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Abstract: In the present study, composites incorporating NiO-Co3O4 (NC) and CuO-NiO-Co3O4

(CNC) as active electrode materials were produced through the hydrothermal method and their
performance was investigated systematically. The composition, formation, and nanocomposite
structure of the fabricated material were characterized by XRD, FTIR, and UV–Vis. The FE-SEM
analysis revealed the presence of rod and spherical mixed morphologies. The prepared NC and
CNC samples were utilized as supercapacitor electrodes, demonstrating specific capacitances of
262 Fg−1 at a current density of 1 Ag−1. Interestingly, the CNC composite displayed a notable
long-term cyclic stability 84.9%, which was observed even after 5000 charge–discharge cycles. The
exceptional electrochemical properties observed can be accredited to the harmonious effects of
copper oxide addition, the hollow structure, and various metal oxides. This approach holds promise
for the development of supercapacitor electrodes. These findings collectively indicate that the
hydrothermally synthesized NC and CNC nanocomposites exhibit potential as high-performance
electrodes for supercapacitor applications.

Keywords: metal oxide composites; morphological; electrochemical; supercapacitors

1. Introduction

Recent developments in electrochemical devices have created significant new avenues
for investigating the properties of various metal oxides and their composites [1]. These ad-
vancements have led to noteworthy improvements in the performance of electrical energy
storage devices, particularly in attractive characteristics like energy density, cycle life, and
power density [2]. These enhancements have the potential to broaden the applications of
electrochemical capacitors across various sectors in multiple domains such as electronics,
transportation, industrial processes, and healthcare [3]. Supercapacitors have become
essential in meeting the growing energy storage needs of renewable energy systems. The
goal of ongoing research on supercapacitors is to increase their adaptability so that they can
be widely used in a variety of usual applications. This includes electric vehicles, electronic
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devices, and power grids, highlighting the crucial importance of supercapacitors in the
modern world [4]. In general, supercapacitors store the energy through two different mech-
anisms: pseudocapacitors and electrical double-layer capacitors [5]. These mechanisms
are characterized by rapid faradaic redox reactions and charge separation at the interface
between the electrode and electrolyte. The high specific capacitance of precious transition
metal oxides, such as RuO2 and IrO2, made them popular as electrode materials at first,
but their cost and toxicity constrain their practical use [6].

Consequently, there is a demand for cost-efficient and environmentally friendly transi-
tion metal oxides (TMOs) such as CuO, Co3O4, NiO, MnO2, MoS2, and ZnO/MnOx, which
exhibit diverse structures and morphologies [7,8]. Notably, double TMOs, such as oxides
of Cu, Ni, and Co and oxides of Zn and V, have attracted noteworthy interest due to the
occurrence of ions from two distinct metals and the resulting synergistic effects between
these elements [9]. These compounds provide a larger number of active sites and display
superior electrical conductivity compared to individual metal oxides (e.g., Co, Mn, Mo,
Ni, Cu, and Sn, etc.) [10]. It is important to note that these mixed metal oxides possess
notable characteristics, including natural abundance, good electrical conductivity, and
cost-effectiveness [11].

Among TMOs, CuO is a well-known p-type semiconductor with a narrow bandgap.
Their remarkable stability, durability, and excellent electrochemical properties make CuO
nanostructures ideal candidates for use as electrode materials in electrochemical energy
storage applications [12]. NiO, on the other hand, is a p-type semiconductor with a unique
electronic structure that supports reversible Faradaic redox reactions at the electrode–
electrolyte interface, with a theoretical capacitance of 2573 F/g. The abundance of nickel
enhances the scalability and market potential of NiO-based supercapacitors. Environ-
mentally and safety-wise, NiO is a preferable electrode material, as it is non-toxic and
environmentally friendly [13].

Co3O4 is a distinct mixed-valence oxide made up of CoO and Co2O3. It exhibits a
mixed valence state, enabling reversible redox reactions and boasting a high theoretical spe-
cific capacitance of 3560 F/g. During the charging and discharging processes, it undergoes
reversible redox reactions that facilitate the movement of multiple electrons, enhancing
the energy retention capabilities of supercapacitors. It also demonstrates excellent cycle
stability, which contributes to a longer lifespan for supercapacitors—an important factor
for industrial applications where reliability is crucial. Additionally, its high-rate capability
allows for rapid energy storage and release [14].

The Ni-Mn oxide electrode demonstrates a specific capacitance value of 1227 Fg−1

while functioning at a current density 10 Ag−1. This oxide is synthesized using the chemical
bath deposition method at low temperatures. Remarkably, it maintains a capacity retention
rate (76.7%) even after undergoing 103 cycles [15]. The research conducted by Askari et al.
focused on the utilization of a NiO-Co3O4-rGO nanocomposite as an electrode for super-
capacitors. The results showed that this nanocomposite exhibited a specific capacity of
149 mAh g−1 (equivalent to 894 F g−1) at a current density 0.5 Ag−1. Furthermore, it demon-
strated an impressive stability of 95% even after undergoing 6000 cycles. Additionally, the
study revealed that NiO-Co3O4-rGO achieved current densities at 15 and 10 mA cm−2 in
methanol and ethanol oxidation reactions, respectively [16]. The authors highlighted the
superior efficiency of NiO-Co3O4-rGO as a nanocatalyst for ultra-level nitrite detection
compared to NiO-Co3O4, attributing this to the notable electrical conductivity of rGO and
the expansive active surface area of reduced graphene nanosheets [17]. Iqbal et al. success-
fully produced the binary nanocomposite WS2@PANI through hydrothermal and physical
mixing techniques. They achieved a specific capacitance over 335 F g−1 at 10 mVs−1,
energy of 80 Wh kg−1, and a power density of 800 W kg−1 for this material [18]. In another
investigation, Iqbal et al. demonstrated the utility of a composite material (MoS2@cellulose)
made using a microwave-assisted method as an electrode material for supercapacitors [19].
The hydrothermal method offers several advantages over other synthesis techniques for
mixed metal oxide composites, including its simplicity and less complicated post-synthetic
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treatments compared to those of other solution-based methods. Chebrolu et al. [20] investi-
gated various dual transition metal oxides (TMOs) such as Zn-Fe, Zn-Ni, and Zn-Pb oxides,
determining that Zn–Ni oxide composites possess high cyclic stability and specific capaci-
ties. Zn–Al oxide nanorods displayed a specific capacity of 463.7 Fg−1 and outstanding
cyclic stability with a retention rate of 96.9% [21].

This present research involves the synthesis of CNC nanocomposites using a hy-
drothermal method. The resulting composites are analyzed using different characterization
techniques, including structural, morphological, elemental, and optical assessments. These
composites are evaluated as electrode materials for supercapacitors and demonstrate out-
standing electrochemical performance. The remarkable specific capacitance, cyclic stability,
and coulombic efficiency of the composites can be linked to their distinctive structural and
morphological characteristics.

2. Experimental Section
2.1. Synthesis of the NiO-Co3O4 Heterojunction Nanocomposite

The hydrothermal synthesis method was used to produce the NiO-Co3O4 nanocom-
posite. A solution containing metal ions (0.5 M Ni(NO3)2·6H2O, Co(NO3)2·6H2O in 40 mL
deionized water) and 1 M NaOH solution were mixed for 3 h to obtain a homogeneous
liquid. This liquid was then transferred to an autoclave container and heated at 130 ◦C for
12 h. Following natural cooling to room temperature, the sample was cleaned several times
with DI water and subsequently with ethanol. Afterwards, the sample was dried at 100 ◦C
for 12 h and then calcined at 400 ◦C for 4 h.

2.2. Fabrication of the CuO-NiO-Co3O4 Heterojunction Nanocomposite

The CuO-NiO-Co3O4 nanocomposite was synthesized using the hydrothermal method.
Metal ions (0.5 M Cu(NO3)2·6H2O, Ni(NO3)2·6H2O, Co(NO3)2·6H2O in 60 mL deionized
water) were mixed with 1.5 M NaOH solution for 3 h to form a homogeneous liquid, which
was then transferred to an autoclave followed by heating at 130 ◦C for 12 h. Following
natural cooling to room temperature, the sample was cleaned several times with DI water
and subsequently with ethanol. Finally, the prepared sample was dried at 100◦C for 12 h and
calcined at 400 ◦C for 4 h (Scheme 1). The materials, characterization, and electrochemical
setup are shown in the Supplementary Materials.
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3. Results and Discussion
3.1. XRD Analysis

The XRD pattern result of the NC and CNC nanocomposites is presented in Figure 1a,b.
The observed XRD peaks of CuO, especially at angles of 32.36, 37.04, 38.72, 46.14, and 79.20◦,
can be attributed to the crystal planes (200), (311), (222), (400), and (622) of CuO (JCPDS
no. 74-2120), respectively. Similarly, the peaks noticed at 37.10, 43.12, 62.54, and 75.08◦

for NiO correspond to the crystal planes (111), (200), (220), and (311) of NiO (JCPDS no.
89-7130). Furthermore, peaks observed at 35.56, 38.72, 48.26, 53.54, 58.30, 62.62, 66.26, and
68.04◦ are associated with the crystal planes (002), (111), (20-2), (020), (021), (11-3), (31-1),
and (220) of CuO (JCPDS no. 48-1548). Notably, the mixed metal nanocomposite’s XRD
pattern displayed no impurity peaks, signifying its exceptional purity level. Furthermore,
the lattice parameters and crystallite size of the nanocomposites were calculated by the
Debye–Scherrer equation [22–25], as described in Table S1.
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Figure 1. XRD pattern of hydrothermally synthesized (a) NC and (b) CNC nanocomposites.

3.2. Morphological Analysis

The FESEM images depicted in Figure 2a,b reveal that the NC composite exhibited
spherical and rod-shaped structures. The CNC composite displayed clustered spherical,
rod, and tetrahedron-shaped structures (Figure 3a,b). The FE-SEM observations indicate
that the clustered surface is planar, featuring cavities and pores that enhance the adsorbent’s
surface area [26]. EDAX analysis was directed to determine the composition of the NC
and CNC composites, as presented in Figures 2c and 3c. The element maps in Figure 4a–f
display the distribution of the EDS elements Cu, Co, Ni, and O, showcasing the successful
formation of the composite material. The elemental mapping analysis of the NC composite
is presented in Figure S1. FTIR analysis of the prepared CNC composite is provided in
Figure S2.
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3.3. Optical Analysis

The optical absorption characteristics of the CNC composite are illustrated in Figure 5a.
The absorbance spectrum shows two broad bands, the first ranging from 250 to 280 nm and
containing the charge transfer transitions O2− → Co2+ and O2− → Co3+ and Co(III) at an
octahedral site: 1A1g → 1T2g [27]. Moreover, the octahedrally coordinated Cu2+ species is
observed at 700−800 nm, which is attributed to the d–d transition band. The absorption
edge was observed within the wavelength range of 300–450 nm, with the optical peak
occurring at approximately 450 nm. The absorption peak of NiO demonstrates a blue shift
attributed to alterations in surface effects, quantum confinement of particles, and crystallite
size [28–30]. The UV–Vis analysis of the NC composite is provided in Figure S3. The
optical bandgap of the fabricated composite can be calculated using Tauc’s relationship.
The optical bandgap of the composite can be assessed by plotting (αhν)2 against hν. The
intersection of the tangent line with the x-axis would give a good approximation of the
bandgap for the composite sample (2.52 eV), as shown in Figure 5b.
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3.4. Electrochemical Studies
3.4.1. CV Analysis

The CV analysis of NC and CNC is shown in Figure 6a,b. Measurements were
performed with scan rates of 5, 10, 25, 50, and 100 mVs−1. Both NC and CNC curves
display the pseudocapacitive profiles with non-rectangular shapes, which are adapted to
the profiles of intercalation with partial redox. Generally, intercalation, intercalation with
partial redox, and the pseudocapacitors’ surface redox profiles are possible occurrences in
supercapacitors depending on which materials are used as the electrode. As in the case
of non-carbon electrodes, anodic and cathodic peaks existed by oxidation and reduction
processes during the electrochemical reactions. Each CV curve exhibits distinct oxidation
peaks around 0.17 V and reduction peaks around −0.09 V vs. Ag/AgCl. These cathodic
and anodic peaks were shifted towards the negative and positive potentials as the scan
rates increased from 5–100 mVs−1 by the polarization of active materials (NC and CNC) at
higher scan rates. However, the shape of the CV curves does not change entire scan rates
indicate that electrodes have good electrochemical stability and reversibility, also indicating
an intercalation/surface diffusion-controlled process during the redox process [31]. Hence,
the possible reversible redox mechanism occurring in NC and CNC in the KOH electrolyte
is represented by Equation (1)

xH+ + xe− + CNC ⇄ HxCuONiOCor3O4 (1)

(CNC)surface + xH+ + xe− ⇄ (CuONiOCo3O4 − Hx
+)surface (2)

The oxidation and reduction peaks were attributed to the mixed valence state of metal
ions (Ni2+/Ni3+, Cu+/Cu2+, Co2+/Co3+). An integrated analysis of the CV curves was
utilized to determine the specific capacitances. According to Equation (3), the specific
capacitance was calculated by the area under the CV curves.

Csp (CV) =

∫
Idv

mv∆V
(3)

where “m” is mass of the active material, “I” is the applied current, v-potential window,
and “∆V” is the applied scan rate. Estimated specific capacitance corresponds to the scan
rates provided in Figure 6c, i.e., 130, 105, 76, 41, and 17 Fg−1 for 5, 10, 25, 50, and 100 mVs−1,
respectively, for CNC and 73, 64, 49, 32, and 22 Fg−1 for NC. High specific capacitance
resulted in a low scan rate and rapidly decreased during the changes towards higher scan
rate. At lower scan rates, a notable electrochemical performance of the CNC nanocomposite
is attributed to the high contact area of the active material, which facilitates the fast ion
diffusion and electron transfer at the electrode/electrolyte interface through the synergistic
effect of CuO, NiO, and Co3O4 [32]. Therefore, performance variations of the NC and CNC
electrodes were further examined through their profiles.
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The square root of the scan rate against the anodic and cathodic peaks of CV curves is
shown in Figure 7a,b. It illustrates the linear relationship of redox peaks for NC and CNC.
Hence, it was well-adopted to perform the lower and higher scan rates. The magnitude
variations of the current between NC and CNC at 5 mVs−1 are noticed in Figure 7c. From
these, it is observed that a higher magnitude (blue line) resulted for the CNC electrode.
Hence, a more enclosed area was also obtained compared with NC for the CV curves,
which was subjected to the active surface area of the electrode and directly involved in
the determination of specific capacitance. This result may be due to the higher ionic
conductivity of the electrode by the incorporation of Cu2+ ions. Hence, the obtained
specific capacitance results were evaluated further using the power law as expressed in
Equation (4).

i = avb (4)

where i is the measured current at a given potential V, ν is the scan rate, and a and b are the
variable parameters. The b value is calculated from log v vs. log i as shown in Figure 7d,e.
The calculated b value of NC and CNC is 0.69 and 0.86, respectively. This result also
supported the greater capacitive behavior found for the CNC electrode. In general, if the
b-value is 1, it is ideal for capacitance. However, in the present study, the variation of b
values was observed, revealing the contribution of capacitance between NC and CNC to
its storage mechanism and providing evidence of the mechanism of intercalation/surface
diffusion. It was analyzed through Equation (5)

I(V)

v1/2 = k1v
1
2 + k2v

1
2 (5)

where k1ν and k2ν are the current contributions of the capacitance and intercalation of
ions. Resultant capacitance contributed by the kinetics of the intercalation of ions can be
observed in Figure 8a,b, which is dominated by the lower scan rates. Figure 8c,d show
the contribution of the estimated capacitive and intercalation capacitances that resulted
in specific capacitances at a scan rate of 25 mVs−1. Both electrodes, NC and CNC, have
high capacitive capacitance, which is higher in CNC than in NC. The results suggested



Materials 2024, 17, 3976 9 of 17

that the CNC electrode exhibited higher ionic conductivity and superior electrochemical
performance due to the fast and active surface diffusion at the interface of the electrode
and electrolyte by the enhanced ionic conductivity of Cu2+ ions in the CNC nanocomposite
electrode. Moreover, CNCs exhibit mixed morphologies such as cubic shape, rod-shaped,
and tetrahedron-shaped, which enhance electrode performance for supercapacitors. Re-
cently, Nigam et al. reported the advantages of electrodes with mixed morphologies [33].
A significant amount of Co3O4 with nanotube morphology in the CNCs facilitates the
absorption and retention of electrolyte ions during redox reactions due to its highly active
surfaces. The nanorod morphologies of NiO also increase the active sites of the electrode
material, albeit to a lesser extent. Additionally, the tetrahedral morphology promotes
the growth of other nanoparticles (NiO and Co3O4) as a nanocomposite, enhancing their
conductivity. Consequently, ions can easily penetrate the cavities and pores of the CNCs,
improving their electrochemical performance. These morphological features offer benefits
for supercapacitor performance beyond those reported for similar transition metal oxide
electrodes [34]. This CNC nanocomposite achieves diverse morphologies, notable active
surface areas, and specific capacitance, addressing the conductivity issues that have been a
drawback of transition metal oxide electrodes. This advancement is crucial for achieving
the energy density required for practical applications.
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3.4.2. Galvanostatic Charge–Discharge Analysis

The galvanostatic charge–discharge analyses of NC and CNC are shown in Figure 9a,b,
which investigated various applied current densities ranging from 1–4 mAg−1. Non-linear
curves were obtained for both electrodes, revealing the pseudocapacitive behaviors and
supporting the CV profiles. The specific capacitance of NC and CNC electrodes was
estimated using Equation (3).

The calculated specific capacitances are 262, 246, 240, 231, and 228 F/g at an applied
current density of 1, 2, 3, and 4 Ag−1 for CNC and 207, 184, 180, and 169 F/g, respectively,
for NC. The CNC electrode exhibits a greater discharge time at an applied current of
1 mAg−1 compared to NC and results in higher specific capacitance. The nanosized
morphology with cavities/pores in CNC may enhance the electrochemical performance
owing to its increased surface area and greater contribution of ionic conductivity by the
Cu2+ ions. Additionally, nanorods favored redox reaction kinetics at the interface of the
electrode and electrolyte. The variation of the calculated specific capacitances is displayed
in Figure 9c,d, which shows the variation of the resultant specific capacitance concerning the
scan rates. From the results, it decreased rapidly, which may be caused by the difficulty of
accessing the diffusion/intercalation of ions at the interface of the electrode and electrolyte
at the higher scan rates. Moreover, the cyclic retention and Coulombic efficiency of the
electrode subjected to 5000 cycles are shown in Figure 9e,f. NC has a cyclic retention of
83.5% with a Coulombic efficiency of 98.5%, and CNC demonstrates 84.9% cyclic retention
and 98.2% Coulombic efficiency, indicating its remarkable stability as an electrode (Table 1).
The OH ions in the KOH electrolyte can easily penetrate the nanoscale pores of the CNC
electrode due to the small ionic radius (1.53 Å). Therefore, a longer lifetime was achieved
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for the CNC electrode than for the NC composite. In addition, electrolytes may be able to
restrict the cyclic retention in NC electrodes because they are used in an aqueous electrolyte
(KOH) [35]. A similar factor with a lower possibility for the CNC electrode compared to
NC is its improved conductivity, which may facilitate the quick movement of ions between
the electrode and electrolyte interface. Furthermore, the selection of a desirable potential
window is also a key factor in maintaining cyclic stability; it helps control unfavorable
Faradaic reactions (detrimental, hydrogen, oxygen evolution) in both electrodes (NC and
CNC) [36]. The particle sizes of 89, 112, and 116 nm for Co3O4, NiO, and CuO have
nanoscale effects, allowing their high aspect ratios to construct an interconnected network
in the nanocomposite electrode. This may be another factor contributing to obtaining
electrochemical features such as high specific capacitance, high-rate capability, and good
cyclic retention.
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Table 1. Electrochemical performance of the CNC electrode compared with recent literature.

Electrode Material Synthesis
Method

Specific
Capacitance (F/g) Electrolyte Cyclic Stability

Ref.
Retention (%) Cycles

Co3O4/NiO
nanocomposite

Electrochemical
deposition

256
(10 mV/s)

233
(20 mV/s)

1 M KOH 87–96 1000 [37]

Fe-CuO
Co-

precipitation

170 (0.5 A/g)

1 M Na2SO4

90.47 5000

[38]Co-CuO 136 (0.5 A/g) 82.85 5000

CuO 114 (0.5 A/g) 71.42 5000

Mn2O3 Hydrothermal 256.25
(1 A/g) 1 M KOH 90 3000 [39]

Co3O4 on MWCNT Hydrothermal 202 (1 A/g) 2 M KOH - - [40]

Co3O4 nanoparticles
Microwave-

assisted

111 (5 mV/s)

2 M NaoH

- -

[41]Co3O4 nanoparticles
with surftactant 166 (5 mV/s) - -

C-MnOx Electrospinning 213.7 (0.5 A/g) 6 M KOH 97 1000 [42]

Graphene
nanosheet/Co3O4

Microwave 243.2
(10 mV/s) 6 M KOH 95.6 2000 [43]

Graphene/Co3O4 Hydrothermal 157.7 (0.1 A/g) 2 M KOH 70 4000 [44]

Graphene/Co3O4/
CoF2·4H2O

Microwave-
assisted

hydrothermal

241.8
(1 A/g) 2M KOH 95.2 1000 [45]

Graphene/Co3O4/CeO2
Calcination/

Hydrothermal
221

(2 A/g) 1 M Na2SO4 96 1000 [46]

Honeycomb-like NiO Hydrothermal 74.4 F/g (0.2 A/g) 6 M KOH 88 2000 [47]

NiO-CNT Wet chemical 197.7 (1 A/g) 1 M Na2SO4 91 4000 [48]

CoNi-CNF Electrospinning 132
(1 A/g) 1 M KOH 85.3 1000 [49]

ZnO/NiO/CuO Sonochemical 118
(1 A/g) 1 M KOH 89.97 10,000 [50]

MnO2@NiO Hydrothermal 247.7 (0.5 A/g) 1 M KOH - - [51]

MnO2-CuO-BaO Hydrothermal 198
(10 mV/s) 1 M KOH - - [52]

CuO/Co2O4 Hydrothermal 246
(0.5 A/g) 5 M KOH 89 5000 [53]

CNC Hydrothermal 262
(1 A/g) 1 M KOH 84.9 5000 Present

work

3.4.3. Electrochemical Impedance Spectroscopy Analysis

The charge transport kinetics of the NC and CNC composite electrodes were analyzed
through the EIS spectra, which are shown in Figure 10a,b. It is formed by two parts: (i) a
semicircle in the high-frequency region and (ii) a straight line in the low-frequency re-
gion [54]. In the low-frequency region, a parallel combination of resistance and capacitance
corresponds to the semicircle, while other diffusion components may cause a straight line
in the high-frequency region [34]. A semicircle variation has been found—before and after
GCD cycles for both electrodes; their results are shown in the inserted image in Figure 10a,b.
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Simulation of the obtained EIS spectra was performed using Z Simpwin software
(ZSimpWin_3.60). A charge transfer resistance (Rct) and the solution resistance (Rs) were
calculated. The fitted values are summarized in Table 2, and the corresponding equivalent
circuit is shown as an inserted image in Figure 10a,b. An equivalent circuit consists of
resistances (Rs) and constant phase elements (CRs), and a diffusion factor (QR) for the
NC electrode and an inductance (LR) has been added along with this combination of
elements for the CNC electrode. Resistances in the equivalent circuit diagram describe the
movement of moving charges that occur between the electrode and the electrolyte surface
or vice versa and non-Faradic charges that are modeled as constant phase elements. The
inductance (LR) in the CNC electrode describes the metallic conduction in the electrode
due to the absorption of Cu2+ ions. An estimated (Rct) value of 0.27, 0.35 Ω for NC and
0.22, 0.37 Ω for CNC was obtained, which explains the importance of the incorporation
of Cu2+ ions in the CNC nanocomposite. A low value of (Rct) found in the CNC electrode
suggested that a more active redox reaction occurred at the interface of the electrode
and electrolyte due to the good ionic conductivity. Further, the existence of the mixed
valence state of Cu2+/Cu3+ ions in the nanocomposite of CNC can increase the migration
at the electrode interface and lead to greater ionic conductivity. After several cycles of
GCD, a small semicircle and the corresponding (Rct) values reveal the pseudocapacitive
behavior of the CNC electrode. As shown in Figure 10c,d, the phase angle (−83◦) is also
supported by the obtained pseudocapacitive result of the CNC electrode, which is slightly
lower for NC. The phase angle values (−83◦ and −76◦) are close to the value of ideal
capacitors (the constant phase angle is −90◦). The phase angle of the electrode depends
on the frequency of the applied current, the presence of an RC or RCL network, and the
pH value of the electrolyte. Acidic and neutral electrolyte media can provide the closest
value of −90◦, but alkaline electrolyte media provide electrodes/cells with phase angles in
the range of ~60 to ~82◦ [55]. The increased phase angle of CNC electrodes in the KOH
electrolyte shows their ability to store charge. Nevertheless, the obtained result is better
than the previous reports of Acharya et al., 2021 (−80◦ for NiO: polystyrene) [56] and Patil
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et al. 2018 (−68◦ for Co3O4@CdS) [57]. Electrochemical studies revealed that nano-sized
morphology with pore cavities of CNC nanocomposites and their ionic conductivities
were supported for high-performance electrode materials for supercapacitors [58]. The
proposed CNC electrodes exhibit excellent electrochemical properties, including specific
capacitance, rate capability, cyclic retention, and transport kinetics, as well as material
characteristics suitable for supercapacitors to meet real-time applications. Despite the need
to surpass the working potential required for electrodes operating with organic electrolytes,
this synthesized CNC nanocomposite demonstrates promising capacitive behavior and
significant surface areas due to the contributions of Ni [59]. It will be effective for potential
consideration in photoconductive applications in the future.

Table 2. Simulation parameters for EIS spectra.

Electrodes Rs (Ω)
Rct (Ω)

Q L (µH)
Before GCD Cycles After GCD Cycles

NC 0.44 0.35 0.27 0.0067 -

CNC 0.32 0.44 0.22 0.0018 1.13

4. Conclusions

NC and CNC nanocomposites were successfully produced using the hydrothermal
synthesis method. The mixed morphology structures of CNC nanocomposites exhibit
enhanced electrode performance. The CNC electrode demonstrated a specific capacitance
of 262 Fg−1 at 1 Ag−1, with a cyclic retention rate of 84.9% after 5000 GCD cycles. Based on
the CV profile, this electrochemical analysis aims to explore the energy storage mechanism
of electrode materials for supercapacitors. Further, through the design of CNC nano-
composite materials, electrochemical stability, electroconductivity, and active surfaces have
been achieved. In addition, the importance of metallic conductivity, factors involved in
maintaining cyclic retention, and the size and shape of the supercapacitor performance of
CNC nanocomposites in aqueous electrolytes were discussed. This discussion may provide
guidelines for exploring the potential of mixed metal oxide nanocomposite electrode
materials in the electrochemical field with advancements in the future. The hydrothermally
synthesized CNC material serves as an electrode, making it a promising contender for
applications in supercapacitors. Industries involved in these fields stand to benefit from
the convenience of utilizing a single material that is cost-effective and environmentally
friendly.
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spectrum (a,b), oxygen (c), cobalt (d), and nickel (e); Figure S2: FTIR analysis of the prepared CuO-
NiO-Co3O4 nanocomposite; Figure S3: UV–Vis absorbance spectrum (a) and optical bandgap (b) of the
prepared NiO-Co3O4 composite; Figure S4: Error bar for electrochemical workstation (CH instrument:
model 60008E); Table S1: structural parameters of NC and CNC composites. References [60–68] are
cited in the Supplementary Materials.
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