Investigation of the Electrochemical Behavior of CuO-NiO-Co3O4 Nanocomposites for Enhanced Supercapacitor Applications
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of the NiO-Co3O4 Heterojunction Nanocomposite
2.2. Fabrication of the CuO-NiO-Co3O4 Heterojunction Nanocomposite
3. Results and Discussion
3.1. XRD Analysis
3.2. Morphological Analysis
3.3. Optical Analysis
3.4. Electrochemical Studies
3.4.1. CV Analysis
3.4.2. Galvanostatic Charge–Discharge Analysis
3.4.3. Electrochemical Impedance Spectroscopy Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, R.; Shen, G.; Qu, F.; Chen, D. Flexible on-chip micro-supercapacitors: Efficient power units for wearable electronics. Energy Storage Mater. 2020, 27, 169. [Google Scholar] [CrossRef]
- Salunkhe, R.R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J.H.; Yamauchi, Y. Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework. ACS Nano 2015, 9, 6288. [Google Scholar] [CrossRef] [PubMed]
- Babu, C.R.; Avani, A.V.; Shaji, S.; Anila, E.I. Electrochemical characteristics of Co3O4 nanoparticles synthesized via the hydrothermal approach for supercapacitor applications. J. Solid State Electrochem. 2023, 28, 2203–2210. [Google Scholar] [CrossRef]
- Rajendran, V.; Mohan, A.M.V.; Jayaraman, M.; Nakagawa, T. All-printed, interdigitated, freestanding serpentine interconnects based flexible solid state supercapacitor for self powered wearable electronics. Nano Energy 2019, 65, 104055. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, L.; Song, W.; Wang, J.; Sun, G.; Li, K. Electrochemical performance of asymmetric supercapacitor based on Co3O4/AC materials. J. Electroanal. Chem. 2013, 706, 1–6. [Google Scholar] [CrossRef]
- Valan, M.F.; Manikandan, A.; Antony, S.A. A novel synthesis and characterization studies of magnetic Co3O4 nanoparticles. J. Nanosci. Nanotechnol. 2015, 15, 4580. [Google Scholar] [CrossRef]
- Hu, P.; Zhao, D.; Liu, H.; Chen, K.; Wu, X. Engineering PPy decorated MnCo2O4 urchins for quasi-solid-state hybrid capacitors. Cryst. Eng. Commun. 2019, 21, 1600–1606. [Google Scholar] [CrossRef]
- Shariq, M.; Asim Siddiqui, M.; Qamar, M.A.; Altowairqi, Y.; Ali, S.K.; Madkhali, O.; Fadhali, M.M.; Alharbi, T.; Khan, M.S.; Saheb Syed, I.; et al. Study of Co-doped K2Ti6O13 lead-free ceramic for positive temperature coefficient thermistor applications. Crystals 2022, 12, 1569. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Sun, X. NiCo2O4@NiO hybrid arrays with improved electrochemical performance for pseudocapacitors. J. Mater. Chem. A 2015, 3, 13900–13905. [Google Scholar] [CrossRef]
- Pawar, S.M.; Pawar, B.S.; Babar, P.T.; Ahmed, A.T.A.; Chavan, H.S.; Jo, Y.; Cho, S.; Kim, J.; Hou, B.; Inamdar, A.I.; et al. Nanoporous CuCo2O4 nanosheets as a highly efficient bifunctional electrode for supercapacitors and water oxidation catalysis. Appl. Surf. Sci. 2019, 470, 360–367. [Google Scholar] [CrossRef]
- Babulal, S.M.; Venkatesh, K.; Chen, T.W.; Chen, S.M.; Krishnapandi, A.; Rwei, S.P.; Ramaraj, S.K. Synthesis of MnMoO4 nanorods by a simple Co-precipitation method in presence of polyethylene glycol for pseudocapacitor application. Int. J. Electrochem. Sci. 2020, 15, 7053–7063. [Google Scholar] [CrossRef]
- Xu, J.; Cheng, J. The advances of Co3O4 as gas sensing materials: A review. J. Alloys Compd. 2016, 686, 753–768. [Google Scholar] [CrossRef]
- Liang, C.; Wang, S.; Sha, S.; Lv, S.; Wang, G.; Wang, B.; Li, Q.; Yu, J.; Xu, X.; Zhang, L. Novel semiconductor materials for advanced supercapacitors. J. Mater. Chem. C Mater. 2023, 11, 4288–4317. [Google Scholar] [CrossRef]
- Teo, W.Z.; Ambrosi, A.; Pumera, M. Direct electrochemistry of copper oxide nanoparticles in alkaline media. Electrochem. Commun. 2013, 28, 51–53. [Google Scholar] [CrossRef]
- Liu, G.; Ma, L.; Liu, Q. The preparation of Co3O4@MnO2 hierarchical nano-sheets for high-output potential supercapacitors. Electrochim. Acta 2020, 364, 137265. [Google Scholar] [CrossRef]
- Askari, M.B.; Salarizadeh, P.; Beheshti-Marnani, A.; Di Bartolomeo, A. NiO-Co3O4-rGO as an efficient electrode material for supercapacitors and direct alcoholic fuel cells. Adv. Mater. Interfaces 2021, 8, 2100149. [Google Scholar] [CrossRef]
- Askari, N.; Baghizadeh, A.; Beheshti-Marnani, A.; Askari, M.B.; Di Bartolomeo, A. NiO–Co3O4–rGO as a multicomponent transition metal oxide nanocatalyst for ultra-level detection of nitrite in beef and tap water samples. Adv. Mater. Interfaces 2022, 9, 2201180. [Google Scholar] [CrossRef]
- Iqbal, M.; Saykar, N.G.; Alegaonkar, P.S.; Mahapatra, S.K. Synergistically modified WS2@PANI binary nanocomposite-based all-solid-state symmetric supercapacitor with high energy density. New J. Chem. 2022, 46, 7043–7054. [Google Scholar] [CrossRef]
- Iqbal, M.; Saykar, N.G.; Mahapatra, S.K. Microwave-induced rapid synthesis of MoS2@Cellulose composites as an efficient electrode material for quasi-solid-state supercapacitor application. Adv. Eng. Mater. 2023, 25, 2201544. [Google Scholar] [CrossRef]
- Chebrolu, V.T.; Balakrishnan, B.; Cho, I.; Bak, J.-S.; Kim, H.-J. A unique core–shell structured ZnO/NiO heterojunction to improve the performance of supercapacitors produced using a chemical bath deposition approach. Dalton Trans. 2020, 49, 14432–14444. [Google Scholar] [CrossRef]
- Di, S.; Gong, L.; Zhou, B. Precipitated synthesis of Al2O3-ZnO nanorod for high-performance symmetrical supercapacitors. Mater. Chem. Phys. 2020, 253, 123289. [Google Scholar] [CrossRef]
- Karthik, K.; Pushpa, S.; Naik, M.M.; Vinuth, M. Influence of Sn and Mn on structural, optical and magnetic properties of spray pyrolysed CdS thin films. Mater. Res. Innov. 2019, 24, 82–86. [Google Scholar] [CrossRef]
- Kumar, G.S.; Reddy, N.R.; Kumar, A.S.; Reddy, P.M.; Pabba, D.P.; Alsaiari, N.S.; Jung, J.H.; Joo, S.W. A vertically aligned flake like CuO/Co3O4 nanoparticle@g-C3N4 ternary nanocomposite: A heterojunction catalyst for efficient photo electrochemical water splitting. Fuel 2024, 374, 132402. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Liu, S.; Liang, X.; Zhang, M. Reasonable construction of 2D porous NiO/Co3O4 nanosheets for efficient detection of xylene. Sens. Actuators B: Chem. 2023, 377, 133002. [Google Scholar] [CrossRef]
- Shariq, M.; BaQais, A.; Althagafi, T.M.; Madkhali, O.; Alholaisi, A.A.; Hussain, S.; Javed, Y. Synthesis of Co3O4/NiO nanospherical composites as electrode material for high-performance supercapacitors. Eur. Phys. J. Plus 2023, 138, 389. [Google Scholar] [CrossRef]
- Revathi, V.; Karthik, K. Physico-chemical properties and antibacterial activity of Hexakis (Thiocarbamide) Nickel(II) nitrate single crystal. Chem. Data Collect. 2019, 21, 100229. [Google Scholar] [CrossRef]
- Fabbiyola, S.; Sailaja, V.; Kennedy, L.J.; Bououdina, M.; Vijaya, J.J. Optical and magnetic properties of Ni-doped ZnO nanoparticles. J. Alloys Compd. 2016, 694, 522–531. [Google Scholar] [CrossRef]
- Huang, B.; Yang, W.; Wen, Y.; Shan, B.; Chen, R. Co3O4-modified TiO2 nanotube arrays via atomic layer deposition for improved visible-light photoelectrochemical performance. ACS Appl. Mater. Interfaces 2015, 7, 422–431. [Google Scholar] [CrossRef]
- Chinnaiah, K.; Kannan, K.; Krishnamoorthi, R.; Palko, N.; Gurushankar, K. Nanostructured Ag/NiO composites for supercapacitor and antibacterial applications, and in-silico theoretical investigation. J. Phys. Chem. Solids 2024, 184, 111730. [Google Scholar] [CrossRef]
- Kannan, K.; Radhika, D.; Gnanasangeetha, D.; Krishna, L.S.; Gurushankar, K. Y3+ and Sm3+ co-doped mixed metal oxide nanocomposite: Structural, electrochemical, photocatalytic, and antibacterial properties. Appl. Surf. Sci. Adv. 2021, 4, 100085. [Google Scholar] [CrossRef]
- Fan, W.; Wang, Q.; Rong, K.; Shi, Y.; Peng, W.; Li, H.; Guo, Z.; Bin Xu, B.; Hou, H.; Algadi, H.; et al. MXene Enhanced 3D Needled Waste Denim Felt for High-Performance Flexible Supercapacitors. Nano-Micro Lett. 2023, 16, 36. [Google Scholar] [CrossRef] [PubMed]
- Pradeeswari, K.; Venkatesan, A.; Pandi, P.; Karthik, K.; Krishna, K.V.H.; Kumar, R.M. Study on the electrochemical performance of ZnO nanoparticles synthesized via non-aqueous sol-gel route for supercapacitor applications. Mater. Res. Express 2019, 6, 105525. [Google Scholar] [CrossRef]
- Nigam, R.; Kar, K.K. Effect of Mixed Morphology (Simple Cubic, Face-Centered Cubic, and Body-Centered Cubic)-Based Electrodes on the Electric Double Layer Capacitance of Supercapacitors. Langmuir 2024, 40, 14266–14280. [Google Scholar] [CrossRef]
- Balasundari, S.; Jayasubramaniyan, S.; Thangavel, P.; Vithiya, M.; Rani, T.; Rayjada, P.A.; Satyanarayana, N.; Muralidharan, P. Heterostructure CuO/Co3O4 Nanocomposite: An Efficient Electrode for Supercapacitor and Electrocatalyst for Oxygen Evolution Reaction Applications. ACS Appl. Eng. Mater. 2023, 1, 606–615. [Google Scholar] [CrossRef]
- Bahdanchyk, M.; Hashempour, M.; Vicenzo, A. Evaluation of the operating potential window of electrochemical capacitors. Electrochim. Acta 2020, 332, 135503. [Google Scholar] [CrossRef]
- Nekouei, R.K.; Mofarah, S.S.; Maroufi, S.; Tudela, I.; Sahajwalla, V. Determination of the optimum potential window for super- and pseudocapacitance electrodes via in-depth electrochemical impedance spectroscopy analysis. J. Energy Storage Part C 2022, 56, 106137. [Google Scholar] [CrossRef]
- Sahay, P. Galvanostatically deposited Co3O4-NiO nanocomposite thin films onto FTO glass substrates: An investigation of their microstructural and supercapacitive properties. J. Alloys Compd. 2021, 867, 159022. [Google Scholar] [CrossRef]
- Chaudhary, M.; Singh, M.; Kumar, A.; Gautam, Y.K.; Malik, A.K.; Kumar, Y.; Singh, B.P. Experimental investigation of Co and Fe-doped CuO nanostructured electrode material for remarkable electrochemical performance. Ceram. Int. 2021, 47, 2094–2106. [Google Scholar] [CrossRef]
- Ansari, S.A.; Parveen, N.; Kotb, H.M.; Alshoaibi, A. Hydrothermally derived three-dimensional porous hollow double-walled Mn2O3 nanocubes as superior electrode materials for supercapacitor applications. Electrochim. Acta 2020, 355, 136783. [Google Scholar] [CrossRef]
- Bathula, C.; Rabani, I.; Ramesh, S.; Lee, S.H.; Palem, R.R.; Ahmed, A.T.A.; Kim, H.S.; Seo, Y.S.; Kim, H.S. Highly efficient solid-state synthesis of Co3O4 on multiwalled carbon nanotubes for supercapacitors. J. Alloys Compd. 2021, 887, 161307. [Google Scholar] [CrossRef]
- Bandal, G.; Watwe, V.; Kulkarni, S.; Kulkarni, P. Effect of addition of surfactant on physicochemical properties of cobalt oxide nanoparticles synthesised using a domestic microwave: Applications as photocatalyst and supercapacitor. Optik 2023, 278, 170743. [Google Scholar] [CrossRef]
- Pech, O.; Maensiri, S. Electrochemical performances of electrospun carbon nanofibers, interconnected carbon nanofibers, and carbon-manganese oxide composite nanofibers. J. Alloys Compd. 2019, 781, 541–552. [Google Scholar] [CrossRef]
- Yan, J.; Wei, T.; Qiao, W.; Shao, B.; Zhao, Q.; Zhang, L.; Fan, Z. Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors. Electrochim. Acta 2010, 55, 6973–6978. [Google Scholar] [CrossRef]
- Guan, Q.; Cheng, J.; Wang, B.; Ni, W.; Gu, G.; Li, X.; Huang, L.; Yang, G.; Nie, F. Needle-like Co3O4 anchored on the graphene with enhanced electrochemical performance for aqueous supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 7626–7632. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Zhang, S.; Yang, J. Facile Synthesis of Co3O4/CoF2 · 4H2O/graphene Composites for Supercapacitor Electrodes. Int. J. Electrochem. Sci. 2018, 13, 10990–11000. [Google Scholar] [CrossRef]
- Ren, X.; Guo, C.; Xu, L.; Li, T.; Hou, L.; Wei, Y. Facile Synthesis of Hierarchical Mesoporous Honeycomb-like NiO for Aqueous Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 19930–19940. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Ray, A.; Saha, S.; Ghosh, M.; Das, T.; Satpati, B.; Nandi, M.; Das, S. NiO-CNT composite for high performance supercapacitor electrode and oxygen evolution reaction. Electrochim. Acta 2018, 283, 327–337. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, C.; Qian, J.; Chen, Z.; Chen, F. Novel 3D porous graphene decorated with Co3O4/CeO2 for high performance supercapacitor power cell. J. Rare Earths 2017, 35, 995–1001. [Google Scholar] [CrossRef]
- Kurtan, U.; Aydın, H.; Büyük, B.; Şahintürk, U.; Almessiere, M.; Baykal, A. Freestanding electrospun carbon nanofibers uniformly decorated with bimetallic alloy nanoparticles as supercapacitor electrode. J. Energy Storage 2020, 32, 101671. [Google Scholar] [CrossRef]
- Packiaraj, R.; Mahendraprabhu, K.; Devendran, P.; Nallamuthu, N.; Palanivel, B.; Venkatesh, K.S.; Karuppannan, R. Electrochemical performances of ZnO–NiO–CuO mixed metal oxides as smart electrode material for solid-state asymmetric device fabrication. Energy Fuels 2021, 36, 603–617. [Google Scholar] [CrossRef]
- Racik, K.M.; Guruprasad, K.; Mahendiran, M.; Madhavan, J.; Maiyalagan, T.; Raj, M.V.A. Enhanced electrochemical performance of MnO2/NiO nanocomposite for supercapacitor electrode with excellent cycling stability. J. Mater. Sci. Mater. Electron. 2019, 30, 5222–5232. [Google Scholar] [CrossRef]
- Padmadevi, B.; Pugazhendhi, A.; Khalifa, A.S.; Shanmuganathan, R.; Kalaivani, T. Novel MnO2-CuO-BaO metal oxide nanocomposite for high performance supercapacitors. Process Biochem. 2021, 110, 176–180. [Google Scholar] [CrossRef]
- Ramesh, S.; Kathalingam, A.; Karuppasamy, K.; Kim, H.-S.; Kim, H.S. Nanostructured CuO/Co2O4@ nitrogen doped MWCNT hybrid composite electrode for high-performance supercapacitors. Compos. Part B Eng. 2019, 166, 74–85. [Google Scholar] [CrossRef]
- Ju, H.; Tang, Q.; Xu, Y.; Bai, X.; Pu, C.; Liu, T.; Liu, S.; Zhang, L. Prussian blue analogue-derived hollow metal oxide heterostructure for high-performance supercapacitors. Dalton Trans. 2023, 52, 12948–12957. [Google Scholar] [CrossRef] [PubMed]
- Pankaj; Chavhan, M.P.; Ganguly, S. Charge transport in activated carbon electrodes: The behaviour of three electrolytes vis-à-vis their specific conductance. Ionics 2017, 23, 2037–2044. [Google Scholar] [CrossRef]
- Acharya, A.D.; Silwal, K.; Bhawna; Hinge, V.K. Tuning the physical properties of polystyrene matrix by NiO addition supports supercapacitor applications. Vacuum 2021, 191, 110408. [Google Scholar] [CrossRef]
- Patil, D.S.; Pawar, S.A.; Shin, J.C. Core-shell structure of Co3O4@CdS for high performance electrochemical supercapacitor. Chem. Eng. J. 2018, 335, 693–702. [Google Scholar] [CrossRef]
- Tadesse, M.G.; Simon, N.; Lübben, J.F. Highly Conductive Films Through PEDOT-PSS Ink Formulation via Doping Using Spontaneous Wicking of Liquids for Supercapacitor Applications. Adv. Energy Sustain. Res. 2024, 5, 2400006. [Google Scholar] [CrossRef]
- Jiménez-Marín, E.; Villalpando, I.; Trejo-Valdez, M.; Cervantes-Sodi, F.; Vargas-García, J.; Torres-Torres, C. Coexistence of positive and negative photoconductivity in nickel oxide decorated multiwall carbon nanotubes. Mater. Sci. Eng. B 2017, 220, 22–29. [Google Scholar] [CrossRef]
- Mobarak, M.B.; Hossain, M.S.; Chowdhury, F.; Ahmed, S. Synthesis and characterization of CuO nanoparticles utilizing waste fish scale and exploitation of XRD peak profile analysis for approximating the structural parameters. Arab. J. Chem. 2022, 15, 104117. [Google Scholar] [CrossRef]
- Rathika, G.; Jagadeeswari, R.; Sathiyapriya, T.; Selvakumar, P. Surface and quantum chemical parameters of nickel oxide nanostructures suited for ultraviolet-assisted cationic dye degradation. Kuwait J. Sci. 2024, 51, 100200. [Google Scholar] [CrossRef]
- Varunamugi, R.; Metha, K.M.; Paul, C.A.; Sathyaseelan, T.; Sathiyaraj, S.; Prakash, T.; Poonguzhali, R.V.; Kumar, E.R.; Natarajan, A. Synthesis and characterization of Co3O4, CuO and NiO and nanoparticles: Evaluation of structural, vibrational, morphology and thermal properties. Phys. Lett. A 2024, 512, 129574. [Google Scholar] [CrossRef]
- Paul, D.; Neogi, S. Synthesis, characterization and a comparative antibacterial study of CuO, NiO and CuO-NiO mixed metal oxide. Mater. Res. Express 2019, 6, 055004. [Google Scholar] [CrossRef]
- Maslamani, N.; Khan, S.B.; Danish, E.Y.; Bakhsh, E.M.; Zakeeruddin, S.M.; Asiri, A.M. Super adsorption performance of carboxymethyl cellulose/copper oxide-nickel oxide nanocomposite toward the removal of organic and inorganic pollutants. Environ. Sci. Pollut. Res. 2021, 28, 38476–38496. [Google Scholar] [CrossRef] [PubMed]
- Tatar, D.K.; Jha, J.M. Wet chemical synthesis and characterization of CuO nanoparticles and their application in pool boiling heat transfer. J. Cryst. Growth 2023, 617, 127305. [Google Scholar] [CrossRef]
- Chelliah, P.; Wabaidur, S.M.; Sharma, H.P.; Jweeg, M.J.; Majdi, H.S.; ALKubaisy, M.M.R.; Iqbal, A.; Lai, W.-C. Green Synthesis and Characterizations of Cobalt Oxide Nanoparticles and Their Coherent Photocatalytic and Antibacterial Investigations. Water 2023, 15, 910. [Google Scholar] [CrossRef]
- Feng, Z.; Zhu, X.; Yang, J.; Zhong, K.; Jiang, Z.; Yu, Q.; Song, Y.; Hua, Y.; Li, H.; Xu, H. Inherent Facet-Dominant effect for cobalt oxide nanosheets to enhance photocatalytic CO2 reduction. Appl. Surf. Sci. 2022, 578, 151848. [Google Scholar] [CrossRef]
- Gouasmia, A.; Zouaoui, E.; Mekkaoui, A.A.; Haddad, A.; Bousba, D. Highly efficient photocatalytic degradation of malachite green dye over copper oxide and copper cobaltite photocatalysts under solar or microwave irradiation. Inorg. Chem. Commun. 2022, 145, 110066. [Google Scholar] [CrossRef]
Electrode Material | Synthesis Method | Specific Capacitance (F/g) | Electrolyte | Cyclic Stability | Ref. | |
---|---|---|---|---|---|---|
Retention (%) | Cycles | |||||
Co3O4/NiO nanocomposite | Electrochemical deposition | 256 (10 mV/s) 233 (20 mV/s) | 1 M KOH | 87–96 | 1000 | [37] |
Fe-CuO | Co-precipitation | 170 (0.5 A/g) | 1 M Na2SO4 | 90.47 | 5000 | [38] |
Co-CuO | 136 (0.5 A/g) | 82.85 | 5000 | |||
CuO | 114 (0.5 A/g) | 71.42 | 5000 | |||
Mn2O3 | Hydrothermal | 256.25 (1 A/g) | 1 M KOH | 90 | 3000 | [39] |
Co3O4 on MWCNT | Hydrothermal | 202 (1 A/g) | 2 M KOH | - | - | [40] |
Co3O4 nanoparticles | Microwave-assisted | 111 (5 mV/s) | 2 M NaoH | - | - | [41] |
Co3O4 nanoparticles with surftactant | 166 (5 mV/s) | - | - | |||
C-MnOx | Electrospinning | 213.7 (0.5 A/g) | 6 M KOH | 97 | 1000 | [42] |
Graphene nanosheet/Co3O4 | Microwave | 243.2 (10 mV/s) | 6 M KOH | 95.6 | 2000 | [43] |
Graphene/Co3O4 | Hydrothermal | 157.7 (0.1 A/g) | 2 M KOH | 70 | 4000 | [44] |
Graphene/Co3O4/CoF2·4H2O | Microwave-assisted hydrothermal | 241.8 (1 A/g) | 2M KOH | 95.2 | 1000 | [45] |
Graphene/Co3O4/CeO2 | Calcination/Hydrothermal | 221 (2 A/g) | 1 M Na2SO4 | 96 | 1000 | [46] |
Honeycomb-like NiO | Hydrothermal | 74.4 F/g (0.2 A/g) | 6 M KOH | 88 | 2000 | [47] |
NiO-CNT | Wet chemical | 197.7 (1 A/g) | 1 M Na2SO4 | 91 | 4000 | [48] |
CoNi-CNF | Electrospinning | 132 (1 A/g) | 1 M KOH | 85.3 | 1000 | [49] |
ZnO/NiO/CuO | Sonochemical | 118 (1 A/g) | 1 M KOH | 89.97 | 10,000 | [50] |
MnO2@NiO | Hydrothermal | 247.7 (0.5 A/g) | 1 M KOH | - | - | [51] |
MnO2-CuO-BaO | Hydrothermal | 198 (10 mV/s) | 1 M KOH | - | - | [52] |
CuO/Co2O4 | Hydrothermal | 246 (0.5 A/g) | 5 M KOH | 89 | 5000 | [53] |
CNC | Hydrothermal | 262 (1 A/g) | 1 M KOH | 84.9 | 5000 | Present work |
Electrodes | Rs (Ω) | Rct (Ω) | Q | L (μH) | |
---|---|---|---|---|---|
Before GCD Cycles | After GCD Cycles | ||||
NC | 0.44 | 0.35 | 0.27 | 0.0067 | - |
CNC | 0.32 | 0.44 | 0.22 | 0.0018 | 1.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kannan, K.; Chinnaiah, K.; Gurushankar, K.; Krishnamoorthi, R.; Chen, Y.-S.; Murphin Kumar, P.S.; Li, Y.-Y. Investigation of the Electrochemical Behavior of CuO-NiO-Co3O4 Nanocomposites for Enhanced Supercapacitor Applications. Materials 2024, 17, 3976. https://doi.org/10.3390/ma17163976
Kannan K, Chinnaiah K, Gurushankar K, Krishnamoorthi R, Chen Y-S, Murphin Kumar PS, Li Y-Y. Investigation of the Electrochemical Behavior of CuO-NiO-Co3O4 Nanocomposites for Enhanced Supercapacitor Applications. Materials. 2024; 17(16):3976. https://doi.org/10.3390/ma17163976
Chicago/Turabian StyleKannan, Karthik, Karuppaiya Chinnaiah, Krishnamoorthy Gurushankar, Raman Krishnamoorthi, Yong-Song Chen, Paskalis Sahaya Murphin Kumar, and Yuan-Yao Li. 2024. "Investigation of the Electrochemical Behavior of CuO-NiO-Co3O4 Nanocomposites for Enhanced Supercapacitor Applications" Materials 17, no. 16: 3976. https://doi.org/10.3390/ma17163976
APA StyleKannan, K., Chinnaiah, K., Gurushankar, K., Krishnamoorthi, R., Chen, Y. -S., Murphin Kumar, P. S., & Li, Y. -Y. (2024). Investigation of the Electrochemical Behavior of CuO-NiO-Co3O4 Nanocomposites for Enhanced Supercapacitor Applications. Materials, 17(16), 3976. https://doi.org/10.3390/ma17163976