Chloride Penetration of Surface-Coated Concrete: Review and Outlook
Abstract
:1. Introduction
2. Protection Mechanism of Surface Coating
2.1. Chloride Erosion Mechanism in Concrete
2.2. Improvement Mechanism of Surface Coating on Chloride Resistance of Concrete
2.3. Measurement Methods for Chloride Resistance of Concrete
3. Chloride Resistance of Surface-Coated Concrete
3.1. Inorganic Coatings
Ref. | Coating Type | w/c | Chloride Diffusion Coefficient (D = 10−12 m2/s)/Electric Flux (C) | Test Method | Control Group | Coating Process |
---|---|---|---|---|---|---|
[43] | Calcium–silicate compound M1 | 0.485 | 0.3D | SMM | 2.3D | Spraying |
[43] | Calcium–silicate compound-M2.45 | 0.485 | 1.8D | SMM | 6.5D | Spraying |
[40] | Aqueous sodium silicate—N | 0.48 | 8993C | RCPT | 13219C | Brushing |
[40] | Aqueous sodium silicate—OW | 0.48 | 7238C | RCPT | Brushing | |
[44] | Ethyl silicate | 0.65 | 0.3D | RCMT | 20.4D | Brushing |
[44] | Ethyl silicate | 0.45 | 0.1D | RCMT | 7.6D | Brushing |
[18] | Alkali-activated/cement powder -S/H ratio of 1.0 | 0.5 | 0.081D | RCMT | 6.212D | - |
[18] | Alkali-activated/cement powder -S/H ratio of 2.0 | 0.5 | 0.192D | RCMT | 6.212D | - |
[61] | Graphene oxide (26.2 μg/cm2) | 0.5 | 1.52D | SSM | 1.59D | Spraying |
5.84D | RCMT | 6.08D | ||||
[61] | Graphene oxide (52.4 μg/cm2) | 0.5 | 1.36D | SSM | 1.59D | Spraying |
5.65D | RCMT | 6.08D | ||||
[61] | Graphene oxide (78.6 μg/cm2) | 0.5 | 1.03D | SSM | 1.59D | Spraying |
3.85D | RCMT | 6.08D | ||||
[61] | Graphene oxide (104.8 μg/cm2) | 0.5 | 0.55D | SSM | 1.59D | Spraying |
3.63D | RCMT | 6.08D | ||||
[61] | Graphene oxide (131.1 μg/cm2) | 0.5 | 0.39D | SSM | 1.59D | Spraying |
2.97D | RCMT | 6.08D | ||||
[49] | Silane | 0.6 | 11.5D | RCPT | 97.28D | Brushing |
1788C | OVF | |||||
[49] | silane/nano-clay (5%) | 0.6 | 4.88D | RCPT | 97.28D | Brushing |
832C | OVF | |||||
[49] | silane/nano-clay (10%) | 0.6 | 4.86D | RCPT | 97.28D | Brushing |
785C | OVF | |||||
[49] | silane/nano-silica (5%) | 0.6 | 7.14D | RCPT | 97.28D | Brushing |
1012C | OVF | |||||
[49] | silane/nano-silica (10%) | 0.6 | 11.30D | RCPT | 97.28D | Brushing |
1530C | OVF | |||||
[49] | Silane | 0.4 | 5.33D | RCPT | 20.93D | Brushing |
963C | 4015C | |||||
[49] | silane/nano-clay (5%) | 0.4 | 3.13D | RCPT | 20.93D | Brushing |
425C | 4015C | |||||
[49] | silane/nano-clay (10%) | 0.4 | 3.64D | RCPT | 20.93D | Brushing |
488C | 4015C | |||||
[49] | silane/nano-silica (5%) | 0.4 | 3.29D | RCPT | 20.93D | Brushing |
466C | 4015C | |||||
[49] | silane/nano-silica (10%) | 0.4 | 4.44D | RCPT | 20.93D | Brushing |
609C | 4015C | |||||
[6] | Silane/siloxane dispersed in water | 0.52 | 3.13D | RCPT | 3.45D | Soaking |
[6] | Silane/siloxane dispersed in solvent | 0.52 | 2.85D | RCPT | 3.45D | Soaking |
[50] | Silane | 0.6 | 268C | RCPT | OVF | Brushing |
[50] | silane/nano-clay (2.5%) | 0.6 | 641C | RCPT | OVF | Brushing |
[50] | silane/nano-clay (5%) | 0.6 | 750C | RCPT | OVF | Brushing |
[50] | silane/nano-CaCO3 (2.5%) | 0.6 | 488C | RCPT | OVF | Brushing |
[50] | silane/nano-CaCO3 (5%) | 0.6 | 726C | RCPT | OVF | Brushing |
[50] | Silane | 0.4 | 211C | RCPT | 2326C | Brushing |
[50] | silane/nano-clay (2.5%) | 0.4 | 307C | RCPT | 2326C | Brushing |
[50] | silane/nano-clay (5%) | 0.4 | 336C | RCPT | 2326C | Brushing |
[50] | silane/nano-CaCO3 (2.5%) | 0.4 | 378C | RCPT | 2326C | Brushing |
[50] | silane/nano-CaCO3 (5%) | 0.4 | 596C | RCPT | 2326C | Brushing |
[10] | silane | 0.6 | 229C | RCPT | 2745C | Brushing |
[62] | Alkyl alkoxysilane | 0.45 | 8.7D | FT | 9.0D | / |
3.2. Organic Coatings
Ref. | Coating Type | w/c | Chloride Diffusion Coefficient (D = 10−12 m2/s)/Electric Flux (C) | Test Method | Control Group | Coating Process |
---|---|---|---|---|---|---|
[63] | Acrylic coating | 0.6 | 6.53D | RCMT | 14.4D | / |
[63] | Epoxy coating | 0.6 | 0D | RCMT | 14.4D | / |
[63] | Acrylic coating | 0.4 | 3.86D | RCMT | 6.9D | / |
[63] | Epoxy coating | 0.4 | 0D | RCMT | 6.9D | / |
[64] | Acrylic coating, AC1 | 0.45 | 2.08D | IT | 19.18D | / |
[64] | Acrylic coating, AC2 | 0.45 | 3.49D | IT | 19.18D | / |
[64] | Polymer emulsion coating, PE1 | 0.45 | 8.40D | IT | 19.18D | / |
[64] | Polymer emulsion coating, PE2 | 0.45 | 15.97D | IT | 19.18D | / |
[64] | Epoxy coating, EP1 | 0.45 | 7.67D | IT | 19.18D | / |
[64] | Epoxy coating, EP2 | 0.45 | 2.59D | IT | 19.18D | / |
[64] | Polyurethane coating, PU1 | 0.45 | 1.83D | IT | 19.18D | / |
[64] | Polyurethane coating, PU2 | 0.45 | 0.70D | IT | 19.18D | / |
[64] | Chlorinated rubber coating, CR1 | 0.45 | 9.56D | IT | 19.18D | / |
[64] | Chlorinated rubber coating, CR2 | 0.45 | 8.40D | IT | 19.18D | / |
[62] | Acrylic sealant | 0.45 | 11.2D | FT | 9.0D | Brushing |
[62] | Polyurethane sealant | 0.45 | 8.8D | FT | 9.0D | Brushing |
[62] | Acrylic coating | 0.45 | 9.0D | FT | 9.0D | Brushing |
[62] | Polyurethane coating | 0.45 | 4.7D | FT | 9.0D | Brushing |
[65] | Polyurethane–SiO2 (0%) | 0.6 | 2110C | RCPT | / | Spraying |
[65] | Polyurethane–SiO2 (1%) | 0.6 | 1780C | RCPT | / | Spraying |
[65] | Polyurethane–SiO2 (2%) | 0.6 | 1520C | RCPT | / | Spraying |
[65] | Polyurethane–SiO2 (3%) | 0.6 | 1470C | RCPT | / | Spraying |
[65] | Epoxy resin–SiO2 (0%) | 0.6 | 610C | RCPT | / | Spraying |
[65] | Epoxy resin–SiO2 (1%) | 0.6 | 450C | RCPT | / | Spraying |
[65] | Epoxy resin–SiO2 (2%) | 0.6 | 390C | RCPT | / | Spraying |
[65] | Epoxy resin–SiO2 (3%) | 0.6 | 430C | RCPT | / | Spraying |
[65] | Polyurethane–TiO2 (0%) | 0.6 | 2110C | RCPT | / | Spraying |
[65] | Polyurethane–TiO2 (1%) | 0.6 | 1670C | RCPT | / | Spraying |
[65] | Polyurethane–TiO2 (2%) | 0.6 | 1480C | RCPT | / | Spraying |
[65] | Polyurethane–TiO2 (3%) | 0.6 | 1720C | RCPT | / | Spraying |
[65] | Epoxy resin–TiO2 (0%) | 0.6 | 610C | RCPT | / | Spraying |
[65] | Epoxy resin–TiO2 (1%) | 0.6 | 460C | RCPT | / | Spraying |
[65] | Epoxy resin–TiO2 (2%) | 0.6 | 430C | RCPT | / | Spraying |
[65] | Epoxy resin–TiO2 (3%) | 0.6 | 490C | RCPT | / | Spraying |
[66] | Epoxy coating—submicron/nano carbon (0%) | 0.45 | 102D | PT | 134D | Soaking |
[66] | Epoxy coating—submicron/nano carbon (0.25%) | 0.45 | 98D | PT | 134D | Soaking |
[66] | Epoxy coating—submicron/nano carbon (0.5%) | 0.45 | 92D | PT | 134D | Soaking |
[66] | Epoxy coating—submicron/nano carbon (0.75%) | 0.45 | 78D | PT | 134D | Soaking |
[66] | Epoxy coating—submicron/nano carbon (1.0%) | 0.45 | 70D | PT | 134D | Soaking |
[67] | Modified acrylic styrene emulsion | 0.5 | 5.944D | RCMT | 7.799D | / |
[10] | epoxy glass flake paint | 0.6 | 752C | RCPT | 2745C | Brushing |
[10] | Polyurethane paint | 0.6 | 550C | RCPT | 2745C | Brushing |
[46] | Poly(methyl methacrylate) (PMMA) | 0.6 | 17.5D | RCPT | 97.28D | Brushing |
2981C | OVF | |||||
[46] | PMMA/nano-clay (5%) | 0.6 | 4.88D | RCPT | 97.28D | Brushing |
832C | OVF | |||||
[46] | PMMA/nano-clay (10%) | 0.6 | 4.86D | RCPT | 97.28D | Brushing |
785C | OVF | |||||
[46] | PMMA/nano-silica (5%) | 0.6 | 7.14D | RCPT | 97.28D | Brushing |
1012C | OVF | |||||
[46] | PMMA/nano-silica (10%) | 0.6 | 11.30D | RCPT | 97.28D | Brushing |
1530C | OVF | |||||
[46] | Poly (methyl methacrylate) (PMMA) | 0.4 | 11.87D | RCPT | 20.93D | Brushing |
1785C | 4015C | |||||
[46] | PMMA/nano-clay (5%) | 0.4 | 4.00D | RCPT | 20.93D | Brushing |
569C | 4015C | |||||
[46] | PMMA/nano-clay (10%) | 0.4 | 5.78D | RCPT | 20.93D | Brushing |
826C | 4015C | |||||
[46] | PMMA/nano-silica (5%) | 0.4 | 4.70D | RCPT | 20.93D | Brushing |
761C | 4015C | |||||
[46] | PMMA/nano-silica (10%) | 0.4 | 10.38D | RCPT | 20.93D | Brushing |
1542C | 4015C | |||||
[47] | Vinyl ester | 0.6 | 4485C | RCPT | OVF | Brushing |
[47] | Vinyl ester/nano-clay (2.5%) | 0.6 | 63C | RCPT | OVF | Brushing |
[47] | Vinyl ester/nano-clay (5%) | 0.6 | 153C | RCPT | OVF | Brushing |
[47] | Vinyl ester/nano-CaCO3 (2.5%) | 0.6 | 74C | RCPT | OVF | Brushing |
[47] | Vinyl ester/nano-CaCO3 (5%) | 0.6 | 44C | RCPT | OVF | Brushing |
[47] | Vinyl ester | 0.4 | 1576C | RCPT | 2326C | Brushing |
[47] | Vinyl ester/nano-clay (2.5%) | 0.4 | 10C | RCPT | 2326C | Brushing |
[47] | Vinyl ester/nano-clay (5%) | 0.4 | 66C | RCPT | 2326C | Brushing |
[47] | Vinyl ester/nano-CaCO3 (2.5%) | 0.4 | 34C | RCPT | 2326C | Brushing |
[47] | Vinyl ester/nano-CaCO3 (5%) | 0.4 | 23C | RCPT | 2326C | Brushing |
[68] | TA coating (Fe(III))—self-polymerization | 0.5 | 4.97D | RCPT | 5.2D | Soaking |
1163C | 1617C | |||||
[68] | TA coating (Fe(III))—one step method | 0.5 | 4.18D | RCPT | 5.2D | Soaking |
1114C | 1617C | |||||
[68] | TA coating (Fe(III))—multi-step method | 0.5 | 4.13D | RCPT | 5.2D | Soaking |
1249C | 1617C | |||||
[9] | TA-APTES-HDTMS (1%) | 0.5 | 779C | RCPT | 1657.81C | Soaking |
[9] | TA-APTES-HDTMS (3%) | 0.5 | 554C | RCPT | 1657.81C | Soaking |
[9] | TA-APTES-HDTMS (5%) | 0.5 | 494C | RCPT | 1657.81C | Soaking |
[9] | TA-APTES-HDTMS (7%) | 0.5 | 429C | RCPT | 1657.81C | Soaking |
[9] | TA-APTES-HDTMS (10%) | 0.5 | 391C | RCPT | 1657.81C | Soaking |
[9] | TA-APTES-HDTMS (15%) | 0.5 | 367C | RCPT | 1657.81C | Soaking |
[69] | D-CO2-monoethanolamine (MEA) (10%) | 0.35 | 10.7D | RCPT | 13.3D | / |
296.09C | 339.07C | |||||
[69] | D-CO2-monoethanolamine (MEA) (30%) | 0.35 | 9.1D | RCPT | 13.3D | / |
285.16C | 339.07C | |||||
[69] | F-CO2-monoethanolamine (MEA) (10%) | 0.35 | 13.6D | RCPT | 13.3D | / |
336.30C | 339.07C | |||||
[69] | F-CO2-monoethanolamine (MEA) (30%) | 0.35 | 13.5D | RCPT | 13.3D | / |
336.00C | 339.07C | |||||
[69] | D-CO2-monoethanolamine (MEA) (10%) | 0.4 | 13.0D | RCPT | 18.1D | / |
339.10C | 458.9C | |||||
[69] | D-CO2-monoethanolamine (MEA) (30%) | 0.4 | 12.4D | RCPT | 18.1D | / |
293.77C | 458.9C | |||||
[69] | D-CO2-monoethanolamine (MEA) (10%) | 0.5 | 19.0D | RCPT | 20.4D | / |
440.86C | 539.43C | |||||
[69] | D-CO2-monoethanolamine (MEA) (30%) | 0.5 | 18.2D | RCPT | 20.4D 539.43D | / |
3.3. Organic–Inorganic Composite Coatings
Ref. | Coating Type | w/c | Chloride Diffusion Coefficient (D = 10−12 m2/s)/Electric Flux (C) | Test Method | Control Group | Coating Process |
---|---|---|---|---|---|---|
[10] | Cement-based permeable crystallization waterproof coating | 0.6 | 279C | RCPT | 2745C | Brushing |
[62] | Two-component acrylic-modified cementitious coating | 0.45 | 4.7D | FT | 9.0D | Brushing |
[72] | Acrylic–cementitious coating (PC ratio of 0.35) | 0.65 | 0.50D | SSM | 8.03D | / |
[72] | Acrylic–cementitious coating (PC ratio of 0.55) | 0.65 | 0.28D | SSM | 8.03D | / |
[72] | Acrylic–cementitious coating (PC ratio of 0.35) | 0.5 | 0.13D | SSM | 2.41D | / |
[72] | Acrylic–cementitious coating (PC ratio of 0.55) | 0.5 | 0.15D | SSM | 2.41D | / |
[73] | Silicone-modified polyacrylate-modified cement-based coating | / | 2665.42C | RCPT | 4054.00C | / |
[73] | silicone-modified polyacrylate-modified cement-based coating incorporating polypropylene fiber | / | 2070.64C | RCPT | 4054.00C | / |
4. Modeling Chloride Penetration into Surface-Coated Concrete
5. Outlook
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y.; Liao, J.; Zhang, B. A Review of Chloride Penetration of Recycled Concrete with Enhancement Treatment and Service Life Prediction. Materials 2024, 17, 1349. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liao, J.; Liu, Z. Service Life Prediction and Environmental Impact Evaluation of Recycled Aggregate Concrete with Supplementary Cementitious Materials. Constr. Build. Mater. 2023, 395, 132270. [Google Scholar] [CrossRef]
- Alexander, M.; Thomas, M. Service Life Prediction and Performance Testing—Current Developments and Practical Applications. Cem. Concr. Res. 2015, 78, 155–164. [Google Scholar] [CrossRef]
- Saricimen, H.; Maslehuddin, M.; Iob, A.; Eid, O.A. Evaluation of a Surface Coating in Retarding Reinforcement Corrosion. Constr. Build. Mater. 1996, 10, 507–513. [Google Scholar] [CrossRef]
- Moon, H.Y.; Shin, D.G.; Choi, D.S. Evaluation of the Durability of Mortar and Concrete Applied with Inorganic Coating Material and Surface Treatment System. Constr. Build. Mater. 2007, 21, 362–369. [Google Scholar] [CrossRef]
- Medeiros, M.H.F.; Helene, P. Surface Treatment of Reinforced Concrete in Marine Environment: Influence on Chloride Diffusion Coefficient and Capillary Water Absorption. Constr. Build. Mater. 2009, 23, 1476–1484. [Google Scholar] [CrossRef]
- Komada, M.; Asai, Y.; Morii, M.; Matsuki, M.; Sato, M.; Nagao, T. Maternal Bisphenol A Oral Dosing Relates to the Acceleration of Neurogenesis in the Developing Neocortex of Mouse Fetuses. Toxicology 2012, 295, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Du, H.; Yin, S.; Zhang, W.; Shen, Y.; Fu, Y. Study on Preparation and Properties of Super-hydrophobic Cement-based Coating with High Stability. Funct. Mater. 2022, 9, 53. [Google Scholar]
- Liao, J.; Wang, Y.; Wang, Y.; Lai, X. Preparation and Evaluation of TA/APTES-HDTMS Hydrophobic Nanocomposite Coating for Enhancing Corrosion Resistance of Concrete. Constr. Build. Mater. 2023, 408, 133792. [Google Scholar] [CrossRef]
- Li, G.; Yang, B.; Guo, C.; Du, J.; Wu, X. Time Dependence and Service Life Prediction of Chloride Resistance of Concrete Coatings. Constr. Build. Mater. 2015, 83, 19–25. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Tan, Y.; Wang, Y.; Li, Q. Chloride Binding Capacity of Green Concrete Mixed with Fly Ash or Coal Gangue in the Marine Environment. Constr. Build. Mater. 2020, 242, 118006. [Google Scholar] [CrossRef]
- Proske, T.; Hainer, S.; Rezvani, M.; Graubner, C.-A. Eco-Friendly Concretes with Reduced Water and Cement Contents—Mix Design Principles and Laboratory Tests. Cem. Concr. Res. 2013, 51, 38–46. [Google Scholar] [CrossRef]
- Ryan, P.C.; O’Connor, A.J. Probabilistic Analysis of the Time to Chloride Induced Corrosion for Different Self-Compacting Concretes. Constr. Build. Mater. 2013, 47, 1106–1116. [Google Scholar] [CrossRef]
- Arnon, B.; Diamond, S.; Berke, N. Corrosion control. In Steel Corrosion in Concrete–Fundamentals and Civil Engineering Practice; E and FN SPON: London, UK, 1997; pp. 94–145. [Google Scholar]
- Barbucci, A.; Delucchi, M.; Cerisola, G. Organic Coatings for Concrete Protection: Liquid Water and Water Vapour Permeabilities. Prog. Org. Coat. 1997, 30, 293–297. [Google Scholar] [CrossRef]
- Dulaijan, S.U.; Maslehuddin, M.; Al-Zahrani, M.M.; Sharif, A.M.; AlJuraifani, E.A.; Al-Idi, S.H. Performance evaluation of resin based surface coatings. In Proceedings of the 6th International Conference in Deterioration and Repair of Reinforced Concrete, Arabian Gulf, Bahrain, 20–22 November 2000; pp. 345–362. [Google Scholar]
- Petcherdchoo, A. Pseudo-Coating Model for Predicting Chloride Diffusion into Surface-Coated Concrete in Tidal Zone: Time-Dependent Approach. Cem. Concr. Compos. 2016, 74, 88–99. [Google Scholar] [CrossRef]
- Phiangphimai, C.; Joinok, G.; Phoo-ngernkham, T.; Damrongwiriyanupap, N.; Hanjitsuwan, S.; Suksiripattanapong, C.; Sukontasukkul, P.; Chindaprasirt, P. Durability Properties of Novel Coating Material Produced by Alkali-Activated/Cement Powder. Constr. Build. Mater. 2023, 363, 129837. [Google Scholar] [CrossRef]
- Dai, J.-G.; Akira, Y.; Wittmann, F.H.; Yokota, H.; Zhang, P. Water Repellent Surface Impregnation for Extension of Service Life of Reinforced Concrete Structures in Marine Environments: The Role of Cracks. Cem. Concr. Compos. 2010, 32, 101–109. [Google Scholar] [CrossRef]
- Christodoulou, C.; Goodier, C.I.; Austin, S.A.; Webb, J.; Glass, G.K. Long-Term Performance of Surface Impregnation of Reinforced Concrete Structures with Silane. Constr. Build. Mater. 2013, 48, 708–716. [Google Scholar] [CrossRef]
- Gnanaraj, J.; Vasugi, K.A. Comprehensive Review of Hydrophobic Concrete: Surface and Bulk Modifications for Enhancing Corrosion Resistance. Eng. Res. Express 2024, 6, 032101. [Google Scholar] [CrossRef]
- Yin, B.; Wu, C.; Hou, D.; Li, S.; Jin, Z.; Wang, M.; Wang, X. Research and Application Progress of Nano-Modified Coating in Improving the Durability of Cement-Based Materials. Prog. Org. Coat. 2021, 161, 106529. [Google Scholar] [CrossRef]
- Li, G.; Cui, H.; Zhou, J.; Hu, W. Improvements of Nano-TiO2 on the Long-Term Chloride Resistance of Concrete with Polymer Coatings. Coatings 2019, 9, 323. [Google Scholar] [CrossRef]
- Li, G.; Yue, J.; Guo, C.; Ji, Y. Influences of Modified Nanoparticles on Hydrophobicity of Concrete with Organic Film Coating. Constr. Build. Mater. 2018, 169, 1–7. [Google Scholar] [CrossRef]
- Wang, Z.; Han, M.; Zhang, J.; He, F.; Xu, Z.; Ji, S.; Peng, S.; Li, Y. Designing Preferable Functional Materials Based on the Secondary Reactions of the Hierarchical Tannic Acid (TA)-Aminopropyltriethoxysilane (APTES) Coating. Chem. Eng. J. 2019, 360, 299–312. [Google Scholar] [CrossRef]
- NT BUILD 355; Concrete, Mortar and Cement-Based Materials: Chloride Diffuson Coefficient from Migration Cell Experiment. Nordtest: Taastrup, Denmark, 1997.
- NT BUILD 492; Concrete, Mortar and Cement-Based Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments. Nordtest: Taastrup, Denmark, 1999.
- ASTM C 1202–97; Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. American Society for Testing and Materials: West Conshohocken, PA, USA, 1997.
- Tang, L.; Nilsson, L. Rapid Determination of the Chloride Diffusivity in Concrete by Applying an Electric Field. ACI Mater. J. 1992, 89, 49–53. [Google Scholar] [CrossRef]
- NT BUILD 443; Concrete, Hardened: Accelerated Chloride Penetration. Nordtest: Taastrup, Denmark, 1995.
- ASTM, C1556-11a; Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion. ASTM International: West Conshohocken, PA, USA, 2016.
- Nguyen, Q.D.; Castel, A.; Kim, T.; Khan, M.S.H. Performance of Fly Ash Concrete with Ferronickel Slag Fine Aggregate against Alkali-Silica Reaction and Chloride Diffusion. Cem. Concr. Res. 2021, 139, 106265. [Google Scholar] [CrossRef]
- Shafikhani, M.; Chidiac, S.E. A Holistic Model for Cement Paste and Concrete Chloride Diffusion Coefficient. Cem. Concr. Res. 2020, 133, 106049. [Google Scholar] [CrossRef]
- Pillai, R.G.; Gettu, R.; Santhanam, M.; Rengaraju, S.; Dhandapani, Y.; Rathnarajan, S.; Basavaraj, A.S. Service Life and Life Cycle Assessment of Reinforced Concrete Systems with Limestone Calcined Clay Cement (LC3). Cem. Concr. Res. 2019, 118, 111–119. [Google Scholar] [CrossRef]
- Angst, U.M. Predicting the Time to Corrosion Initiation in Reinforced Concrete Structures Exposed to Chlorides. Cem. Concr. Res. 2019, 115, 559–567. [Google Scholar] [CrossRef]
- Nanukuttan, S.V.; Basheer, L.; McCarter, W.J.; Robinson, D.J.; Basheer, P.A.M. Full-Scale Marine Exposure Tests on Treated and Untreated Concretes Initial 7-Year Results. ACI Mater. J. 2008, 105, 81. [Google Scholar] [CrossRef]
- Khanzadeh Moradllo, M.; Shekarchi, M.; Hoseini, M. Time-Dependent Performance of Concrete Surface Coatings in Tidal Zone of Marine Environment. Constr. Build. Mater. 2012, 30, 198–205. [Google Scholar] [CrossRef]
- Li, Y.; Xu, H.; He, Y.; Xu, Q.; Fan, X.; Liu, C. Study on the Correlation between Indoor Accelerated Corrosion Testing of Concrete Epoxy Polysiloxane Coating and Real-Sea Environmental Testing in the East China Sea. Case Stud. Constr. Mater. 2024, 20, e02905. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, X.; Wang, H. Potential Application of Geopolymers as Protection Coatings for Marine Concrete III. Field Experiment. Appl. Clay Sci. 2012, 67–68, 57–60. [Google Scholar] [CrossRef]
- Thompson, J.L.; Silsbee, M.R.; Gill, P.M.; Scheetz, B.E. Characterization of Silicate Sealers on Concrete. Cem. Concr. Res. 1997, 27, 1561–1567. [Google Scholar] [CrossRef]
- Higgins, R.C. Waterproofing for Concrete. Reference and Guide; Sinak Corp.: San Diego, CA, USA, 1985. [Google Scholar]
- Franzoni, E.; Pigino, B.; Pistolesi, C. Ethyl Silicate for Surface Protection of Concrete: Performance in Comparison with Other Inorganic Surface Treatments. Cem. Concr. Compos. 2013, 44, 69–76. [Google Scholar] [CrossRef]
- Pigino, B.; Leemann, A.; Franzoni, E.; Lura, P. Ethyl Silicate for Surface Treatment of Concrete—Part II: Characteristics and Performance. Cem. Concr. Compos. 2012, 34, 313–321. [Google Scholar] [CrossRef]
- Sandrolini, F.; Franzoni, E.; Pigino, B. Ethyl Silicate for Surface Treatment of Concrete—Part I: Pozzolanic Effect of Ethyl Silicate. Cem. Concr. Compos. 2012, 34, 306–312. [Google Scholar] [CrossRef]
- Medeiros, M.; Helene, P. Efficacy of Surface Hydrophobic Agents in Reducing Water and Chloride Ion Penetration in Concrete. Mater. Struct. 2007, 41, 59–71. [Google Scholar] [CrossRef]
- Sakr, M.R.; Bassuoni, M.T. Silane and Methyl-Methacrylate Based Nanocomposites as Coatings for Concrete Exposed to Salt Solutions and Cyclic Environments. Cem. Concr. Compos. 2021, 115, 103841. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Bassuoni, M.T.; Carroll, J.; Ghazy, A. Performance of Concrete Superficially Treated with Nano-Modified Coatings under Sulfuric Acid Exposures. J. Build. Eng. 2024, 86, 108957. [Google Scholar] [CrossRef]
- Gu, W.; Liu, R.; Zhang, Y.; Yu, X.; Feng, P.; Ran, Q.; Zhang, Y.; Zhang, Y. Robust Water-Borne Multi-Layered Superhydrophobic Coating on Concrete with Ultra-Low Permeability. Constr. Build. Mater. 2024, 411, 134573. [Google Scholar] [CrossRef]
- Schueremans, L.; Van Gemert, D.; Giessler, S. Chloride Penetration in RC-Structures in Marine Environment-Long Term Assessment of a Preventive Hydrophobic Treatment. Constr. Build. Mater. 2007, 21, 1238–1249. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, X.; Zhu, H. Potential Application of Geopolymers as Protection Coatings for Marine concrete I. Basic Properties. Appl. Clay Sci. 2010, 49, 7–12. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, X.; Zhu, H. Potential Application of Geopolymers as Protection Coatings for Marine concrete II. Microstructure and Anticorrosion Mechanism. Appl. Clay Sci. 2010, 49, 7–12. [Google Scholar] [CrossRef]
- Lv, S.; Ma, Y.; Qiu, C.; Sun, T.; Liu, J.; Zhou, Q. Effect of Graphene Oxide Nanosheets of Microstructure and Mechanical Properties of Cement Composites. Constr. Build. Mater. 2013, 49, 121–127. [Google Scholar] [CrossRef]
- Pan, Z.; He, L.; Qiu, L.; Korayem, A.H.; Li, G.; Zhu, J.W.; Collins, F.; Li, D.; Duan, W.H.; Wang, M.C. Mechanical Properties and Microstructure of a Graphene Oxide–Cement Composite. Cem. Concr. Compos. 2015, 58, 140–147. [Google Scholar] [CrossRef]
- Saafi, M.; Tang, L.; Fung, J.; Rahman, M.; Liggat, J. Enhanced Properties of Graphene/Fly Ash Geopolymeric Composite Cement. Cem. Concr. Res. 2015, 67, 292–299. [Google Scholar] [CrossRef]
- Mohammed, A.; Sanjayan, J.G.; Duan, W.H.; Nazari, A. Incorporating Graphene Oxide in Cement Composites: A Study of Transport Properties. Constr. Build. Mater. 2015, 84, 341–347. [Google Scholar] [CrossRef]
- Wang, Q.; Qi, G.; Wang, Y.; Zheng, H.; Shan, S.; Lu, C. Research Progress on the Effect of Graphene Oxide on the Properties of Cement-Based Composites. New Carbon Mater. 2021, 36, 729–750. [Google Scholar] [CrossRef]
- Liu, C.; Huang, X.; Wu, Y.-Y.; Deng, X.; Zheng, Z.; Xu, Z.; Hui, D. Advance on the Dispersion Treatment of Graphene Oxide and the Graphene Oxide Modified Cement-Based Materials. Nanotechnol. Rev. 2021, 10, 34–49. [Google Scholar] [CrossRef]
- Antolín-Rodríguez, A.; Merino-Maldonado, D.; Fernández-Raga, M.; González-Domínguez, J.M.; Morán-del Pozo, J.M.; Pozo, M.; García-González, J.; Juan-Valdés, A. Microstructural, Durability and Colorimetric Properties of Concrete Coated with a Controlled Application of Graphene Oxide. J. Build. Eng. 2024, 86, 108920. [Google Scholar] [CrossRef]
- Antolín-Rodríguez, A.; Merino-Maldonado, D.; González-Domínguez, J.M.; Fernández-Raga, M.; Morán-del Pozo, J.M.; García-González, J.; Juan-Valdés, A. Performance of Graphene Oxide as a Water-Repellent Coating Nanomaterial to Extend the Service Life of Concrete Structures. Heliyon 2024, 10, e23969. [Google Scholar] [CrossRef]
- Antolín-Rodríguez, A.; Merino-Maldonado, D.; Rodríguez-González, Á.; Fernández-Raga, M.; González-Domínguez, J.M.; Juan-Valdés, A.; García-González, J. Statistical Study of the Effectiveness of Surface Application of Graphene Oxide as a Coating for Concrete Protection. Coatings 2023, 13, 213. [Google Scholar] [CrossRef]
- Gao, J.; Li, C.; Lv, Z.; Wang, R.; Wu, D.; Li, X. Correlation between the Surface Aging of Acrylic Polyurethane Coatings and Environmental Factors. Prog. Org. Coat. 2019, 132, 362–369. [Google Scholar] [CrossRef]
- Zhang, J.-Z.; Buenfeld, N.R. Chloride Profiles in Surface-Treated Mortar Specimens. Constr. Build. Mater. 2000, 14, 359–364. [Google Scholar] [CrossRef]
- Aguiar, J.B.; Camões, A.; Moreira, P.M. Coatings for Concrete Protection against Aggressive Environments. J. Adv. Concr. Technol. 2008, 6, 243–250. [Google Scholar] [CrossRef]
- Almusallam, A.A.; Khan, F.M.; Dulaijan, S.U.; Al-Amoudi, O.S.B. Effectiveness of Surface Coatings in Improving Concrete Durability. Cem. Concr. Compos. 2003, 25, 473–481. [Google Scholar] [CrossRef]
- Qu, H.; Feng, M.; Li, M.; Tian, D.; Zhang, Y.; Chen, X.; Li, G. Enhancing the Carbonation and Chloride Resistance of Concrete by Nano-Modified Eco-Friendly Water-Based Organic Coatings. Mater. Today Commun. 2023, 37, 107284. [Google Scholar] [CrossRef]
- Basha, S.I.; Aziz, M.A.; Ahmad, S.; Al-Zahrani, M.M.; Shameem, M.; Maslehuddin, M. Improvement of Concrete Durability Using Nanocomposite Coating Prepared by Mixing Epoxy Coating with Submicron/Nano-Carbon Obtained from Heavy Fuel Oil Ash. Constr. Build. Mater. 2022, 325, 126812. [Google Scholar] [CrossRef]
- Shi, L.; Liu, J.; Liu, J. Effect of Polymer Coating on the Properties of Surface Layer Concrete. Procedia Eng. 2012, 27, 291–300. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, Y.; Wang, Y.; Shi, J. TA/Fe(III) Anti-Chloride Coating to Protect Concrete. J. Clean. Prod. 2020, 259, 120922. [Google Scholar] [CrossRef]
- Han, S.; Han, T.H.; Kim, J.H. Surface Coating Method for Cement-Based Materials to Improve Chloride Ion Penetration Resistance Using Amine-Based CO2 Solvent. J. CO2 Util. 2024, 83, 102823. [Google Scholar] [CrossRef]
- Kong, X.; Shen, Y.; Shi, J.; Zhang, N.; Kang, R.; Fu, Y. Superhydrophobic Concrete Coating with Excellent Mechanical Robustness and Anti-Corrosion Performances. Colloids Surf. A Physicochem. Eng. Asp. 2024, 684, 133157. [Google Scholar] [CrossRef]
- Luo, X.; Yin, H.; Li, T.; Ran, J.; Fu, X.; Hu, C. Fabrication of Robust Superhydrophobic Myristic Acid/ZrO2 Coating with Improved Anti-Icing and Anti-Corrosion for Concrete via a Two-Step Method. Colloids Surf. A Physicochem. Eng. Asp. 2024, 693, 134040. [Google Scholar] [CrossRef]
- Diamanti, M.V.; Brenna, A.; Bolzoni, F.; Berra, M.; Pastore, T.; Ormellese, M. Effect of Polymer Modified Cementitious Coatings on Water and Chloride Permeability in Concrete. Constr. Build. Mater. 2013, 49, 720–728. [Google Scholar] [CrossRef]
- Liang, C.; Zhao, P.; Zou, H.; Song, Q.; Hou, P.; Huang, Y.; Wang, S.; Lu, L. Introducing Fiber to Enhance the Mechanical Properties and Durability of Polymer-Modified Cement-Based Coating. Constr. Build. Mater. 2023, 372, 130842. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, H.; Phalé Zeze, A.L.; Liu, X.; Tao, M. Coating Performance, Durability and Anti-Corrosion Mechanism of Organic Modified Geopolymer Composite for Marine Concrete Protection. Cem. Concr. Compos. 2022, 129, 104495. [Google Scholar] [CrossRef]
- Wang, T.; Li, C.; Zheng, J.; Hackl, J.; Luan, Y.; Ishida, T.; Medepalli, S. Consideration of Coupling of Crack Development and Corrosion in Assessing the Reliability of Reinforced Concrete Beams Subjected to Bending. Reliab. Eng. Syst. Saf. 2023, 233, 109095. [Google Scholar] [CrossRef]
- Zhang, J.-Z.; McLoughlin, I.M.; Buenfeld, N.R. Modelling of Chloride Diffusion into Surface-Treated Concrete. Cem. Concr. Compos. 1998, 20, 253–261. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, J.-J.; Dai, J.-G. Analysis of Time-Dependent Chloride Diffusion in Surface-Treated Concrete Based on a Rapid Numerical Approach. Struct. Infrastruct. Eng. 2023, 19, 332–344. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, J.; Wang, Y.; Sun, X.; Wang, Y. Chloride Penetration of Surface-Coated Concrete: Review and Outlook. Materials 2024, 17, 4121. https://doi.org/10.3390/ma17164121
Liao J, Wang Y, Sun X, Wang Y. Chloride Penetration of Surface-Coated Concrete: Review and Outlook. Materials. 2024; 17(16):4121. https://doi.org/10.3390/ma17164121
Chicago/Turabian StyleLiao, Jing, Yuchi Wang, Xiping Sun, and Yuanzhan Wang. 2024. "Chloride Penetration of Surface-Coated Concrete: Review and Outlook" Materials 17, no. 16: 4121. https://doi.org/10.3390/ma17164121
APA StyleLiao, J., Wang, Y., Sun, X., & Wang, Y. (2024). Chloride Penetration of Surface-Coated Concrete: Review and Outlook. Materials, 17(16), 4121. https://doi.org/10.3390/ma17164121