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Abstract: With the large-scale application of lithium-ion batteries (LIBs) in various fields, spent LIBs
are considered one of the most important secondary resources. Few studies have focused on recycling
anode materials despite their high value. Herein, a new efficient recycling and regeneration method
of spent anode materials through the combination of thermal and wet metallurgical approaches and
restored graphite performance is presented. Using this method, the lithium recycling ratio from spent
anode materials reaches 87%, with no metal impurities detected in the leaching solution. The initial
Coulombic efficiency of the recycled graphite (RG) materials is 90.5%, with a reversible capacity of
350.2 mAh/g. Moreover, RG shows better rate performance than commercial graphite. The proposed
method is simple and efficient and does not involve toxic substances. Thus, it has high economic
value and application potential in graphite recycling from spent LIBs.

Keywords: spent lithium-ion batteries; anode materials; graphite; electrochemical performance;
regeneration

1. Introduction

The demand for lithium-ion batteries (LIBs) has increased with the rapid development
of electronic products and electric vehicles because of their high energy density, excellent
rate performance and good cycle performance [1–3]. According to statistics, the global
LIB sales in 2023 were 1202.6 GWh, and the global LIB demand could reach 3600 GWh
by 2030 [4–6]. The average service life of LIBs is 3–5 years, and the service life of vehicle
batteries is approximately 5–8 years [7,8]. The global production of spent LIBs is estimated
to exceed 3.7 million tonnes by 2030 [9,10]. Currently, most studies on recycling waste
LIBs focus on cathode recycling, with inadequate research on anode materials, which are
treated as solid wastes in the recycling process, because of the difference in the value of
these materials [11–14]. Analysis of the anode materials of waste LIBs revealed that the
lithium content in the used anode materials is approximately 30 mg/g, far exceeding that
found in lithium ore. Thus, it can be a huge lithium resource.

Moreover, the structure of anode materials hardly changes, and the graphite layered
structure remains intact [15,16]. Thus, high-value recycling of anode materials of waste LIBs
must be investigated. Chen J.P. [11] designed a small-scale production line for the green
recycling of used battery materials. They washed the used battery materials with NaOH and
ball-milled them to obtain the recycled cathode and anode materials. However, the recycling
process requires multiple ball-milling rounds, making it long and complicated. Detailed
experiments and tests of anode material recycling have not been provided. Zhang J [17]
used phenolic resin as a carbon source to coat the surface of the waste anode materials
with amorphous carbon to restore its electrochemical performance. The performance of the
treated materials was improved. Nevertheless, recycling the lithium in the anode was not
considered and the regeneration process was complicated and expensive because of the
coating cost, making it unsuitable for practical production applications.
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In this study, a lithium recycling method for spent anodes has been proposed, and
the recovery of the electrochemical performance of the anode materials has been carefully
investigated. The powder of spent LIB anodes provided by a factory has been used as
the raw material in the experiment. Three simple steps combined with thermal and wet
metallurgical approaches have been conducted in this study: (1) heat treatment of the spent
anode materials under an inert atmosphere to remove the organic components such as
binder and separator debris, (2) stirring of the heat-treated materials with deionized water
followed by filtering to allow most of the lithium in the materials to leach selectively and
(3) washing the stirred and filtered materials in nitric acid to remove the metal impurities
remaining in the materials. The results show that the electrochemical performance of
the treated anode materials has recovered, with their main indicators reaching those
of commercial graphite (CG). Thus, they can be directly reused as battery-grade anode
materials. The lithium recycling ratio in the waste anode materials has reached 87%,
and other metal impurities have not been detected in the leaching solution. Thus, the
materials can be recycled without further steps to remove impurities. This simple and
efficient method generates no toxic substances, and all of the components of the anode
materials are recycled with high recovery rates. Thus, this method is highly suitable for
practical applications.

2. Materials and Methods
2.1. Materials and Reagents

Anode powder of waste LiFePO4 LIBs was provided by Hunan Chenyu Fuji new
energy Technology Co., Ltd. in Changde, China, which was used as the raw material in the
experiment. The solutions used in the experiment were all prepared using deionized water,
and all of the reagents were of analytical grade.

The metal mass content of the above spent anode powder was determined by com-
pletely dissolving the metals using aqua regia and testing their amounts in the solution.
The solid/liquid ratio was 10 g/L, and the mixture was stirred for 6 h at 60 ◦C. Cu and Li
were detected in the solution, and after three parallel experiments were performed, the
average values of their mass contents were calculated as 2.95% and 6.54%, respectively.

2.2. Lithium and Graphite Recovery

Three key steps were conducted in this recycling process to recover the spent anode
materials. Figure 1 shows a flow chart of the recycling process of the spent anode materials.
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In the first step, organic components, such as the binder and separator debris, in
the spent anode materials were removed. This was achieved by placing the spent anode
materials in a tube furnace under an inert atmosphere (i.e., highly pure argon), which was
injected into the furnace. The temperature was increased to 600–800 ◦C at a rate of 5 ◦C/min
and maintained for 1 h. In the second step, the lithium in the anode materials was mostly
water-soluble. The heat-treated spent anode powder was placed in a beaker with a certain
amount of deionized water for stirring to recycle this part of the lithium. The leaching
process was performed in a thermostatic water bath with magnetic stirring. After the
reaction, solid–liquid separation was conducted using a vacuum filter to obtain the leachate
containing Li+ and the anode materials to be treated. The effects of time, temperature,
and the solid/liquid ratio on the leaching process were studied. In the third step, the
impurities remaining in the materials, which considerably affect their electrochemical
performance, were removed by placing the materials in a beaker and adding nitric acid
(concentration = 4 mol/L) at a solid/liquid ratio of 20 g/L. Next, the solution was stirred
for 2 h at 60 ◦C. Recycled graphite (RG) was then filtered, washed and dried.

2.3. Characterisation

A simultaneous thermal analyser (SDT650) measured the thermal stability of the
materials. X-ray diffraction (XRD, Rigaku-TTRIII, Rigaku, Japan) was used to determine the
materials’ phase composition and crystal structure using Cu-K as a radiation source within a
scanning range of 10–80◦ at a scanning rate of 10◦/min. Scanning electron microscopy (SEM,
Nova NanoSEM230, FEI, Rock Hill, SC, USA) and energy dispersive X-ray spectroscopy
(EDS, Thermo Fisher, Waltham, MA, USA) were used to observe the surface morphology
and composition of the materials, respectively. The specific surface area parameters of
the materials were measured using a specific surface area analyser (BET, QUADRASORB
evo, Anton Paar, Austria). An inductively coupled plasma optical emission spectrometer
(ICP–OES, ICAP7400Radial, Thermo Fisher, Waltham, MA, USA) measured the metal
element concentrations in the solution.

2.4. Electrochemical Test

RG, an acetylene black conductive agent, a binder (LA-133) and a carboxymethyl
cellulose dispersant (the above three materials were bought from DoDo Chem, Suzhou,
China) were uniformly mixed at a ratio of 90:5:3:2, using deionized water as a solvent.
The materials were uniformly ground, coated on the copper foil and placed in a vacuum
drying oven at 100 ◦C for 12 h to dry. The dried electrode pieces were pressed to obtain
the working electrodes. A CR2025 coin-type half-cell was fabricated in a glove box under
a protective argon atmosphere with metallic lithium, a polypropylene film and a lithium
hexafluorophosphate solution in ethylene carbonate, dimethyl carbonate and diethyl car-
bonate (LiPF6-EC/DEC/DMC, 1 M) as the counter electrode, separator and electrolyte,
respectively. A LAND CT2001A battery tester (LAND instruments, Wuhan, China) was
used for constant current charge–discharge testing within a voltage range of 0.01–2 V and
a current density of 0.2 C (1 C = 372 mA/g). Cyclic voltammetry (CV) was performed
using an electrochemical workstation (PARSTAT 4000, Princeton, NJ, USA) at a scanning
speed of 0.1 mV/S and a scanning voltage range of 0.01–2.5 V. Electrochemical impedance
spectroscopy (EIS) was performed using an electrochemical workstation at a test frequency
range of 100–10 mHz. All electrochemical tests were performed at 25 ◦C.

3. Results and Discussion
3.1. Heat Treatment

Thermogravimetric analysis determined the mass change of the spent anode materials
with the increased temperature in an air atmosphere. Figure 2 shows that the mass loss
ratio of the spent anode materials considerably increased at 500 ◦C, reaching its maximum
at 580 ◦C. At 700 ◦C, the materials were almost completely oxidized and the remaining
materials were mainly impurities remaining in the waste anode materials. Because the
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temperature in this study reached 800 ◦C, the heat treatment experiments were performed
under a highly pure argon protective atmosphere.
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The SEM results (Figure 3) show the surface morphology of the materials. The figure
shows that the graphite particles were not smooth after a long period of use and there were
many sticky substances on their surface. The overall particle size increased and the particle
size was unevenly distributed over the material. The composition of the negative electrode
indicated that the viscous substances comprised the residual electrolyte, solid–electrolyte
interface (SEI) film and binder. After the heat treatment of the spent anode materials under
a protective inert atmosphere, high-temperature carbonisation of the viscous substance
resulted in covering the particle surface with amorphous carbon. After removing the
impurities, such as the binder, residual electrolyte and organic SEI components, using high
temperature, the particle size of the materials considerably decreased, showing a more
uniform distribution.
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Table 1 indicates that after the heat treatment, the specific surface area of the waste an-
ode materials decreased from 7.059 to less than 4 m2/g. The specific surface area gradually
decreased with the increase in the heat treatment temperature. After the heat treatment at
800 ◦C, the specific surface area decreased to 3.1 m2/g, indicating that the surface impurities
were gradually removed with the increase in the heat treatment temperature. According
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to GB/T24533-2009 [18], the specific surface area of artificial graphite is approximately
1.5 m2/g. An excessively high specific surface area will reduce the initial Coulombic effi-
ciency due to more SEI film produced. Although the specific surface area was optimized
after the heat treatment, it should be further reduced.

Table 1. Specific surface areas of spent anode materials after heat treatment.

Materials Specific Surface Area (m2/g)

RAW 7.059
CG 1.505

Heat treatment at 600 ◦C 3.758
Heat treatment at 700 ◦C 3.285
Heat treatment at 800 ◦C 3.199

Recycled graphite products 2.027

XRD was used to analyse the spent anode materials and RG at different heat treatment
temperatures (Figure 4). The spent anode materials exhibited a strong diffraction peak
around 26.5◦, which is a characteristic graphite peak related to (002) lattice planes. After a
long period of use, the graphite structure did not show a considerable change, maintaining
a complete graphite layered structure with good crystallinity. However, owing to the high
content of impurities in the spent anode materials and the binder coating on their surface,
the peak height of the spent anode materials was lower than that of CG. After the heat
treatment of the spent anode materials, their peak intensity decreased slightly because of
the carbonisation of the impurities, such as organic binders and separator debris, in the
materials into amorphous carbon owing to the high temperature, forming a composite
material of graphite and amorphous carbon, which reduced the peak intensity. Figure 4b
shows that the peak height of the spent anode materials after the heat treatment gradually
increased with the heat treatment temperature, indicating a decrease in the content of
impurities and a gradual increase in the degree of crystallinity. Therefore, 800 ◦C is the
optimal heat treatment temperature.
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3.2. Selective Leaching of Llithium

After the heat treatment of the waste anode materials, the binders covering the surface
of the materials were carbonised, facilitating the dissolution of the lithium in the materials.
Figure 5a shows that after the heat treatment of the spent anode materials, lithium was
mainly present as Li2CO3, Li3PO4 and LiF, Cu was also presented in the mixture. The
lithium content in the spent anode materials was approximately 3 wt%, showing a high
recycling value. Deionized water was used as the leaching reagent to achieve selective
lithium extraction.



Materials 2024, 17, 3883 6 of 11

Materials 2024, 17, x FOR PEER REVIEW 7 of 11 
 

 

the amount of water added was far greater than the lithium content in the materials. Thus, 
the lithium solubility at low temperatures was sufficient to achieve full leaching. 

Similarly, the solubility of Li2CO3 at high temperatures is lower than that at normal 
temperatures. However, in this case, its solubility at normal temperatures meets the min-
imum requirements for complete dissolution. Thus, the temperature exhibited a minimal 
effect on the lithium leaching ratio. Therefore, the optimal leaching temperature is 25 °C. 

3.2.3. Effect of Time on Leaching 
The effects of different leaching times (30–150 min) on the leaching process were ex-

plored at a solid/liquid ratio of 1:80 and a leaching temperature of 25 °C. Figure 5d shows 
the experimental results. Changing the leaching time did not strongly affect the leaching 
process. After 30 min, the leaching ratio of lithium reached 87%. However, with the in-
crease in the leaching time, the leaching ratio of lithium hardly changed. The water-solu-
ble lithium salt in the anode materials exhibited a high dissolution rate. It was completely 
dissolved after 30 min, indicating that water extraction of lithium is very efficient and can 
be used for practical applications. Thus, the optimal leaching time of lithium is 30 min. 

 
Figure 5. (a) XRD patterns of spent anode materials after different processing steps. Effects of (b) 
solid/liquid ratio, (c) temperature and (d) time on leaching efficiency of lithium. 

3.3. Acid Washing for Impurity Removal 
After the first charge–discharge cycle of LIBs, the anode materials and electrolytes 

react at the solid–liquid interface, and an SEI film forms on the surface of the anode ma-
terials. The formation of the SEI film is critical to the performance of the anode materials. 
Some lithium salt and metal impurities remain on the surface of the spent anode materials 
obtained after water extraction of lithium, resulting in uneven surface morphology of the 
materials, which increases the thickness and unevenness of the SEI layer during the first 
charge–discharge cycle. The SEI layer is more likely to rupture during the battery cycling 
process, leading to further consumption of the lithium in the battery, which reduces the 
Coulombic efficiency and cycling performance [19,20]. Thus, nitric acid was used as the 

Figure 5. (a) XRD patterns of spent anode materials after different processing steps. Effects of
(b) solid/liquid ratio, (c) temperature and (d) time on leaching efficiency of lithium.

3.2.1. Effect of Solid/Liquid Ratio on Leaching

The effects of different solid/liquid ratios (1:1–1:100) on the leaching process were
investigated at a leaching temperature of 60 ◦C and a leaching time of 2 h. The experimental
results are shown in Figure 5b. The figure shows that changing the leaching solid/liquid
ratio affected the leaching process considerably. Lithium leaching increased with the
increase in the solid/liquid ratio. At 1:10, the lithium leaching ratio was approximately
61%, reaching 88% at 1:80. However, increasing the solid/liquid ratio to values higher than
1:80 did not significantly affect lithium leaching. Because lithium is water-soluble to some
extent, the lithium in the spent anode materials gradually dissolved with the increase in the
solid/liquid ratio because although its theoretical solubility is not high, its content in the
anode materials was relatively low, allowing it to be completely dissolved by increasing
the added amount of deionized water. Figure 5a shows that after extracting the lithium
by water, the peaks of Li2CO3 and LiF in the anode materials disappeared, indicating that
they were removed in water. Thus, the solid/liquid ratio during leaching should be 1:80.

3.2.2. Effect of Temperature on Leaching

The effect of different temperatures (25–80 ◦C) on the leaching process was explored
at a solid/liquid ratio of 1:80 and a leaching time of 2 h. Figure 5c shows the experimental
results. Changing the leaching temperature exhibited little effect on the leaching process.
With the increasing temperature, the leaching ratio of lithium hardly changed. At 25 ◦C,
the leaching ratio reached 87%. Although solubility mostly increases with temperature, the
amount of water added was far greater than the lithium content in the materials. Thus, the
lithium solubility at low temperatures was sufficient to achieve full leaching.

Similarly, the solubility of Li2CO3 at high temperatures is lower than that at normal
temperatures. However, in this case, its solubility at normal temperatures meets the mini-
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mum requirements for complete dissolution. Thus, the temperature exhibited a minimal
effect on the lithium leaching ratio. Therefore, the optimal leaching temperature is 25 ◦C.

3.2.3. Effect of Time on Leaching

The effects of different leaching times (30–150 min) on the leaching process were
explored at a solid/liquid ratio of 1:80 and a leaching temperature of 25 ◦C. Figure 5d
shows the experimental results. Changing the leaching time did not strongly affect the
leaching process. After 30 min, the leaching ratio of lithium reached 87%. However,
with the increase in the leaching time, the leaching ratio of lithium hardly changed. The
water-soluble lithium salt in the anode materials exhibited a high dissolution rate. It
was completely dissolved after 30 min, indicating that water extraction of lithium is very
efficient and can be used for practical applications. Thus, the optimal leaching time of
lithium is 30 min.

3.3. Acid Washing for Impurity Removal

After the first charge–discharge cycle of LIBs, the anode materials and electrolytes
react at the solid–liquid interface, and an SEI film forms on the surface of the anode
materials. The formation of the SEI film is critical to the performance of the anode materials.
Some lithium salt and metal impurities remain on the surface of the spent anode materials
obtained after water extraction of lithium, resulting in uneven surface morphology of the
materials, which increases the thickness and unevenness of the SEI layer during the first
charge–discharge cycle. The SEI layer is more likely to rupture during the battery cycling
process, leading to further consumption of the lithium in the battery, which reduces the
Coulombic efficiency and cycling performance [19,20]. Thus, nitric acid was used as the
leaching reagent to remove the metal impurities, such as copper and Li3PO4, remaining on
the surface of graphite after water leaching.

Figure 6a shows that the surface of the spent anode materials after the heat treatment
was not smooth and was covered by impurities, making it unsuitable for SEI layer formation.
The EDS diagram indicates that the materials contained several elements, such as P, O and
Cu, in addition to C. Most impurities were Cu particles with some P and O, which were
mainly from Li3PO4 and could not be eluted in the water leaching step.
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After the materials were acid-washed to remove impurities, all impurity particles
on the waste anode materials’ surface disappeared and the materials exhibited a smooth
surface morphology. According to the EDS diagram, only C was detected in the materials,
and the other elements were undetectable because their contents were lower than the
detection limit. Figure 6d shows only the graphite peak and all impurity peaks disappeared,
confirming the strong impurity removal ability of acid washing. Table 1 indicates that the
specific surface area of the materials after acid washing (i.e., RG) decreased from 3.199
to 2.027 m2/g, which is very close to that (1.505 m2/g) of CG. This can be attributable
to the removal of impurity particles from the material surface and the smoother surface
morphology of the materials after acid washing.

3.4. Electrochemical Performance

The recycled anode materials obtained through the proposed process were used to
construct a half-cell for electrochemical testing, and the results are shown in Figure 7. In
this figure, the spent anode materials treated at the optimal heat treatment temperature
(800 ◦C) were considered RG, and Table 2 summarises the data on the electrochemical
performance of different samples.

Figure 7. (a) The cycle performance of the recycled anode materials at a current density of 74.4 mA/g
(-C = charge, -D = discharge); (b) the rate performance of CG and RG; (c) the initial charge and
discharge of the recycled anode materials; the CV curves of (d) CG and (e) RG; (f) EIS of CG and RG.

Table 2. Initial Coulombic efficiency and cycle performance of recycled anode materials (600 ◦C,
700 ◦C and RG refer to recycled anode materials after heat treatment at 600 ◦C, 700 ◦C and
800 ◦C, respectively).

Materials Initial Discharge
Capacity (mAh/g)

Initial Charge
Capacity (mAh/g)

Initial Coulombic
Efficiency (%)

50th Charge Capacity
(mAh/g)

RAW 362 282.5 78 275
CG 381.4 348 91.2 358

600 ◦C 338.8 283.9 83.7 331
700 ◦C 383.6 339.6 88.5 335

RG 386.8 350.2 90.5 349
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Figure 7 shows that the initial Coulombic efficiency and capacity of the untreated
raw materials were far lower than those of CG. Moreover, the materials exhibited poor
cycle stability with a declining capacity compared to their initial value. This is due to the
increased impurity content in the spent anode materials, which deteriorates the surface
morphology and increases the specific surface area, leading to unsuitable conditions for
SEI layer formation and difficulty in the insertion and extraction of lithium ions.

After the proposed treatment process, the capacity of the recycled anode materials and
their initial Coulombic efficiency largely improved compared to the untreated raw materials.
With the increase in the heat treatment temperature, the impurity content, particle size
and specific surface area decreased, whereas the crystallinity and capacity of the materials
increased. When the heat treatment temperature reached 800 ◦C, the initial Coulombic
efficiency of the materials exceeded 90%. The capacity reached approximately 350 mAh/g
with a stable cycling performance and almost constant capacity, which is very close to that
of CG.

RG exhibited better rate performance than CG, and its capacity did not change during
charge–discharge cycling at a low current, indicating its good reversibility Figure 7b The
better rate performance of RG can be attributable to the composite structure of the spent
anode materials comprising graphite with a layered structure, which was undamaged after
long cycling, and amorphous carbon from the pyrolysis of some organic impurities.

The CV curve of CG and RG is shown in Figure 7d,e. A small peak was observed
around 0.65 V for the two materials but disappeared in the subsequent cycle. This peak
corresponded to the formation of the SEI layer, which indicates that the SEI layer was
removed during this process. The two materials’ integrated areas of the CV curves are
close, and the positions of the redox peaks are almost the same, indicating the high purity
of RG and its superior performance, which is very close to that of CG.

Figure 7f indicates that the initial resistance of RG was lower than that of CG. This is
because the proposed process did not remove the conductive carbon originally added to
the anode materials, and RG contained a small amount of amorphous carbon. All of these
various tests indicate that the performance of RG obtained through the proposed process is
close to that of CG, with some performance parameters showing better values. Therefore,
the proposed method shows extremely high application value and can be directly used for
the regeneration of battery materials.

4. Conclusions

To achieve high-value recovery of the spent anode materials, they were processed
through heat treatment, selective lithium extraction via water immersion and deep impurity
removal via acid washing. A lithium leaching solution and RG were obtained through
recycling. The optimal heat treatment temperature was determined to be 800 ◦C, and
a protective inert atmosphere was employed during the process. The water immersion
solid/liquid ratio was 1:80, and the immersion process was conducted at 25 ◦C for 30 min.
After testing, the leaching ratio of lithium in the spent anode materials reached 87% and
there were no other impurities in the leaching solution, which could be directly recycled.
RG exhibited high purity, an optimised initial Coulombic efficiency of 90.5% and a capacity
of 350.2 mAh/g, with a stable cycling performance and a rate performance superior
to that of CG. Thus, the obtained RG can be directly used as a battery-grade graphite
material. This study proposes a new, green, simple and efficient method for recycling spent
anode materials and maintaining all of their components, considerably increasing their
application value.
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