Use of Innovative Methods to Produce Highly Insulating Walls Using 3D-Printing Technology
Abstract
:1. Introduction
2. Overview of 3D-Printing Technology
2.1. History and Development of 3D Printing in Construction
2.2. Basic Principles and Types of 3D-Printing Technologies Used in Construction
2.3. Fused Deposition Modeling (FDM)
2.4. Selective Laser Sintering (SLS)
2.5. Stereolithography (SLA)
2.6. Concrete 3D Printing in Construction
3. Application of 3D Printing in Manufacturing Highly Insulated Walls
3.1. Overview of Insulation Materials Used in 3D Printing
3.2. Case Studies: Examples of High-Insulation Walls Using 3D Printing
4. Advantages and Challenges
5. Future Development Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mastouri, H.; Bahi, H.; Radoine, H.; Benhamou, B. Improving Energy Efficiency in Buildings: Review and Compiling. Mater. Today Proc. 2020, 27, 2999–3003. [Google Scholar] [CrossRef]
- de Oliveira, A.M.C.P.; Lanzinha, J.C.G.; Kern, A.P. Building Rehabilitation: A Sustainable Strategy for the Preservation of the Built Environment. Sustainability 2024, 16, 553. [Google Scholar] [CrossRef]
- Azam, U.; Farooq, M.; Munir, M.A.; Riaz, F.; Sultan, M.; Rehman, A.U.; Imran, M. Modelling Framework for Reducing Energy Loads to Achieve Net-Zero Energy Building in Semi-Arid Climate: A Case Study. Buildings 2023, 13, 2695. [Google Scholar] [CrossRef]
- Gupta, J.; Chakraborty, M. Energy Efficiency in Buildings, Sustainable Fuel Technologies Handbook; Academic Press: Cambridge, MA, USA, 2020; pp. 457–480. ISBN 978-0-12-822989-7. [Google Scholar]
- Kibert, C.J. Sustainable Construction: Green Building Design and Delivery, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 9780470904459. [Google Scholar]
- Luo, W.; Mao, Z.; Lu, H.; Yang, J.; Ma, X.; Xu, L. Subversion of Conventional Construction: Building 3D Printing Technology. IOP Conf. Ser. Earth Environ. Sci. 2020, 531, 12005. [Google Scholar] [CrossRef]
- Ali, M.; Issayev, G.; Shehab, E.; Sarfraz, S. A Critical Review of 3D Printing and Digital Manufacturing in Construction Engineering. Rapid Prototyp. J. 2022, 28, 1312–1324. [Google Scholar] [CrossRef]
- Ye, J. Analysis and Prospect of 3D Printing Technology Research Status. Highlights Sci. Eng. Technol. 2023, 32, 206–212. [Google Scholar] [CrossRef]
- Besklubova, S.; Skibniewski, M.; Zhang, X. Factors Affecting 3D Printing Technology Adaptation in Construction. J. Constr. Eng. Manag. 2021, 147, 4021026. [Google Scholar] [CrossRef]
- Opawole, A.; Olojede, B.; Kajimo-Shakantu, K. Assessment of the Adoption of 3D Printing Technology for Construction Delivery: A Case Study of Lagos State, Nigeria. J. Sustain. Constr. Mater. Technol. 2022, 7, 184–197. [Google Scholar] [CrossRef]
- Lowke, D.; Dini, E.; Perrot, A.; Weger, D.; Gehlen, C.; Dillenburger, B. Particle-Bed 3D Printing in Concrete Construction—Possibilities and Challenges. Cem. Concr. Res. 2018, 112, 50–65. [Google Scholar] [CrossRef]
- Cuevas, K.; Strzałkowski, J.; Kim, J.-S.; Ehm, C.; Glotz, T.; Chougan, M.; Ghaffar, S.; Stephan, D.; Sikora, P. Towards Development of Sustainable Lightweight 3D Printed Wall Building Envelopes—Experimental and Numerical Studies. Case Stud. Constr. Mater. 2023, 18, e01945. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Lyu, F.; Zhao, D.; Hou, X.; Sun, L.; Zhang, Q. Overview of the Development of 3D-Printing Concrete: A Review. Appl. Sci. 2021, 11, 9822. [Google Scholar] [CrossRef]
- Duong, T.; Korolev, E.; Inozemtcev, A. Method of Internal Curing Cement Concrete Used for 3D Printing Technology in Construction. J. Mater. Constr. 2022, 12, 11–14. [Google Scholar] [CrossRef]
- Chang, R.; Antwi-Afari, M.F. Critical Success Factors for Implementing 3D Printing Technology in Construction Projects: Academics and Construction Practitioners’ Perspectives. Constr. Innov. 2023; Advance online publication. [Google Scholar] [CrossRef]
- El-Sayegh, S.; Romdhane, L.; Manjikian, S. A Critical Review of 3D Printing in Construction: Benefits, Challenges, and Risks. Arch. Civ. Mech. Eng. 2020, 20, 1–25. [Google Scholar] [CrossRef]
- Sobotka, A.; Pacewicz, K. Mechanisation and Automation Technologies Development in Work at Construction Sites. IOP Conf. Ser. Mater. Sci. Eng. 2017, 251, 12046. [Google Scholar] [CrossRef]
- Guamán-Rivera, R.; Martínez-Rocamora, A.; García-Alvarado, R.; Muñoz-Sanguinetti, C.; González-Böhme, L.F.; Auat-Cheein, F. Recent Developments and Challenges of 3D-Printed Construction: A Review of Research Fronts. Buildings 2022, 12, 229. [Google Scholar] [CrossRef]
- Cano-Vicent, A.; Tambuwala, M.M.; Hassan, S.S.; Barh, D.; Aljabali, A.A.A.; Birkett, M.; Arjunan, A.; Serrano-Aroca, Á. Fused Deposition Modelling: Current Status, Methodology, Applications and Future Prospects. Addit. Manuf. 2021, 47, 102378. [Google Scholar] [CrossRef]
- Mwema, F.M.; Akinlabi, E.T. Basics of Fused Deposition Modelling (FDM). Fused Depos. Model. Strateg. Qual. Enhanc. 2020, 1–15. [Google Scholar] [CrossRef]
- Sandanamsamy, L.; Harun, W.S.W.; Ishak, I.; Romlay, F.R.M.; Kadirgama, K.; Ramasamy, D.; Idris, S.R.A.; Tsumori, F. A Comprehensive Review on Fused Deposition Modelling of Polylactic Acid. Prog. Addit. Manuf. 2023, 8, 775–799. [Google Scholar] [CrossRef]
- Przekop, R.E.; Gabriel, E.; Pakuła, D.; Sztorch, B. Liquid for Fused Deposition Modeling Technique (L-FDM)—A Revolution in Application Chemicals to 3D Printing Technology: Color and Elements. Appl. Sci. 2023, 13, 7393. [Google Scholar] [CrossRef]
- Mohd Pu’ad, N.A.S.; Abdul Haq, R.H.; Mohd Noh, H.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Review on the Fabrication of Fused Deposition Modelling (FDM) Composite Filament for Biomedical Applications. Mater. Today Proc. 2020, 29, 228–232. [Google Scholar] [CrossRef]
- Khatri, B.; Lappe, K.; Habedank, M.; Mueller, T.; Megnin, C.; Hanemann, T. Fused Deposition Modeling of ABS-Barium Titanate Composites: A Simple Route towards Tailored Dielectric Devices. Polymers 2018, 10, 666. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.U.; Kim, I.-G.; Kim, J.-H. Towards Full Automation in 3D Concrete Printing Construction: Development of an Automated and Inline Sensor-Printer Integrated Instrument for in-Situ Assessment of Structural Build-up and Quality of Concrete. Dev. Built Environ. 2024, 17, 100344. [Google Scholar] [CrossRef]
- Quah, T.K.N.; Tay, Y.W.D.; Lim, J.H.; Tan, M.J.; Wong, T.N.; Li, K.H.H. Concrete 3D Printing: Process Parameters for Process Control, Monitoring and Diagnosis in Automation and Construction. Mathematics 2023, 11, 1499. [Google Scholar] [CrossRef]
- Pessoa, S.; Guimarães, A.S.; Lucas, S.S.; Simões, N. 3D Printing in the Construction Industry—A Systematic Review of the Thermal Performance in Buildings. Renew. Sustain. Energy Rev. 2021, 141, 110794. [Google Scholar] [CrossRef]
- Mahadevan, M.; Francis, A.; Thomas, A. A Simulation-Based Investigation of Sustainability Aspects of 3D Printed Structures. J. Build. Eng. 2020, 32, 101735. [Google Scholar] [CrossRef]
- El Inaty, F.; Baz, B.A.; Aouad, G. Long-Term Durability Assessment of 3D Printed Concrete. J. Adhes. Sci. Technol. 2022, 37, 1921–1936. [Google Scholar] [CrossRef]
- Dhinakaran, V.; Manoj Kumar, K.P.; Bupathi Ram, P.M.; Ravichandran, M.; Vinayagamoorthy, M. A Review on Recent Advancements in Fused Deposition Modeling. Mater. Today Proc. 2020, 27, 752–756. [Google Scholar] [CrossRef]
- Kristiawan, R.B.; Imaduddin, F.; Ariawan, D.; Ubaidillah; Arifin, Z. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Eng. 2021, 11, 639–649. [Google Scholar] [CrossRef]
- Dasgupta, A.; Dutta, P. A Comprehensive Review on 3D Printing Technology: Current Applications and Challenges. Jordan J. Mech. Ind. Eng. 2022, 16, 529–542. [Google Scholar]
- Lupone, F.; Padovano, E.; Casamento, F.; Badini, C. Process Phenomena and Material Properties in Selective Laser Sintering of Polymers: A Review. Materials 2022, 15, 183. [Google Scholar] [CrossRef] [PubMed]
- Mehrpouya, M.; Vahabi, H.; Barletta, M.; Laheurte, P.; Langlois, V. Additive Manufacturing of Polyhydroxyalkanoates (PHAs) Biopolymers: Materials, Printing Techniques, and Applications. Mater. Sci. Eng. C 2021, 127, 112216. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.J.; Fiore, B.E.; Erb, R.M. Designing Bioinspired Composite Reinforcement Architectures via 3D Magnetic Printing. Nat. Commun. 2015, 6, 8641. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.E.; Han, H.; Son, J.S. Recent Progress in 3D Printing of Bi2Te3-Based Thermoelectric Materials and Devices. J. Phys. Energy 2024, 6, 22003. [Google Scholar] [CrossRef]
- Ni, Y.; Ji, R.; Long, K.; Bu, T.; Chen, K.; Zhuang, S. A Review of 3D-Printed Sensors. Appl. Spectrosc. Rev. 2017, 52, 623–652. [Google Scholar] [CrossRef]
- Huang, J.; Qin, Q.; Wang, J. A Review of Stereolithography: Processes and Systems. Processes 2020, 8, 1138. [Google Scholar] [CrossRef]
- Sanjayan, J.G.; Nematollahi, B. Chapter 1—3D Concrete Printing for Construction Applications. In 3D Concrete Printing Technology; Sanjayan, J.G., Nazari, A., Nematollahi, B., Eds.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 1–11. ISBN 978-0-12-815481-6. [Google Scholar]
- Tu, H.; Wei, Z.; Bahrami, A.; Ben Kahla, N.; Ahmad, A.; Özkılıç, Y.O. Recent Advancements and Future Trends in 3D Concrete Printing Using Waste Materials. Dev. Built Environ. 2023, 16, 100187. [Google Scholar] [CrossRef]
- Duarte, G.; Brown, N.; Memari, A.; Duarte, J.P. Learning from Historical Structures under Compression for Concrete 3D Printing Construction. J. Build. Eng. 2021, 43, 103009. [Google Scholar] [CrossRef]
- Holt, C.; Edwards, L.; Keyte, L.; Moghaddam, F.; Townsend, B. Chapter 17—Construction 3D Printing. In 3D Concrete Printing Technology; Sanjayan, J.G., Nazari, A., Nematollahi, B., Eds.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 349–370. ISBN 978-0-12-815481-6. [Google Scholar]
- Furet, B.; Poullain, P.; Garnier, S. 3D Printing for Construction Based on a Complex Wall of Polymer-Foam and Concrete. Addit. Manuf. 2019, 28, 58–64. [Google Scholar] [CrossRef]
- Al-Ghamdi, K.A. Sustainable FDM Additive Manufacturing of ABS Components with Emphasis on Energy Minimized and Time Efficient Lightweight Construction. Int. J. Light. Mater. Manuf. 2019, 2, 338–345. [Google Scholar] [CrossRef]
- Esposito Corcione, C.; Palumbo, E.; Masciullo, A.; Montagna, F.; Torricelli, M.C. Fused Deposition Modeling (FDM): An Innovative Technique Aimed at Reusing Lecce Stone Waste for Industrial Design and Building Applications. Constr. Build. Mater. 2018, 158, 276–284. [Google Scholar] [CrossRef]
- Espalin, D.; Alberto Ramirez, J.; Medina, F.; Wicker, R. Multi-Material, Multi-Technology FDM: Exploring Build Process Variations. Rapid Prototyp. J. 2014, 20, 236–244. [Google Scholar] [CrossRef]
- Lalegani Dezaki, M.; Mohd Ariffin, M.K.A.; Hatami, S. An Overview of Fused Deposition Modelling (FDM): Research, Development and Process Optimisation. Rapid Prototyp. J. 2021, 27, 562–582. [Google Scholar] [CrossRef]
- Zaneldin, E.; Ahmed, W.; Mansour, A.; Hassan, A. El Dimensional Stability of 3D Printed Objects Made from Plastic Waste Using FDM: Potential Construction Applications. Buildings 2021, 11, 516. [Google Scholar] [CrossRef]
- Malewski, A.; Kozłowski, M.; Podwórny, J.; Środa, M.; Sumelka, W. Developments on Constitutive Material Model for Architectural Soda-Lime Silicate (SLS) Glass and Evaluation of Key Modelling Parameters. Materials 2023, 16, 397. [Google Scholar] [CrossRef] [PubMed]
- Caulfield, B.; McHugh, P.E.; Lohfeld, S. Dependence of Mechanical Properties of Polyamide Components on Build Parameters in the SLS Process. J. Mater. Process. Technol. 2007, 182, 477–488. [Google Scholar] [CrossRef]
- Kundera, C.; Kozior, T. Mechanical Properties of Models Prepared by SLS Technology. AIP Conf. Proc. 2018, 2017, 20012. [Google Scholar] [CrossRef]
- Farahani, R.D.; Therriault, D.; Dubé, M.; Bodkhe, S.; Mahdavi, M. Additive Manufacturing of Multifunctional Nanocomposites and Composites. In Reference Module in Materials Science and Materials Engineering; Beaumont, P.W.R., Zweben, C.H., Eds.; Elsevier: Oxford, UK, 2018; pp. 380–407. ISBN 978-0-08-100534-7. [Google Scholar]
- Mukhtarkhanov, M.; Perveen, A.; Talamona, D. Application of Stereolithography Based 3D Printing Technology in Investment Casting. Micromachines 2020, 11, 946. [Google Scholar] [CrossRef]
- Paolini, A.; Kollmannsberger, S.; Rank, E. Additive Manufacturing in Construction: A Review on Processes, Applications, and Digital Planning Methods. Addit. Manuf. 2019, 30, 100894. [Google Scholar] [CrossRef]
- Wu, P.; Wang, J.; Wang, X. A Critical Review of the Use of 3-D Printing in the Construction Industry. Autom. Constr. 2016, 68, 21–31. [Google Scholar] [CrossRef]
- Dziura, P.; Maroszek, M.; Góra, M.; Rudziewicz, M.; Pławecka, K.; Hebda, M. Influence of the In-Fill Pattern of the 3D Printed Building Wall on Its Thermal Insulation. Materials 2023, 16, 5772. [Google Scholar] [CrossRef]
- Abdelkader, M.; Petrik, S.; Nestler, D.; Fijalkowski, M. Ceramics 3D Printing: A Comprehensive Overview and Applications, with Brief Insights into Industry and Market. Ceramics 2024, 7, 68–85. [Google Scholar] [CrossRef]
- Grabowska, B.; Kasperski, J. The Thermal Conductivity of 3D Printed Plastic Insulation Materials—The Effect of Optimizing the Regular Structure of Closures. Materials 2020, 13, 4400. [Google Scholar] [CrossRef]
- He, C.; Li, Z.; Wu, G.; Tao, M. Fractal Acoustic Metamaterials with Near-Zero Index and Negative Properties. Appl. Acoust. 2024, 217, 109825. [Google Scholar] [CrossRef]
- Yu, K.; Qiu, Z.; Gu, B.; Li, J.; Meng, Z.; Li, D.; He, J. Coaxial Electrohydrodynamic Printing of Microscale Core-Shell Conductive Features for Integrated Fabrication of Flexible Transparent Electronics. ACS Appl. Mater. Interfaces 2024, 16, 1114–1128. [Google Scholar] [CrossRef]
- Markanda, S. An analytic analysis of Z-effective for the series of glass [LI2O-B2O3-SIO2-XO] with second (4D) D-block (Y-CD) transition metals elements(X). Int. J. Res. Anal. Rev. 2023, 10, 327. [Google Scholar]
- Iftekar, S.F.; Aabid, A.; Amir, A.; Baig, M. Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. Polymers 2023, 15, 2519. [Google Scholar] [CrossRef]
- Fakhratov, M.; Erkenov, R.; Kulchaev, A.; Zavgorodniy, A. Manufacturing Processes of Cellular Concrete Products for the Construction. MATEC Web Conf. 2017, 117, 43. [Google Scholar] [CrossRef]
- Ioana, A.; Paunescu, L.; Constantin, N.; Rucai, V.; Dobrescu, C.; Pasare, V.; Istrate, A. High-Strength and Heat-Insulating Cellular Building Concrete Based on Calcined Gypsum. Materials 2023, 16, 118. [Google Scholar] [CrossRef]
- Drozdzol, K. Thermal and Mechanical Studies of Perlite Concrete Casing for Chimneys in Residential Buildings. Materials 2021, 14, 2011. [Google Scholar] [CrossRef]
- Pizoń, J.; Konečný, P.; Mynarz, M.; Bílek, V. Properties of Fine Graded Perlite-Based Lightweight Cement Mortars Subjected to Elevated Temperatures. Buildings 2023, 13, 2969. [Google Scholar] [CrossRef]
- Rashad, A.M. A Synopsis about Perlite as Building Material—A Best Practice Guide for Civil Engineer. Constr. Build. Mater. 2016, 121, 338–353. [Google Scholar] [CrossRef]
- Selman, S.M.; Abbas, Z.K. The Use of Lightweight Aggregate in Concrete: A Review. J. Eng. 2022, 28, 1–13. [Google Scholar] [CrossRef]
- Chandra, S.; Berntsson, L. Applications of Lightweight Aggregate Concrete. In Lightweight Aggregate Concrete Science, Technology, and Applications; William Andrew Inc.: New York, NY, USA, 2002; pp. 369–400. ISBN 9780815514862. [Google Scholar]
- Wei, H.; Wu, T.; Yang, X. Properties of Lightweight Aggregate Concrete Reinforced with Carbon and/or Polypropylene Fibers. Materials 2020, 13, 640. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Han, T.; Zhang, B.; Zhu, H.; Wu, G.; Wei, Y.; Zhang, P. A Review of the Research and Application Progress of New Types of Concrete-Filled FRP Tubular Members. Constr. Build. Mater. 2021, 312, 125353. [Google Scholar] [CrossRef]
- Chang, K.-J.; Wang, Y.-Z.; Peng, K.-C.; Tsai, H.-S.; Chen, J.-R.; Huang, C.-T.; Ho, K.-S.; Lien, W.-F. Preparation of Silica Aerogel/Polyurethane Composites for the Application of Thermal Insulation. J. Polym. Res. 2014, 21, 1–9. [Google Scholar] [CrossRef]
- Merillas, B.; Villafañe, F.; Rodríguez-Pérez, M.Á. Improving the Insulating Capacity of Polyurethane Foams through Polyurethane Aerogel Inclusion: From Insulation to Superinsulation. Nanomaterials 2022, 12, 2232. [Google Scholar] [CrossRef]
- Verdolotti, L.; Oliviero, M.; Lavorgna, M.; Santillo, C.; Tallia, F.; Iannace, S.; Chen, S.; Jones, J.R. “Aerogel-like” Polysiloxane-Polyurethane Hybrid Foams with Enhanced Mechanical and Thermal-Insulating Properties. Compos. Sci. Technol. 2021, 213, 108917. [Google Scholar] [CrossRef]
- Gupta, N.; Ricci, W. Processing and Compressive Properties of Aerogel/Epoxy Composites. J. Mater. Process. Technol. 2008, 198, 178–182. [Google Scholar] [CrossRef]
- Salimian, S.; Zadhoush, A.; Talebi, Z.; Fischer, B.; Winiger, P.; Winnefeld, F.; Zhao, S.; Barbezat, M.; Koebel, M.M.; Malfait, W.J. Silica Aerogel–Epoxy Nanocomposites: Understanding Epoxy Reinforcement in Terms of Aerogel Surface Chemistry and Epoxy–Silica Interface Compatibility. ACS Appl. Nano Mater. 2018, 1, 4179–4189. [Google Scholar] [CrossRef]
- Maghsoudi, K.; Motahari, S. Mechanical, Thermal, and Hydrophobic Properties of Silica Aerogel-Epoxy Composites. J. Appl. Polym. Sci. 2017, 135, 45706. [Google Scholar] [CrossRef]
- Guo, T.; Chen, X.; Zeng, G.; Yang, J.; Huang, X.; Li, C.; Tang, X.-Z. Impregnating Epoxy into N-Doped-CNTs@carbon Aerogel to Prepare High-Performance Microwave-Absorbing Composites with Extra-Low Filler Content. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106159. [Google Scholar] [CrossRef]
- Ge, Y.; Xue, J.; Liu, L.; Yang, Y. Preparation and Sound Insulation of Honeycomb Composite Structures Filled with Glass Fiber. Polym. Compos. 2024, 45, 1649–1663. [Google Scholar] [CrossRef]
- Konka, K.; Rao, J.; Gupta, K.S.A. Heat Insulation Analysis of an Aluminum Honeycomb Sandwich Structure. J. Therm. Eng. 2015, 1, 210–220. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, L.; Yang, M.; Zhang, T.; Xu, F.; Lin, Z.; Ding, Y.; Wang, C.; Li, J.; Yin, W.; et al. Lightweight, Thermally Insulating and Stiff Carbon Honeycomb-Induced Graphene Composite Foams with a Horizontal Laminated Structure for Electromagnetic Interference Shielding. Carbon N. Y. 2017, 123, 223–232. [Google Scholar] [CrossRef]
- Berkefeld, A.; Heyer, M.; Milow, B. Silica Aerogel Paper Honeycomb Composites for Thermal Insulations. J. Sol-Gel Sci. Technol. 2017, 84, 486–495. [Google Scholar] [CrossRef]
- Kuznetsov, D.V.; Klyuev, S.V.; Ryazanov, A.N.; Sinitsin, D.A.; Pudovkin, A.N.; Kobeleva, E.V.; Nedoseko, I.V. Dry Mixes on Gypsum and Mixed Bases in the Construction of Low-Rise Residential Buildings Using 3D Printing Technology. Constr. Mater. Prod. 2023, 6, 1–5. [Google Scholar] [CrossRef]
- Lin, Y.; Bayramvand, A.; Aghaei Meibodi, M. Branch Wall: Developing Topology Informed Non-Planar Toolpath and Variable Deposition Rate for 3d Concrete Printing of Topology Optimized Load Bearing Wall; Elsevier BV: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Qiao, Y.P.; Ren, J.; Wu, J.; Chen, S.J. A New Heat Resistant Load Bearing System Incorporating Honeycomb Structured Cementitious Composite Investigated via Experiments and Modelling. Case Stud. Constr. Mater. 2023, 19, e02379. [Google Scholar] [CrossRef]
- Fragnito, A.; Iasiello, M.; Mauro, G.; Menna, C.; Andreasen, C. Topology Optimization to Design Innovative High-Thermal-Resistance 3D Printed Walls; Begel House Inc.: Danbury, CT, USA, 2023. [Google Scholar] [CrossRef]
- Rahul, A.V.; Meena, H.; Santhanam, M. Mechanical Characterization of 3D Printable Concrete. Constr. Build. Mater. 2019, 227, 116710. [Google Scholar] [CrossRef]
- Furferi, R.; Ur Rehman, A. Editorial: Global Excellence in Digital Manufacturing: Europe. Front. Mech. Eng. 2023, 9, 1334600. [Google Scholar] [CrossRef]
- Imbabi, M.; Carrigan, C.; Mckenna, S. Trends and Developments in Green Cement and Concrete Technology. Int. J. Sustain. Built Environ. 2012, 1, 194–216. [Google Scholar] [CrossRef]
- Al-Tamimi, A.K.; Alqamish, H.H.; Khaldoune, A.; Alhaidary, H.; Shirvanimoghaddam, K. Framework of 3D Concrete Printing Potential and Challenges. Buildings 2023, 13, 827. [Google Scholar] [CrossRef]
- Fonseca, M.; Matos, A.M. 3D Construction Printing Standing for Sustainability and Circularity: Material-Level Opportunities. Materials 2023, 16, 2458. [Google Scholar] [CrossRef] [PubMed]
- Nemova, D.; Kotov, E.; Andreeva, D.; Khorobrov, S.; Olshevskiy, V.; Vasileva, I.; Zaborova, D.; Musorina, T. Experimental Study on the Thermal Performance of 3D-Printed Enclosing Structures. Energies 2022, 15, 4230. [Google Scholar] [CrossRef]
- Suntharalingam, T.; Gatheeshgar, P.; Upasiri, I.; Poologanathan, K.; Nagaratnam, B.; Rajanayagam, H.; Navaratnam, S. Numerical Study of Fire and Energy Performance of Innovative Light-Weight 3D Printed Concrete Wall Configurations in Modular Building System. Sustainability 2021, 13, 2314. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, H.; Han, L.; Huang, Q.; Yang, S.; Bai, J.; Feng, M. Investigation on Geometric and Surface Finish Quality of 3D Concrete Printed Walls with Hollow Section. Adv. Struct. Eng. 2023, 27, 386–401. [Google Scholar] [CrossRef]
- Koroglu, C.; Pop, E. High Thermal Conductivity Insulators for Thermal Management in 3D Integrated Circuits. IEEE Electron Device Lett. 2023, 44, 496–499. [Google Scholar] [CrossRef]
- Wang, L.; Feng, J.; Luo, Y.; Jiang, Y.; Zhang, G.; Feng, J. Versatile Thermal-Solidifying Direct-Write Assembly towards Heat-Resistant 3D-Printed Ceramic Aerogels for Thermal Insulation. Small Methods 2022, 6, 2200045. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar Naeini, M.; van der Weide, D. 3D-Printed High-Directivity H-Plane Horn Antenna with High Front-to-Back Ratio Using Soft and Hard Walls. In Proceedings of the 2021 IEEE Radio and Wireless Symposium (RWS), San Diego, CA, USA, 17–22 January 2021. [Google Scholar]
- Gao, Y.; Hua, S.; Yue, H. Study on Preparation and Rheological Properties of 3D Printed Pre-Foaming Concrete. Appl. Sci. 2023, 13, 5303. [Google Scholar] [CrossRef]
- Wang, X.; Ding, D.; Yang, Z.; Zhang, S.; Sun, Z.; Liu, Z.; Zhang, Q.; Chen, Y. GMP/Al2O3/ZnO/PDMS Thermal Interface Materials with Anisotropic Thermal Conductivity and Electrical Insulation Ability Obtained by 3D-printing Method. Polym. Adv. Technol. 2024, 35, e6287. [Google Scholar] [CrossRef]
- Hager, I.; Maroszek, M.; Mróz, K.; Kęsek, R.; Hebda, M.; Dvorkin, L.; Marchuk, V. Interlayer Bond Strength Testing in 3D-Printed Mineral Materials for Construction Applications. Materials 2022, 15, 4112. [Google Scholar] [CrossRef]
- Ma, G.; Buswell, R.; Leal da Silva, W.R.; Wang, L.; Xu, J.; Jones, S.Z. Technology Readiness: A Global Snapshot of 3D Concrete Printing and the Frontiers for Development. Cem. Concr. Res. 2022, 156, 106774. [Google Scholar] [CrossRef]
- Sprengard, C. An Overview of and Introduction to Current Researches on Super Insulating Materials for High-Performance Buildings. Energy Build. 2020, 214, 109890. [Google Scholar] [CrossRef]
- Givkashi, M.R.; Deheshti, A.; Shahhosseini, V.; Moodi, F. Feasibility of Construction of Buildings with the 3D Printing Concrete from Different Methods Perspectives Focusing on Economic Evaluation. AUT J. Civ. Eng. 2023, 7, 3–12. [Google Scholar] [CrossRef]
- Lisienkova, L.; Shindina, T.; Orlova, N.; Komarova, L. Optimization of the Concrete Composition Mix at the Design Stage. Civ. Eng. J. 2021, 7, 1389–1405. [Google Scholar] [CrossRef]
- Moini, M. The Optimization of Concrete Mixtures for Use in Highway Applications. Master’s Thesis, The University of Wisconsin-Milwaukee, Milwaukee, WI, USA, 2015. [Google Scholar]
- Mussey, B.K.; Damoah, L.N.W.; Akoto, R.N.A.; Bensah, Y.D. Optimization of Concrete Mix Design for Enhanced Performance and Durability: Integrating Chemical and Physical Properties of Aggregates. Cogent Eng. 2024, 11, 2347370. [Google Scholar] [CrossRef]
- DeRousseau, M.A.; Kasprzyk, J.R.; Srubar, W. V Computational Design Optimization of Concrete Mixtures: A Review. Cem. Concr. Res. 2018, 109, 42–53. [Google Scholar] [CrossRef]
- Berggren, B.; Wall, M. State of Knowledge of Thermal Bridges—A Follow up in Sweden and a Review of Recent Research. Buildings 2018, 8, 154. [Google Scholar] [CrossRef]
- Hager, I.; Golonka, A.; Putanowicz, R. 3D Printing of Buildings and Building Components as the Future of Sustainable Construction? Procedia Eng. 2016, 151, 292–299. [Google Scholar] [CrossRef]
- Guo, M.; Wu, Y.; Miao, X. Thermal Bridges Monitoring and Energy Optimization of Rural Residences in China’s Cold Regions. Sustainability 2023, 15, 1015. [Google Scholar] [CrossRef]
- Guo, C.; Wei, D.; Guo, C. Study on Relationship between Building Material and Building Form. Adv. Mater. Res. 2011, 393, 330–333. [Google Scholar] [CrossRef]
- Asaf, O.; Bentur, A.; Larianovsky, P.; Sprecher, A. From Soil to Printed Structures: A Systematic Approach to Designing Clay-Based Materials for 3D Printing in Construction and Architecture. Constr. Build. Mater. 2023, 408, 133783. [Google Scholar] [CrossRef]
- Liu, J.; Nguyen-Van, V.; Panda, B.; Fox, K.; du Plessis, A.; Tran, P. Additive Manufacturing of Sustainable Construction Materials and Form-Finding Structures: A Review on Recent Progresses. 3D Print. Addit. Manuf. 2022, 9, 12–34. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.T.; Shahid, M.A.; Ali, M.Y.; Saha, S.; Jamal, M.S.I.; Habib, A. Fabrications, Classifications, and Environmental Impact of PCM-Incorporated Textiles: Current State and Future Outlook. ACS Omega 2023, 8, 45164–45176. [Google Scholar] [CrossRef]
- Sandak, A.; Butina Ogorelec, K. Bioinspired Building Materials- Lessons from Nature. Front. Mater. 2023, 10, 15. [Google Scholar] [CrossRef]
- Benallel, A.; Tilioua, A.; Garoum, M. Development of Thermal Insulation Panels Bio-Composite Containing Cardboard and Date Palm Fibers. J. Clean. Prod. 2024, 434, 139995. [Google Scholar] [CrossRef]
- Shao, W.-C.; Lu, C.-L.; Dong, Y.-W.; Chen, J.-W.; Chiang, Y.-T. Research on Innovative Green Building Materials from Waste Oyster Shells into Foamed Heat-Insulating Bricks. Clean. Mater. 2024, 11, 100222. [Google Scholar] [CrossRef]
- Rosa Latapie, S.; Abou-Chakra, A.; Sabathier, V. Bibliometric Analysis of Bio- and Earth-Based Building Materials: Current and Future Trends. Constr. Mater. 2023, 3, 474–508. [Google Scholar] [CrossRef]
- Piccioni, V.; Leschok, M.; Lydon, G.; Cheibas, I.; Hischier, I.; Dillenburger, B.; Kohler, M.; Gramazio, F.; Schlueter, A. Printing Thermal Performance: An Experimental Exploration of 3DP Polymers for Facade Applications. IOP Conf. Ser. Earth Environ. Sci. 2023, 1196, 12063. [Google Scholar] [CrossRef]
- Tao, G.; Wu, J.; Zhu, M. Encapsulated Aerogel Fiber Mimicking the “Core–Shell” Structure of Polar Bear Hair for Thermal Insulation. Adv. Fiber Mater. 2024, 6, 329–331. [Google Scholar] [CrossRef]
- Ben Hadj Tahar, D.; Triki, Z.; Guendouz, M.; Tahraoui, H.; Zamouche, M.; Kebir, M.; Zhang, J.; Amrane, A. Characterization and Thermal Evaluation of a Novel Bio-Based Natural Insulation Material from Posidonia Oceanica Waste: A Sustainable Solution for Building Insulation in Algeria. ChemEngineering 2024, 8, 18. [Google Scholar] [CrossRef]
- Freund, C.; Mulabdic, A.; Ruta, M. Is 3D Printing a Threat to Global Trade? The Trade Effects You Didn’t Hear About. J. Int. Econ. 2022, 138, 103646. [Google Scholar] [CrossRef]
- Marczyk, J.; Ziejewska, C.; Gądek, S.; Korniejenko, K.; Łach, M.; Góra, M.; Kurek, I.; Doğan-Sağlamtimur, N.; Hebda, M.; Szechyńska-Hebda, M. Hybrid Materials Based on Fly Ash, Metakaolin, and Cement for 3D Printing. Materials 2021, 14, 6874. [Google Scholar] [CrossRef] [PubMed]
- Alami, A.H.; Olabi, A.G.; Ayoub, M.; Aljaghoub, H.; Alasad, S.; Abdelkareem, M.A. 3D Concrete Printing: Recent Progress, Applications, Challenges, and Role in Achieving Sustainable Development Goals. Buildings 2023, 13, 924. [Google Scholar] [CrossRef]
- Vrabič-Brodnjak, U. Hybrid Materials of Bio-Based Aerogels for Sustainable Packaging Solutions. Gels 2024, 10, 27. [Google Scholar] [CrossRef] [PubMed]
Criteria | Traditional Construction Methods | 3D Printing in Construction |
---|---|---|
Cost | Often higher due to materials, labor, and construction time. | Initial costs for equipment and materials may be high, but lower labor and material costs in the long run. |
Construction Time | Usually longer, requiring more time for preparation and building. | Reduced construction time due to automation and rapid production. |
Precision and Accuracy | Limited by manual work and rigid forms. | High precision due to computer-controlled printing processes. |
Customization | Limited, changes are costly and time-consuming. | High, allows for easy modifications to design. |
Material Waste | Often significant material waste. | Minimal waste due to the additive nature of the process. |
Geometric Complexity | Limited by construction methods and contractor skills. | Capable of creating complex structures and geometries. |
Strength and Durability | Based on tested methods, though errors in execution can occur. | High quality, but depends on materials and printing technology. |
Sustainability | May lead to significant waste and resource consumption. | Better material efficiency, possibility of using eco-friendly materials. |
Regulations and Standards | Well-regulated and standardized. | Still evolving regulations and standards for new technologies. |
Category | Type | Description | Application | References |
---|---|---|---|---|
Concrete mixes with insulating additives | Cellular concrete | Lightweight concrete containing air vapors, which provides good insulation properties. | Exterior walls, roofs, floors | [64,65] |
Perlite concrete | Concrete containing perlite, which increases its insulating properties and reduces weight. | Insulation of roofs, walls and floors | [66,67,68] | |
Concrete with the addition of lightweight aggregate | Concrete with lightweight aggregate (such as expanded clay), which improves thermal and acoustic insulation. | Partition walls, elevations, floor slabs | [69,70,71,72] | |
Polymers doped with aerogel | Aerogel-doped polyurethane | Lightweight, durable polymers with excellent insulating properties thanks to an admixture of aerogel. | Building insulation, refrigeration industry | [73,74,75] |
Aerogel-doped epoxy | Durable epoxy polymers enriched with aerogel for better insulation and weight reduction. | Structural components, protective coatings | [76,77,78,79] | |
Honeycomb composites | Composite panels, sandwich structures | The honeycomb structure provides high strength with low weight. | Aerospace, construction, automotive structures | [80,81,82,83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Góra, M.; Bańkosz, M.; Tyliszczak, B. Use of Innovative Methods to Produce Highly Insulating Walls Using 3D-Printing Technology. Materials 2024, 17, 3990. https://doi.org/10.3390/ma17163990
Góra M, Bańkosz M, Tyliszczak B. Use of Innovative Methods to Produce Highly Insulating Walls Using 3D-Printing Technology. Materials. 2024; 17(16):3990. https://doi.org/10.3390/ma17163990
Chicago/Turabian StyleGóra, Michał, Magdalena Bańkosz, and Bożena Tyliszczak. 2024. "Use of Innovative Methods to Produce Highly Insulating Walls Using 3D-Printing Technology" Materials 17, no. 16: 3990. https://doi.org/10.3390/ma17163990
APA StyleGóra, M., Bańkosz, M., & Tyliszczak, B. (2024). Use of Innovative Methods to Produce Highly Insulating Walls Using 3D-Printing Technology. Materials, 17(16), 3990. https://doi.org/10.3390/ma17163990