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Abstract: Fiber-reinforced polymers (FRPs) are increasingly being used as a composite material in
concrete slabs due to their high strength-to-weight ratio and resistance to corrosion. However, FRP-
reinforced concrete slabs, similar to traditional systems, are susceptible to punching shear failure, a
critical design concern. Existing empirical models and design provisions for predicting the punching
shear strength of FRP-reinforced concrete slabs often exhibit significant bias and dispersion. These
errors highlight the need for more reliable predictive models. This study aims to develop gradient-
boosted regression tree (GBRT) models to accurately predict the shear strength of FRP-reinforced
concrete panels and to address the limitations of existing empirical models. A comprehensive
database of 238 sets of experimental results for FRP-reinforced concrete slabs has been compiled
from the literature. Different machine learning algorithms were considered, and the performance of
GBRT models was evaluated against these algorithms. The dataset was divided into training and
testing sets to verify the accuracy of the model. The results indicated that the GBRT model achieved
the highest prediction accuracy, with root mean square error (RMSE) of 64.85, mean absolute error
(MAE) of 42.89, and coefficient of determination (R2) of 0.955. Comparative analysis with existing
experimental models showed that the GBRT model outperformed these traditional approaches. The
SHapley Additive exPlanation (SHAP) method was used to interpret the GBRT model, providing
insight into the contribution of each input variable to the prediction of punching shear strength. The
analysis emphasized the importance of variables such as slab thickness, FRP reinforcement ratio, and
critical section perimeter. This study demonstrates the effectiveness of the GBRT model in predicting
the punching shear strength of FRP-reinforced concrete slabs with high accuracy. SHAP analysis
elucidates key factors that influence model predictions and provides valuable insights for future
research and design improvements.

Keywords: machine learning; fiber-reinforced polymer; flat slabs; punching shear capacity; gradient
boosting regression tree
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1. Introduction

Steel corrosion greatly affects reinforced concrete structures, especially in harsh envi-
ronments. In the United States, approximately one in seven bridges suffers from severe steel
corrosion, resulting in annual expenditures of approximately USD 4 billion for maintenance
and repairs [1,2]. These repairs not only incur high costs but also affect the performance
of structures and cause public inconvenience due to the necessary closure of roads and
buildings. These disturbances can cost up to ten times as much as corrosion repairs [2]. As
a result, there is a growing interest in exploring alternatives to traditional steel reinforce-
ment, with fiber-reinforced polymer (FRP) composites emerging as a promising solution.
FRP, known for its cost-effectiveness, high tensile strength, lightness, and resistance to
corrosion, stands out against conventional steel [3]. However, its adoption is limited due to
its brittleness, lower elasticity, and higher initial costs [3]. As a result, extensive research is
being conducted on the structural performance of RC elements using various FRP types,
such as glass, carbon, aramid, and basalt FRP. These studies aim to ensure the safety and
efficiency of RC structures with FRP reinforcement and to develop comprehensive design
guidelines for its wider application [4–10].

Numerous experimental investigations have been conducted to decipher the factors
influencing the structural performance of concrete beams, columns, slabs, and bridge
decks reinforced with FRP. Key factors critically affecting the estimation of punching shear
strength in FRP-reinforced concrete slabs include stiffness of FRP in bending and FRP–
concrete bonding behavior [11], strength characteristics of concrete [12], dimensions of
column and slab thickness [13], proportion of FRP reinforcement [14], arrangement of FRP
within the slab [11], and span length to depth ratio [15]. The complexity of these param-
eters significantly complicates the use of traditional methods and formulas in accurately
determining the punching shear capacity when FRP bars are incorporated.

The development of a punching shear strength formula for FRP bars is an ongoing task,
evolving alongside the application of design codes. Studies are underway to enhance pre-
diction formulas for FRP-reinforced concrete slabs, adapting methods from steel-reinforced
slabs and considering the test-to-prediction ratio [11,15–18]. Furthermore, several studies
have focused on using the modulus ratio (the ratio of the elastic modulus of FRP bars to
steel bars) to enhance precision [19–21]. This approach has led to modified code formulas
that incorporate the modulus ratio, drawing on standards like ACI 318-14 [22] and ACI
440-98 [20]. Drawing from a theoretical examination of the interaction between moment
and shear in slabs, Theodorakopoulos and Swamy developed a model to determine the
resistance to punching shear in slabs reinforced with FRP [23]. Meanwhile, Nguyen-Minh
and Rovnak [24] introduced a prediction model grounded in fracture mechanics, effectively
incorporating the impact of the span-depth ratio and dowel action. More recently, Ju
et al. [25] formulated a predictive equation utilizing both deterministic and probabilistic ap-
proaches for estimating the punching shear strength in slab–column connections reinforced
with both FRP and steel. Due to the diversity in the forms of these existing design equations,
which are based on different parameters, there is a notable range in the accuracy of their
predictions, with some showing low precision. Consequently, there is ongoing research
interest in refining and producing more accurate and consistent design methodologies for
assessing the punching shear capacity in FRP–RC slab–column connections.

In recent years, the application of machine learning (ML) in predicting the structural
behavior of fiber-reinforced polymer (FRP) concrete slabs has gained great interest in the
field of civil engineering [26–30]. A variety of studies have demonstrated the effectiveness
of these ML models in enhancing the accuracy of predictions compared to traditional
methods. One notable development is the development of a hybrid ML model that inte-
grates the capabilities of a least squares support vector machine (LS-SVM) and the firefly
algorithm [30]. This model has shown significant improvement in predicting the shear
capacity of FRP-reinforced panels, significantly reducing prediction errors and outper-
forming traditional methods. To further contribute to this field, the joint reinforcement
tree model, as developed in one study, excelled in predicting the behavior of slab–column
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connections with FRPs [31]. This model has high prior accuracy and low error rates and
consistently exceeds the accuracy of ML and other traditional models. Another innovative
approach involves the use of adaptive reinforcement in ML to enhance the prediction
of shear strength in FRP-reinforced concrete slabs [28]. This technique has proven to be
more accurate than existing models and codes. Additionally, it includes SHapley Additive
exPlanations (SHAP) analysis to better understand the factors that influence its forecasts
and to provide some mechanical interpretation of the resulting outcomes. The use of
XGBoost in ML algorithms was also an important step forward [29]. It has demonstrated
superior performance in accurately predicting the punching shear strength of FRP-RC
slabs, showing higher accuracy and reliability than other ML models and existing design
codes. Artificial neural networks (ANNs) have also been used in this field [32]. A study
analyzing 164 tests found that the ANN model with 6 input neurons, 15 neurons in the
first hidden layer, 5 neurons in the second hidden layer, and 1 output neuron is highly
accurate, with an impressive R value and mean absolute percentage error (MAPE), thus
outperforming existing models. This research also led to the development of a practical
graphical user interface for industry applications. Finally, the hybrid “gray box” model,
which integrates modulated pressure field theory (MCFT) with a machine learning-assisted
approach (genetic programming), represents a major advance [27]. This model, which was
tested using a database of 154 experiments, showed performance enhanced by an efficient
correction equation, exceeding the accuracy of five other experimental models.

In this study, we have developed a gradient boosting regression tree (GBRT) model [33]
tailored for predicting the shear strength of FRP slabs. This model strategically builds
additional trees, aiming to reduce prediction errors from the foundational models. The
GBRT’s boosting technique is especially effective in complex situations, creating an ideal
series of trees. This is particularly advantageous in cases with few samples but many
input features. The model excels in comprehending the complex dynamics and non-linear
behaviors of FRP slabs, thereby boosting prediction accuracy. Moreover, the GBRT method
not only precisely predicts the shear strength from various features but also identifies and
prioritizes the significance of each feature for a more detailed examination.

The aim of this study is to use the GBRT model with a much larger dataset than
previous models to enhance accuracy in predicting the behavior of fiber-reinforced poly-
mer (FRP) reinforced concrete panels. This expanded dataset approach was designed to
overcome limitations encountered in previous studies, which often relied on smaller, less
diverse data. By using a more comprehensive dataset, we expect to not only improve the
accuracy and reliability of predictive models but also improve ML algorithms through
more robust training and validation. Furthermore, this approach facilitates comprehen-
sive comparison with previous studies, showcasing advances in predictive capabilities
while enhancing the generalizability of the results. A larger dataset will also likely reveal
new insights and trends, deepening our understanding of the factors that influence FRP-
reinforced concrete slabs. In addition to providing more accurate, reliable, and universally
applicable predictive models, this study also aims to develop a user-friendly graphical user
interface (GUI) tool. This tool will be accessible via the web, allowing engineers to easily
apply our findings and predictive models in their work, significantly advancing the current
understanding and application in this field.

2. Materials and Methods

Figure 1 showcases the entire methodology devised for our approach. The first
action taken was the creation of a database consisting of reinforced FRP concrete slabs.
This database was then processed using specific engineering parameters and filtering
methods. Following this, the dataset was divided into two distinct sections: one for training
purposes and the other for testing. Based on the guidelines from previous research [34],
it is recommended that each feature contain between 10 and 30 samples. Our database
contains 238 records for each feature, which exceeds the recommended number from the
previous study. Additionally, the same research recommended a data partition ratio of
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either 65:35 or 80:20. In our study, we used the 80:20 splitting technique. Utilizing the
training data, the GBRT model underwent training that included the application of a five-
fold cross-validation technique, integral in determining the most effective hyperparameters
for the model during this phase. The next phase involved testing the model’s effectiveness
on the testing set after optimizing for hyperparameters and comparing its performance
with other ML models, including a black box model like KNN and a white box model
such as Lasso regression. If the model’s performance was deemed satisfactory, it could
be considered a final predictive model. In the concluding phase, the predictive accuracy
of the GBRT model was compared with previously developed empirical equations using
well-established performance measurement methods. Additionally, the SHAP algorithm is
utilized in this research as an effective tool to open the black box of GBRT models and to
determine the effect of each variable on model prediction. Finally, a graphical user interface
(GUI) was created to enable civil engineers to utilize the model, enhancing their ability to
design and verify FRP-reinforced concrete slabs.
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2.1. Previously Developed Equations

The code equations for steel-reinforced slabs in ACI 318-05 [35] and BS 8110-97 [36],
provided below, have been modified by researchers to account for the lower elastic modulus
of FRP reinforcement. This modification aims to assess the punching shear capacity of
FRP-reinforced slabs. The following values are given in metric units: dimensions in mm,
strength in N, stresses in MPa, and elastic moduli in GPa.

In the absence of flexural reinforcement as a significant factor, the punching shear
resistance of an internal square column steel-reinforced flat slab is given by ACI 318-05 [35]
as follows:

VC = 0.33
√

f ′cbod (1)
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where d is the average effective slab flexural depth; bo is the perimeter at the critical section,
which is situated 0.5 d from the column face; and f ′c is the required cylinder compressive
strength of concrete.

For steel-reinforced slabs, Vc is computed as follows in BS 8110-97 [36]:

VC = 0.79(100ρs)
1/3( fcu/25)1/3

(
400/d)1/4bpd (2)

where ρs is the steel reinforcement ratio; f cu is the cube concrete compressive strength; and
bp is the rectangular critical perimeter that is 1.5 d from the column face, independent of
the form of the column. The following FRP slab adjustments have been suggested based on
these equations.

El-Ghandour, Pilakoutas, and Waldron [19] added the term (Ef/Es)1/3 to the ACI code
equation, where Ef and Es stand for modulus of elasticity for steel and FRP, respectively.
Therefore, for FRP-reinforced slabs, Equation (3) becomes:

VC = 0.33
√

f ′c(Ef/Es)
1/3bod (3)

As a modification of the BS 8110 equation, Matthys and Taerwe [15] developed the
following equation for two-way slabs reinforced by FRP bars or grids:

VC = 1.36[100ρf(Ef/Es)]
1/3 f 1/3

cm

(
1/d)1/4bpd (4)

where f cm stands for the average compressive strength of concrete after 28 days in cylinders.
Additionally, an empirical equation based on Equation (4) was suggested by Ospina,

Alexander, and Cheng [11]. It is given by:

VC = 2.77
(
ρf f ′c

)1/3
(Ef/Es)

1/2bpd (5)

The scaling effect on the punching of slabs with FRP reinforcement has been excluded
from Equation (5) because it was reported that this effect was not evident based on the
available FRP test results [11]. To produce better results, the effect of the modular ratio
Ef/Es is considered as the square root instead of the cube root.

Also, to estimate the punching shear capacity of both steel and FRP-reinforced concrete
flat slabs, El-Gamal et al. [37] suggested altering the ACI 318-05 punching shear equation
by multiplying it by a new factor α. The form of the modified equation is:

VC = 0.333
√

f ′cboACIdα (6)

α = 0.5
(

ρE)1/3
(

1 +
8d

boACI

)
(7)

Finally, Ju et al. [25] developed a probability distribution with a significant unknown
factor using Monte Carlo Simulation (MCS) to ensure the lowest likelihood of failure.
The design strength equation below was determined using a probabilistic technique with
95% confidence:

Vc = 2.3
[
ρ f

(
E f /Es

)
f ′c
]1/3

(d/b0,0.5d)
1/2b0,0.5dd (8)

2.2. Gradient Boosting Regression Tree (GBRT)

The CART system (Classification and Regression Trees) was introduced by Breiman
et al. [38]. Regression and classification models can both be implemented with CARTs [39–41].
The decision trees used in these two models are binary trees, which are made using re-
cursive techniques. The main focus of this study is the GBRT approach, which combines
the Gradient Boosting and CART methods developed by He et al. [42]. More accurate in
prediction than other AI systems, the CART system is acclaimed for its ability to describe
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nonlinear interactions without requiring prior knowledge of variable probability distribu-
tions [42]. In this study, the Gradient Boosting approach transforms ineffective learners into
effective ones, while the CART system is used to build regression trees for weak learners.
The system is trained with weak learners to improve the previously learned predictions,
reducing forecasting errors and boosting reliability.

The GBRT approach sets the initial value of F0(x) as follows:

F0(x) = argmin
c

N

∑
i=1

L(yi, c) (9)

A loss function is shown by L(. ). When calculating the residual prediction at iteration
m, where m = 1,. . ., M, the following equation may be utilized to obtain the negative
gradient value of the loss function in the present framework:

rm,i = −
[

∂L(yi, F(xi))

∂F(x)

]
F(x)=Fm−1(x)

, i = 1, ., N (10)

Since each tree is predicted to have Jm splits, this regression tree divides the input area
into Jm disjoint regions Rm,1,. . ., Rm,Jm. Each tree then projects a value cm,j for area Rm,j. The
following formula may be minimized to obtain cm,j:

cm,j = argmin
c

∑
xi∈Rm,j

L(yi, Fm−1(x) + c) (11)

The mth regression tree of the updated algorithm’s linked leaf node area, Fm(x), or
Rm,j, where j = 1, 2,. . ., Jm, is determined as follows:

Fm(x) = Fm−1(x) +
Jm

∑
j=1

cm,jI
(
x ∈ Rm,j

)
(12)

If x ∈ Rm,j, then I equals one; otherwise, it equals zero [43]. Jm also indicates the
number of leaf nodes in the mth regression tree. After that, the design is updated. Figure 2
presents an overview of the GBRT methodology.
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2.3. K-Nearest Neighbors

A non-parametric ML approach called K-Nearest Neighbors makes no assumptions
about the decision boundaries separating the failure modes. Using this strategy, a sample
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is considered to belong to a failure mode if it is one of the K most comparable samples in
the feature space. Next, we estimated the conditional probability for x in failure mode f
as follows:

Pr(x) = Pr(Y = f | X = x) =
1
K ∑

j∈NK

I(yi = f ) (13)

In the training data, K points that are closest to observation, f, are represented by NK.

2.4. Least Absolute Shrinkage and Selection Operator (LASSO)

Tibshirani proposed the LASSO model algorithm in 1996 [44]. The basic idea is to
minimize the sum of squared residuals while adhering to a constraint that sets a maximum
value for the sum of the absolute values of the regression coefficients. This method allows
us to produce certain regression coefficients that are precisely equal to zero, which makes it
possible to build a more reliable model with more potent explanatory power. Compared to
linear regression, this method is similar to Ridge regression in that regularization coeffi-
cients are included. But LASSO regression uses L1 regularization, which sets it apart from
Ridge regression [45]. The expression for the loss function is:

J =
1
n

n

∑
i=1

( f (xi)− yi)
2 + λ∥ w ∥1 (14)

where λ∥w∥1 is the L1 regularization factor.

2.5. Cross-Validation

Many researchers used the standard method of data splitting, which includes dividing
the dataset into three subsets—training, validation, and testing—to evaluate the perfor-
mance of their ML model. The validation set monitors the model’s performance, while the
training set is utilized to complete the learning process. Lastly, the model is put to the test
by running it through a testing set of samples it has never seen before in order to assess its
extrapolation abilities [46]. The previously mentioned process can lead to an inadequately
trained model due to dataset size reduction resulting from the division into three subsets.
Therefore, especially for small datasets, cross-validation is a commonly used technique
to prevent excessive reduction of the training set [46]. There are various approaches to
implementing cross-validation, but the most popular one involves validating the model
by excluding random inputs. In this study, K-fold cross-validation was employed. This
resampling method, known as K-fold cross-validation, divides the data into K subsets: K−1
for training and one subset for validation.

2.6. Hyperparameter Tuning

Building a reliable ML model requires a fundamental step, which is tuning the hy-
perparameters of the model. Hyperparameter tuning is useful to increase the model’s
adaptability to new data and reduce the problem of overfitting [47]. In addition, the
model’s accuracy is increased through the process of finding the best hyperparameters [48].
Grid search and random search optimization methods are the most popular hyperparam-
eter tuning procedures that have been used to automate hyperparameter selection and
prevent manual tuning [49]. What distinguishes these methods from each other is the
range of possible values that are evaluated during the research process. While grid search
evaluates all possible values of hyperparameters within a predefined range, random search
techniques randomly select different values of hyperparameters for a given number of
iterations [49]. The Scikit-Learn package in Python (3.7) [50] was used to explore possible
values of hyperparameters using the grid search technique with five-fold cross-validation
(GridSearchCV). Figure 3 depicts the five-fold cross-validation used in this work for training
and hyperparameter selection of the model.
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2.7. Performance Measure

To evaluate the performance of the developed models analytically, the following
statistical error parameters were utilized: Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), correlation coefficient (R), and coefficient of determination (R2).

The MAE is calculated as follows:

MAE =

N
∑

i=1
|Pi − Oi|

N
(15)

The RMSE is defined as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(Pi − Oi)
2, (16)

The correlation coefficient (R) is determined by the following equation:

R =

N
∑

i=1
(Pi − Pm)(Oi − Om)√

(Pi − Pm)
2
√
(Oi − Om)

2
(17)

The coefficient of determination (R2) is computed as follows:

R2 = 1 −

N
∑

i=1
(Oi − Pi)

2

N
∑

i=1
(Oi − Om)

2
(18)

where N is the number of data points, Om is the mean of observed values, and Pm is the
mean of predicted values. In this case, Oi stands for the measured values and Pi for the
expected values. The relative correlation between the observed and expected values is
expressed as the correlation coefficient (R). The range of R values spans from −1 to 1. A
direct linear connection between the measured and anticipated values is shown by a R
value that is close to 1. R, however, may not always accurately reflect the performance of
the model, especially when the data range is large and the data points are dispersed around
the mean. As a result, the coefficient of determination, or R2, is a more objective estimate



Materials 2024, 17, 3964 9 of 22

and useful tool for assessing how well the model performs. The discrepancy between the
measured and predicted values is evaluated by the MAE and RMSE, with values close to
zero indicating more accuracy.

3. Database Used

For this investigation, a dataset of 238 experimental observations on FRP-reinforced
concrete slabs under punching shear was gathered from a range of literature
sources [11,14–16,18,20,24,37,51–89]. It is worth mentioning that most of the experimental
data included in our database was also part of the comparative study conducted by [90].
The findings from previous work [32] revealed that there is a significant impact of a number
of critical variables on the punching shear of FRP-reinforced concrete slabs. These variables
include the cross-section area of the column (A), the perimeter of the critical section in
the RC slab (b0), which can be calculated based on 0.5de and 1.5de and is named b0,0.5de
(k = 1) and b0,1.5de (k = 3), as demonstrated in Figure 4. The effective depth of the RC slab
is denoted as de, while fc represents the compressive strength of the utilized concrete in
the RC slab. The modulus of elasticity and the reinforcement ratio of the steel and FRP
rebars are respectively indicated as Er and ρr. As a result, ML models that estimate the
shear strength of FRP-reinforced concrete slabs are built using these discovered parameters
as their foundation.
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Figure 4. Process of calculating the perimeter of the critical section in RC slabs, b0 for: (a) circular;
(b) square; and (c) rectangular cross-sections [32].

The dataset encompasses a range of values for each parameter: the cross-section area
of the column (A) ranging from 6.25 to 1587.5 cm2, the perimeter of the critical section in the
RC slab (b0,0.5de) ranging from 280 to 2470 mm, and (b0,1.5de) ranging from 640 to 4608 mm.
The effective depth of the RC slab (de) ranges from 36 to 284 mm, the compressive strength
of the utilized concrete in the RC slab (fc) ranges from 22.16 to 179 MPa, the reinforcement
ratio (ρr) ranges from 0.13 to 3.76%, the modulus of elasticity of the steel and FRP rebars (Er)
ranges from 28.4 to 230 GPa, and the ultimate shear strength (Vu) ranges from 24 to 1600 kN.
Square and circular columns are among the test specimens. They consist of flat slab-column
connections constructed of FRP-reinforced concrete without drop panels, column capitals,
or shear reinforcement.

The statistical parameters summarizing the properties of the variables in the database
are presented in Table 1, while Figure 5 illustrates the distribution of each parameter.
Additionally, the correlation matrix plot in Figure 6 displays the association between shear
capacity and the six input parameters. This figure graphically represents the pairwise
correlations between the parameters, each associated with a corresponding correlation
coefficient. It is evident that while parameters fc, ρr, and Er show a weaker connection with
shear strength, parameters b0,0.5de, b0,1.5de, de, and A exhibit a significant correlation with
shear strength.
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Table 1. Statistical measures of variables.

Statistics A (cm2) b0,0.5de (mm) b0,1.5de (mm) De (mm) fc (MPa) ρr (%) Er (GPa) Vu (kN)

Mean 671.10 1496.90 2509.18 127.89 44.72 0.94 74.44 380.13
Median 625.00 1480.00 2456.00 130.00 40.00 0.89 56.70 269.50

Maximum 1587.50 2470.00 4608.00 284.00 179.00 3.76 230.00 1600.00
Minimum 6.25 280.00 640.00 36.00 22.16 0.13 28.40 24.00

Standard deviation 457.14 578.28 930.48 48.92 19.94 0.60 41.00 306.31
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4. Model Results
4.1. Cross-Validation Results

The obtained results of K-fold cross-validation used to assess the performance of the
GBRT model are illustrated in Table 2 and Figure 7. Across all the metrics used to test
the performance, the model displays strong consistency and reliability. A low standard
deviation and an average of 0.8958 indicate stability throughout the five folds. Also, we can
notice that the R2 values for five folds are mostly above 0.85, demonstrating its resilience
in capturing the variance in the data. The RMSE, which averages 101.5825 kN with a
standard deviation of 27.2149 kN, highlights the model’s accuracy and stable error rate.
Bar charts visually support these findings by showing values tightly clustered around
the mean, indicating consistent predictive power. Similarly, the MAE shows an average
error magnitude of 67.0519 kN. Overall, the cross-validation performance demonstrates the
model’s ability to make accurate predictions and its potential for practical application.

Table 2. Results derived from a five-fold cross-validation.

Performance Measures

Fold MAE RMSE R2

Fold 1 85.971 127.5212 0.8614
Fold 2 44.5853 61.1113 0.9303
Fold 3 60.938 84.0522 0.9467
Fold 4 68.8669 114.5359 0.8809
Fold 5 74.898 120.6918 0.8596

Average 67.0519 101.5825 0.8958
Std deviation 15.4718 27.2149 0.0369
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4.2. Performance Comparison with Other ML Models

As displayed in Figure 8a–c, the results of our developed GBRT model showed minimal
scattering around the ideal line between the actual and predicted shear strengths for both
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the training and testing datasets. Also, Table 3 presented an analytical investigation of
statistical error parameters for training and testing datasets to support the validation of the
generated model. In Table 3, the outcomes from the developed Lasso and KNN methods
were also evaluated against our proposed model. Previous authors have suggested that
an R value greater than 0.8 indicates a strong correlation between observed and predicted
values. Note that the observed and predicted values may not match even if R is near
one. Instead, they just vary in a similar way. The coefficient of determination (R2) can be
employed to address this limitation. For accurate results, R2 values should be close to 1. The
accuracy achieved by GBRT for both training and testing was better compared to Lasso and
KNN, as we can notice in Table 3. For all these data, when comparing the performance of
the GBRT model with the KNN and Lasso models, the GBRT model increased R2 values by
4.19% and 39.17%, respectively. Additionally, it lowered RMSE values by 26.53% compared
to KNN and by 62.12% compared to Lasso. The GBRT model also achieved a reduction
in MAE values by 19.09% compared to KNN and by 65.80% compared to Lasso. Notably,
while the performance of the KNN and LASSO models was found reasonable, KNN
demonstrated superior results over LASSO. The lower performance of the LASSO model
can be linked to its inability to accurately predict phenomena that are highly nonlinear or
involve multiple criteria.
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Figure 8. Scatter plot for predicted vs. actual values for training and testing sets using (a) a GBRT, 
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Table 3. Performance metrics of different models on training, testing, and total datasets.

Subset Model R2 RMSE MAE

Training
GBRT 0.9634 58.8937 37.431
KNN 0.9334 79.4677 46.5368
Lasso 0.6969 169.5705 122.8655

Testing
GBRT 0.9188 84.4012 64.4838
KNN 0.8446 116.7559 78.5972
Lasso 0.6404 177.6072 135.3977

Total
GBRT 0.955 64.8508 42.887
KNN 0.9166 88.2654 53.0028
Lasso 0.6862 171.2217 125.393
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Figure 9 further emphasizes the effectiveness of our suggested model through plotting.
The actual shear resistance versus experimentally observed shear strength for the testing
databases are shown in this figure. This figure demonstrates how closely the suggested
models’ predictions match the strength seen through experimentation. Despite not being
utilized for model training, the testing database predicted data points are close to the
experimental points, demonstrating good prediction capacity. This illustrates our suggested
models’ capacity for generalization. As shear strength values rise, the data exhibit greater
dispersion, primarily because there are fewer observations available.
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4.3. Performance Comparison with Previously Developed Models

Figure 10a–e depict the experimental versus predicted shear capacities using models
by Ospina et al. [11], El-Gamal et al. [37], El-Ghandour et al. [19], Ju et al. [25], and the
proposed GBRT model. The equity solid line in these figures represents a perfect match
between the experimental and predicted responses. Table 4 evaluates these models based
on the mean, standard deviation (STD), and coefficient of variation (COV) of the pred/exp
ratio (χ). The proposed GBRT model shows the best performance with a mean χ of 1.0430,
a standard deviation of 0.2177, and a COV of 0.2087, indicating high accuracy and stability.
The close clustering of data points around the mean in the corresponding figure further
confirms the model’s reliable predictive power. In contrast, the Ospina et al. [11] model
tends to overestimate shear capacity, as indicated by a high mean χ of 1.2220 and a high
standard deviation of 0.6841, resulting in a COV of 0.5598. This model’s scatter plot
shows a wider spread of data points, reflecting less consistent predictions. The El-Gamal
et al. [37] model has a mean χ of 0.9639, a standard deviation of 0.5760, and a COV of 0.5976,
indicating moderate accuracy but less stability. Similarly, the El-Ghandour [19] model, with
a mean χ of 0.9820, a standard deviation of 0.5206, and a COV of 0.5302, shows relatively
better performance among the existing models. The Ju et al. [25] model also performs
moderately well, with a mean χ of 0.9708, a standard deviation of 0.5433, and a COV of
0.5597. The scatter plots for these models show varying degrees of data clustering around
the mean, reflecting their predictive capabilities.



Materials 2024, 17, 3964 14 of 22

Materials 2024, 17, x FOR PEER REVIEW 14 of 22 
 

 

Table 4. Evaluation of existing and proposed models based on χ. 

Model Mean STD COV 

Proposed GBRT  1.0430 0.2177 0.2087 

Ospina et al. [11] 1.2220 0.6841 0.5598 

El-Gamal et al. [37] 0.9639 0.5760 0.5976 

El-Ghandour et al. [19]  0.9820 0.5206 0.5302 

Ju et al. [25] 0.9708 0.5433 0.5597 
STD: standard deviation; COV: coefficient of variation. 

0 500 1000 1500 2000
0

500

1000

1500

2000

0 500 1000 1500 2000
0

500

1000

1500

2000

0 500 1000 1500 2000
0

500

1000

1500

2000

0 500 1000 1500 2000
0

500

1000

1500

2000

0 500 1000 1500 2000
0

500

1000

1500

2000

Ospina et al. Model
χ = 1.2220
COV = 0.5598

Pr
ed

ic
te

d 
Sh

ea
r M

ea
su

re
s

Actual Shear Measures

(a) (b) (c)

(d) (e)

El-Ghandour  et al. Model
χ = 0.9820
COV = 0.5302

Pr
ed

ic
te

d 
Sh

ea
r M

ea
su

re
s

Actual Shear Measures

Ju et al. Model
χ = 0.9708
COV = 0.5597

Pr
ed

ic
te

d 
Sh

ea
r M

ea
su

re
s

Actual Shear Measures

El-Gamal et al. Model
χ = 0.9639
COV = 0.5976

Pr
ed

ic
te

d 
Sh

ea
r M

ea
su

re
s

Actual Shear Measures

This study Model
χ = 1.0430
COV = 0.2087

Pr
ed

ic
te

d 
Sh

ea
r M

ea
su

re
s

Actual Shear Measures  
Figure 10. Comparison of different model scatter plots for (a) Ospina et al. [11], (b) El-Ghandour et 
al. [19], (c) Ju et al. [25], (d) El-Gamal et al. [37], and (e) this study model. 

4.4. Reliability Analysis 
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Table 4. Evaluation of existing and proposed models based on χ.

Model Mean STD COV

Proposed GBRT 1.0430 0.2177 0.2087
Ospina et al. [11] 1.2220 0.6841 0.5598

El-Gamal et al. [37] 0.9639 0.5760 0.5976
El-Ghandour et al. [19] 0.9820 0.5206 0.5302

Ju et al. [25] 0.9708 0.5433 0.5597
STD: standard deviation; COV: coefficient of variation.

4.4. Reliability Analysis

For assessing structural reliability, relying solely on basic descriptive statistics of χ
might not provide sufficient information about the reliability of a design proposal. An χ

value of 2 indicates a more severe issue than a χ value of 0.5, a nuance that is not captured by
traditional statistical analysis. To address this, the Demerit Point Scale (DPS) Methodology
is used, which assigns penalty points to different ranges of χ values [91]. This methodology
divides the χ ratio into sections, each associated with a specific penalty, as outlined in
Table 5. The total demerit point score for each model is calculated by multiplying the
percentage of χ values in each range by the corresponding penalty points, summing these
products, and dividing by 100. This score ranges from 0 to 10, with lower scores indicating
better performance. Table 6 details the χ ranges, their penalties, and the percentage of
specimens in each range. The overall performance of each model is then evaluated using a
cumulative penalty score. Compared to existing models, the GBRT model shows the highest
percentage (65.13%) of predictions within the appropriate safety range (0.85 < χ ≤ 1.15)
and the lowest percentage (0.42%) in the dangerous and extra dangerous ranges. Thus,
the GBRT model has the lowest total demerit point score, indicating higher reliability.
In contrast, the El-Ghandour et al. [19] model is the most conservative, with 5.88% of
predictions in the extremely conservative range. The Ospina et al. [11] model is the least
reliable, with 38.65% of predictions falling in the dangerous and extra dangerous ranges.
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This analysis highlights the GBRT model’s superior predictive accuracy and reliability
compared to other models.

Table 5. Safety classification and corresponding penalties based on χ values.

Range Classification Penalty (PEN)

χ > 2 Extra dangerous 10
1.15 < χ ≤ 2 Dangerous 5

0.85 < χ ≤ 1.15 Appropriate safety 0
0.5 < χ ≤ 0.85 Conservative 1

χ ≤ 0.5 Extra conservative 2

Table 6. Performance comparison of different models based on ratio categories and demerit points.

Category Ju et al. [25] El-Ghandour et al. [19] El-Gamal et al. [37] Ospina et al. [11] GBRT

Ratio ≥ 2 11 (4.62%) 10 (4.2%) 11 (4.62%) 24 (10.08%) 1 (0.42%)
1.15 ≤ ratio < 2 36 (15.13%) 43 (18.07%) 37 (15.55%) 68 (28.57%) 54 (22.69%)

0.85 ≤ ratio < 1.15 61 (25.63%) 62 (26.05%) 63 (26.47%) 78 (32.77%) 155 (65.13%)
0.5 ≤ ratio < 0.85 119 (50.0%) 109 (45.8%) 117 (49.16%) 63 (26.47%) 26 (10.92%)

Ratio < 0.5 11 (4.62%) 14 (5.88%) 10 (4.2%) 5 (2.1%) 2 (0.84%)
Total demerit point score 4.31 4.52 4.32 6.53 3.1

4.5. Shap Analysis

To understand the importance of each input factor, we used SHAP (SHapley Additive
exPlanations). This method, created by Lundberg and Lee in 2017 [92], calculates how
much each input affects the result. It uses a game theory concept called Shapley values.
SHAP looks at all possible combinations of inputs to find the average effect of each one.
The higher the SHAP value, the more important the input is. In short, SHAP helps us to
see which inputs matter most for the results.

Summaries of the related attribute patterns and SHAP value distributions for individ-
ual features are displayed in Figure 11. The input variables are shown on the y-axis of the
summary plot, arranged by significance, and the SHAP values are shown on the x-axis.
The dots represent the database instances, with their color indicating intensity (ranging
from blue to red). The x-axis displays the range of predictions for each variable, as shown
by the SHAP values, highlighting the range of input variable magnitudes from blue to red.
Utilizing it can help one better understand how each unique attribute affects the prediction
of the dependent variable. When a feature’s magnitude is high, it can significantly impact
the dependent variable’s prediction, as indicated by its position on the right side of the plot
and its high SHAP value. According to Figure 11, the critical section perimeters (b0,1.5de and
b0,0.5de) have the greatest magnitude of SHAP values and the greatest impact on the model
predictions. The critical section perimeters can also be considered as a vital variable influ-
encing slab punching shear capacity [93]. Notably, the slab effective depth de emerges as the
third most crucial feature, aligning with findings from reference [13]. It can be seen that the
most important features that strongly affect the shear strength of a flat slab are the geometric
parameters. This is because the behavior of the slab, especially its failure mode (bending or
shearing), depends on the cross-sectional properties, the slab’s depth, and the load point’s
position. In addition, the material properties of the concrete also play an essential role when
the slab collapses due to shear. Despite the limited contribution of the dowelling action
of FRP bars to punching shear capacity, heightened values of ρ and Er result in decreased
deformation and crack width. This, in turn, enhances aggregate interlock and increases the
shear resistance of concrete [13,16,94]. In summary, SHAP analysis is a valuable tool for
enhancing our understanding of the proposed models, particularly regarding the influence
of input features on the predicted parameter. The effect of input parameters can be analyzed
in the context of traditional mechanical backgrounds to increase confidence in ML-based
predictions, which are sometimes viewed as “black-box” processes.
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4.6. Model Uncertainty Analysis

Correlation and regression analysis [95] were performed on datasets of model uncer-
tainty observations to determine the sensitivity of critical shear capacity design parameters
to various variables. According to Franzblau [96], correlations are categorized as very weak
(0 to ±0.2), weak (0.2 to ±0.4), and moderate (0.4 to ±0.6). Scatter plots of model uncer-
tainties versus factors affecting the shear capacity of flat slabs are presented in Figure 12.
The calculated linear correlation coefficients are also summarized in Figure 12, showing
the degree of correlation between model uncertainty (predicted/actual) and model input
parameters. A reliable shear prediction model for FRP-reinforced concrete flat slabs should
exhibit very weak or no correlation with design parameters that influence shear resistance.
This indicates that the model adequately accounts for the influence of design parameters,
resulting in insignificant systematic trends. As shown in Figure 12, there is no notable bias
or trend toward these variables, and the prediction accuracy for the ultimate shear strength
using the GBRT-based relationship appears robust. Modifications to the model’s applica-
tion are required for situations with significant trends, particularly in areas of potentially
dangerous or uneconomic performance. These modifications might involve restricting the
model’s use to specific scenarios, implementing calibration procedures to include sufficient
safety components in the event of dangerous performance, or adding a calibrated resistance
adjustment factor for uneconomic performance. Many of these correction processes are
now included in various design standards.

4.7. Graphical User Interface

The models developed in this study provide a practical ML solution for estimating
the FRP flat shear strength under different input parameters. To ensure the predictions
are computationally efficient, user-friendly, and accurate, a graphical user interface has
been created. This interface is available to all users through the following accessible link:
https://frpflatslabshear-bhev7apr89guhlsgoybpjy.streamlit.app/.

Using movable digital sliders, the user interacts with the web application to specify
the main input parameters (A, b0,0.5de, b0,1.5de, de, fc, ρr, and Er) during the first stage of
prediction through the designed GUI. These parameter ranges correspond to those found
in the datasets on which the ML models were trained. The screen interface displays both
the computed values and the parameters supplied by the user. Most importantly, the code
runs automatically whenever the input variables are changed. The prediction process is
noteworthy for being extremely quick, typically taking only a few seconds.

https://frpflatslabshear-bhev7apr89guhlsgoybpjy.streamlit.app/


Materials 2024, 17, 3964 17 of 22Materials 2024, 17, x FOR PEER REVIEW 17 of 22 
 

 

0 200 400 600 800 1000 1200 1400 1600 1800
0.0

0.5

1.0

1.5

2.0

0 1000 2000 3000 4000 5000
0.0

0.5

1.0

1.5

2.0

0 50 100 150 200 250 300
0.0

0.5

1.0

1.5

2.0

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

0 20 40 60 80 100 120 140 160 180 200
0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

0 50 100 150 200 250
0.0

0.5

1.0

1.5

2.0

V
u,

pr
ed

/V
u,

ex
p

A(cm2)

Cofficient of variation (R) = 0.0248

 GBRT
 Best fitted line
 Linear GBRT

(a)

V
u,

pr
ed

/V
u,

ex
p

b0,1.5de

Cofficient of variation (R) = 0.0266

 GBRT
 Best fitted line
 Linear GBRT

(b)

V
u,

pr
ed

/V
u,

ex
p

de(mm)
(c)

 GBRT
 Best fitted line
 Linear GBRT

Cofficient of variation (R) = 0.0217

V
u,

pr
ed

/V
u,

ex
p

b0,0.5de

Cofficient of variation (R) = 0.0237

(d)

V
u,

pr
ed

/V
u,

ex
p

fc (MPa)

 GBRT
 Best fitted line
 Linear GBRT

Cofficient of variation (R) = −0.1578

(e)

 GBRT
 Best fitted line
 Linear GBRT

V
u,

pr
ed

/V
u,

ex
p

ρ (%)

Cofficient of variation (R) = 0.0536

 GBRT
 Best fitted line
 Linear GBRT

(f)

V
u,

pr
ed

/V
u,

ex
p

Cofficient of variation (R) = −0.1621

 GBRT
 Best fitted line
 Linear GBRT

(g)
Er(GPa)

 
Figure 12. Trend analysis between the predictors and the ratio of predicted/actual based on the 
GBRT model: (a) A(cm2), (b) b0,1.5de, (c) de, (d) b0,1.5de, (e) fc (MPa), (f) ρr(%), (g) Er(GPa). 
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Without requiring the complex computations typically associated with mechanics-
driven models, this graphical interface tool can be invaluable for engineers and practitioners
seeking more accurate prediction outcomes. It significantly enhances efficiency and accu-
racy. The program’s intuitive user interface (UI) makes it a practical tool, saving time and
effort when predicting the FRP flat shear strength under different input parameters.

One of the main advantages of this application is its ability to be accessed through a
web browser using the supplied URL. Because of its web-based accessibility, the software
tool can be deployed on local computing devices without the need for program installation.

5. Recommendation for Future Work

Our current study focuses on predicting the punching shear capacity of FRP flat slabs,
ranging from 24 to 1600 kN, based on large-scale experimental results from previous lit-
erature using the GBRT model. Since the GBRT model contains several parameters that
need optimization, novel optimization techniques such as the Human Felicity Algorithm
(HFA), Gray Wolf Optimization (GWO), and Particle Swarm Optimization (PSO) com-
bined with GBRT might capture complex relationships and interactions within the data
more effectively. Additionally, the database used to build our prediction model contains
238 experimental results. Expanding this database to include more diverse datasets from
various sources and recent experiments could improve the model’s generalizability and
accuracy. Future studies should aim to continuously update and refine the database with
new experimental data. Finally, future research should also explore the incorporation of
novel FRP materials and advanced reinforcement techniques. Recent studies, such as those
by [10,97], have shown promising results in mitigating traditional FRP failure mechanisms.
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Expanding the current GBRT model to include these novel materials and methods could
provide deeper insights and more robust predictions.

6. Conclusions

Structural engineers face a major challenge in predicting the shear strength of FRP-
reinforced flat concrete slabs, which underscores the need for reliable and accurate ML
algorithms. Using a database of 283 FRP flat slab models, this paper proposes a gradient-
boosted regression tree (GBRT) model to predict the shear strength of FRP-reinforced flat
concrete slabs. The input space for the present dataset consists of seven basic parameters:
cross-sectional area of the column, critical cross-sectional perimeter in the RC slab at
k = 1 and k = 3, effective depth of the level slab, compressive strength of concrete, FRP
longitudinal reinforcement ratio, and modulus of elasticity. The model assessment employs
5-fold cross-validation and statistical measures. An overview of the study’s conclusions
and observations is provided in this section:

Based on the fivefold cross-validation results, the GBRT model demonstrated consis-
tency and reliability across the performance metrics used in this analysis.

The higher prediction accuracy of the GBRT was demonstrated by its better perfor-
mance in terms of three specified metrics (i.e., Mean Absolute Error (MAE), root mean
square error (RMSE), and coefficient of determination (R2)) when compared to the KNN and
LASSO models. Furthermore, compared to the LASSO model, the KNN model typically
produced superior predictions.

Using an experimental database, the GBRT model was compared to several well-
known equations, including Ospina et al. [11], El-Gamal et al. [37], El-Ghandour et al. [19],
and Ju et al. [25]. The results indicated that the GBRT model provided more accurate results
than the other models. The GBRT model exhibited a reduced standard deviation, coefficient
of variation, and average for a given χ value when compared to the other formulations.

The perimeter of the critical section was the most influential of the seven input factors
in determining the punching shear resistance of FRP flat slabs without shear reinforcement.
Additionally, the punching shear prediction of the FRP flat slabs was significantly impacted
by the slab effective depth.

Based on the GBRT model, a graphical user interface was created to forecast punching
shear strength, offering a useful platform for the practical design of FRP flat slabs.
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