concentration of grain boundaries. On the
contrary, comparatively fine grains in other samples result in a substantial concentration of
grain boundaries. It seems that electron scattering on resistive grain boundaries defines
the semiconducting behavior and grain-boundary-controlled electrical properties of these
samples. This conclusion is supported by the shape of the conductivity curves of S85P15-
H ceramics in Arrhenius coordinates which resembles the corresponding log σ − 1/T
dependence reported for reduced nominally undoped SrTiO3 [35,55]. Abrantes et al. [55]
suggested that this behavior of reduced SrTiO3 ceramics can be interpreted in terms of
predominant electrical transport along the grain boundaries in the low-temperature range
(lower EA), while the bulk transport controls the electrical properties at higher temperatures
(segment with a higher EA). A similar situation is likely to occur in the case of S85P15
ceramics. This is also in agreement with the fact that the activation energy of the electrical
conductivity of the S85P15-1350-R-850 sample is close to the corresponding EA values for
S85P15-H samples in the low-T range (Figure 8A). The modest reduction of S85P15-1350-R-
850 ceramics (Figure 9) should be limited to the surface of grains; the electrical transport in
this porous sample (Figure 4B) is controlled, therefore, by the surface layer of the grains
and contact points between them (grain boundaries). A lower electrical conductivity
in the better-reduced porous S85P15-1350-R-1300 ceramics appears to be caused by the
higher porosity (Table 2) and the microstructural aspects—a visibly larger average size of
grain/particles (Figure 4D). The combination of these two factors results in a lower actual
concentration of contact points between the grains and their agglomerates.

The resistive nature of grain boundaries in donor-doped Sr1−xLaxTiO3±δ ceramics
was earlier pointed out by Moos and Härdtl [37]; they also attributed an apparent transi-
tion from high-temperature metallic-like conductivity to low-temperature semiconducting
behavior to the grain-boundary-controlled behavior. Comparing the results on the elec-
trical conductivity of A-site-deficient S85L10 and nominally cation-stochiometric S85P15,
one may assign a more resistive nature of grain boundaries in the latter material to a
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specific defect chemistry of donor-doped strontium titanates with the nominal cation-
stoichiometric A:B = 1 formulation. As discussed in the Introduction section, donor doping
in the Sr1−xLnxTiO3±δ series is compensated by the formation of either A-site vacancies
and extended defects such as RP-type SrO shear planes or linear Ln-Oi defect clusters.
While the extended defects are expected to be located in the bulk of the crystals, thermal
treatments in air at temperatures around 1200–1400 ◦C are often observed to promote the
accumulation of such defects at the surface of ceramics in the form of precipitates [56–58].
In particular, thermal etching of dense Sr0.90Pr0.10TiO3+δ ceramics in air at 1400 ◦C was
found to result in the formation of (Sr,Pr)Ox precipitates at the surface [44], probably due to
partial exsolution of Sr- and Pr-rich extended defects from the bulk to the surface via grain
boundaries. It is likely that nanoscale Sr- or Pr-rich defects are also partly located at the
surface of individual grains of as-synthesized S85P15 powder and cannot be completely
dissolved into the bulk during the processing under reducing conditions at temperatures
≤ 1500 ◦C, thus forming resistive grain boundaries. Note that the presence of oxygen
excess and, therefore, extended defects in all prepared S85P15 ceramics is confirmed by
thermogravimetry (Figure 9). As the oxygen content in oxidized Sr0.85Pr0.15TiO3+δ should
be ≥ 3.075, the TGA results imply that δ is >0 for all S85P15 samples processed under
reducing conditions at different temperatures.

Figure 8B shows variations in electrical conductivity with oxygen partial pressure at
900 ◦C. The conductivity of comparatively dense S85P15-1700-R-1500 ceramics showed a
weak p(O2) dependence with only a minor decrease at higher p(O2) conditions, apparently
due to the sluggish oxygen exchange. Other samples were redox-active and exhibited a
decrease in conductivity with increasing p(O2) typical for n-type electronic conductors.
Assuming a frozen cation sublattice and combining the expression for the equilibrium
constant Kred of the oxygen exchange reaction (Equation (6)) given by Equation (9):

Kred =
1

n2 [V··
O] p(O2)

1/2 , (9)

with the definition Equation (8), electrical conductivity is expected to be proportional to
~p(O2)−1/4 under equilibrium conditions:

σ =
eµe

Kred [V··
O]

p(O2)
−1/4 (10)

Figure 10 compares the kinetics of conductivity relaxation of two porous S85P15
samples on cycling between oxidizing and reducing conditions at 850 ◦C. Note that the
data were obtained by pseudo-four-probe AC impedance spectroscopy, and the values
of conductivity under reducing conditions can be slightly underestimated compared to
the data obtained by the four-probe DC technique (Figure 8A) due to non-negligible
contact resistance. Contrary to the oxidized S85L10-1320 sample (Figure 7A), oxidized
S85P15-1350 ceramics showed a comparatively fast equilibration on switching from an
oxidizing to a reducing atmosphere at 850 ◦C. The conductivity tended to a constant value
of ~10 S/cm after 24 h of reduction, and the behavior was reproducible in the repeated
redox cycle. Faster reduction kinetics of oxidized “cation-stoichiometric” donor-doped
Sr1−xLnxTiO3±δ compared to A-site-deficient Sr1−1.5xLnxTiO3−δ at temperatures ≤ 1000
◦C were highlighted in the previous works [34,44]. Such behavior reflects an important role
of oxygen-rich extended defects in the redox processes in donor-doped strontium titanate
at moderate temperatures. Porous S85P15-H-1350 ceramics also showed comparatively fast
equilibration on oxidation and re-reduction and a reproducible behavior in the repeated
cycles (Figure 10B). The conductivity dropped slightly after the first cycle, but this decline
corresponded to ~15%. This suggests that the sample was in a near-equilibrium state after
cooling from the reductive processing temperature.
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4. Conclusions

A-site-deficient Sr0.85La0.10TiO3−δ and cation-stoichiometric Sr0.85Pr0.15TiO3+δ ceram-
ics were processed under different thermochemical conditions to produce varying mi-
crostructures and levels of reduction. The electrical conductivity of prepared samples was
studied under reducing conditions at temperatures ≤ 1000 ◦C. The results of the analysis
of collected data can be summarized as follows:

(i) Reduction of dense donor-doped SrTiO3 ceramics is limited by sluggish oxygen
diffusion in the crystal lattice even at temperatures as high as 1300 ◦C. A higher
degree of reduction and higher conductivity can be obtained for porous structures
under similar thermochemical treatment conditions.

(ii) Metallic-like conductivity of dense reduced Sr0.85La0.10TiO3−δ is proportional to the
concentration of Ti3+ and corresponds to the state quenched from the processing
temperature. Due to poor oxygen diffusivity in the bulk at temperatures below
1000 ◦C, the oxygen exchange processes in dense ceramics are essentially limited
to the surface. As a result, dense Sr0.85La0.10TiO3−δ ceramics remain redox inactive
and maintain high levels of conductivity under reducing conditions, at least in the
short term.

(iii) A similar behavior is characteristic of dense Sr0.85Pr0.15TiO3+δ ceramics with large
grain size (10–40 µm) provided by sintering at temperatures of around 1700 ◦C. Reduc-
ing grain size down to 1–3 µm results in the increasing role of grain boundaries in this
material, even for the samples reduced at a high temperature of 1500 ◦C. Regardless
of the degree of reduction, resistive grain boundaries define semiconducting behavior
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and a lower total electrical conductivity of Sr0.85Pr0.15TiO3+δ ceramics with fine grain
size. The resistive nature of grain boundaries is likely to be associated with the specific
defect chemistry of nominally cation-stoichiometric Sr1−xLnxTiO3±δ titanates.

(iv) Oxidized porous Sr0.85Pr0.15TiO3+δ ceramics exhibit faster kinetics of reduction com-
pared to the Sr0.85La0.10TiO3−δ counterpart at temperatures below 1000 ◦C. This under-
lines the important role of extended defects in the structure of cation-stoichiometric
Sr1−xLnxTiO3±δ titanates. On the other hand, the reductive pretreatment of porous
Sr0.85La0.10TiO3−δ ceramics at elevated temperatures (1300 ◦C) facilitates low-temperature
equilibration kinetics on redox cycling.

Thus, titanates of the Sr1−1.5xLnxTiO3−δ series appear to be better suited for the intercon-
nect applications, provided that the ceramics are dense and well-reduced. Sr1−xLnxTiO3+δ
titanates are more suitable for the SOFC/SOEC fuel electrodes that are fabricated under
oxidizing conditions and then reduced in situ at temperatures close to the operation condi-
tions. However, if the solid oxide cell fabrication procedure allows for the use of pre-reduced
Sr1−1.5xLnxTiO3−δ as an electrode component, this may enable a higher conductivity of a
porous electrode in combination with adequate equilibration kinetics.
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