Annealing Effect on Structural, Optical and Electrophysical Properties of ZnSe Nanocrystals Synthesized into SiO2/Si Ion Track Template
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formation of SiO2/Si Track Templates
2.2. Synthesis of ZnSe by Chemical Precipitation Method
2.3. Diagnostics of SiO2/Si Templates with Deposited Nanoprecipitates
3. Results
3.1. Raman Spectroscopy
3.2. Photoluminescence
3.3. Electrophysical Properties
3.4. Ab Initio Calculations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, W.T.; Yu, S.H. Synthesis of Semiconducting Functional Materials in Solution: From II-VI Semiconductor to Inorganic–Organic Hybrid Semiconductor Nanomaterials. Adv. Funct. Mater. 2008, 18, 3357–3366. [Google Scholar] [CrossRef]
- Lohar, G.M.; Dhaygude, H.D.; Patil, R.A.; Ma, Y.R.; Fulari, V.J. Studies of Properties of Fe2+ Doped ZnSe nano-Needles for Photoelectrochemical Cell Application. J. Mater. Sci. Mater. Electron. 2015, 26, 8904–8914. [Google Scholar] [CrossRef]
- Gupta, T.; Chauhan, R.P. Optical, dielectric and photocatalytic properties of ZnO, ZnSe, and ZnO/ZnSe photocatalyst. Opt. Mater. 2023, 142, 114045. [Google Scholar] [CrossRef]
- Zhang, X.W.; Tang, Z.J.; Hu, D.; Meng, D.; Jia, S.W. Nanoscale p-n Junctions Based on p-Type ZnSe Nanowires and Their Optoelectronic Applications. Mater. Lett. 2016, 168, 121–124. [Google Scholar] [CrossRef]
- Gupta, T.; Chauhan, R.P. Enhanced photocatalytic degradation of cationic dye using Cu-doped ZnSe. Opt. Mater. 2023, 135, 113295. [Google Scholar] [CrossRef]
- Kurtina, D.A.; Grafova, V.P.; Vasil’eva, I.S.; Maksimov, S.V.; Zaytsev, V.B.; Vasiliev, R.B. Induction of Chirality in Atomically Thin ZnSe and CdSe Nanoplatelets: Strengthening of Circular Dichroism via Different Coordination of Cysteine-Based Ligands on an Ultimate Thin Semiconductor Core. Materials 2023, 16, 1073. [Google Scholar] [CrossRef]
- Li, H.; Wang, B.; Li, L. Study on Raman spectra of zinc selenide nanopowders synthesized by hydrothermal method. J. Alloys Compd. 2010, 506, 327–330. [Google Scholar] [CrossRef]
- Makhavikou, M.; Komarov, F.; Parkhomenko, I.; Vlasukova, L.; Milchanin, O.; Żuk, J.; Wendler, E.; Romanov, I.; Korolik, O.; Togambayeva, A. Structure and optical properties of SiO2 films with ZnSe nanocrystals formed by ion implantation. Surf. Coat. Technol. 2018, 344, 596–600. [Google Scholar] [CrossRef]
- Gupta, P.; Solanki, R.G.; Patel, P.; Sujata, K.M.; Kumar, R.; Pandit, A. Enhanced Antibacterial and Photoluminescence Activities of ZnSe Nanostructures. ACS Omega 2023, 8, 13670–13679. [Google Scholar] [CrossRef]
- Jabri, S.; Amiri, G.; Sallet, V.; Souissi, A.; Meftah, A.; Galtier, P.; Oueslati, M. Study of the Optical Properties and Structure of ZnSe/ZnO Thin Films Grown by MOCVD with Varying Thicknesses. Physica B 2016, 489, 93–98. [Google Scholar] [CrossRef]
- Wang, C.R.; Wang, J.; Li, Q.; Yi, G.C. ZnSe-Si Bi-Coaxial Nanowire Heterostructures. Adv. Funct. Mater. 2005, 15, 1471–1477. [Google Scholar] [CrossRef]
- Zhang, X.T.; Liu, Z.; Leung, Y.P.; Li, Q.; Hark, S.K. Growth and Luminescence of Zinc-Blende-Structured ZnSe Nanowires by Metal-Organic Chemical Vapor Deposition. Appl. Phys. Lett. 2003, 83, 5533–5535. [Google Scholar] [CrossRef]
- Hong, H.S.; Kim, M.-S.; Byun, E.K.; Lee, Y.L. Facile synthesis and characterization of zinc selenide nanoparticles in aqueous solution at room temperature. J. Cryst. Growth 2020, 535, 125523. [Google Scholar] [CrossRef]
- Hu, Z.D.; Duan, X.F.; Gao, M.; Chen, Q.; Peng, L.M. ZnSe Nanobelts and Nanowires Synthesized by a Closed Space Vapor Transport Technique. J. Phys. Chem. C 2006, 111, 2987–2991. [Google Scholar] [CrossRef]
- Irmer, G.; Monaico, E.; Tiginyanu, I.M.; Gartner, G.; Ursaki, V.V.; Kolibaba, G.V.; Nedeoglo, D.D. Fröhlich Vibrational Modes in Porous ZnSe Studied by Raman Scattering and Fourier Transform Infrared Reflectance. J. Phys. D Appl. Phys. 2009, 42, 045405. [Google Scholar] [CrossRef]
- Suchikova, Y.; Lazarenko, A.; Kovachov, S.; Bohdanov, I. Nanostructures on the ZnSe Surface: Synthesis, Morphological and Photoluminescent Properties. Phys. Chem. Solid State 2021, 22, 614–620. [Google Scholar] [CrossRef]
- Bohdanov, I.; Suchikova, Y.; Kovachov, S.; Dauletbekova, A.; Usseinov, A.; Popov, A.I. Nanostructure Formation on ZnSe Crystal Surface by Electrochemical Etching. In Proceedings of the 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP), Odessa, Ukraine, 5–11 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Suchikova, Y.; Kovachov, S.; Bohdanov, I. Formation of oxide crystallites on the porous GaAs surface by electrochemical deposition. Nanomater. Nanotechnol. 2022, 12, 18479804221127307. [Google Scholar] [CrossRef]
- Bandarenka, H.; Redko, S.; Nenzi, P.; Balucani, M. Optimization of chemical displacement deposition of copper on porous silicon. J. Nanosci. Nanotechnol. 2012, 12, 8725–8731. [Google Scholar] [CrossRef]
- Redko, S.; Dolgiy, A.; Zhigulin, D.; Kholyavo, V.; Khinevich, N.; Zavatski, S.; Bandarenka, H. Fabrication and simulation of silver nanostructures on different types of porous silicon for surface enhanced Raman spectroscopy. Proc. SPIE 2019, 10912, 109121O. [Google Scholar]
- Dauletbekova, A.; Akylbekova, A.; Sarsekhan, G.; Usseinov, A.; Baimukhanov, Z.; Kozlovskiy, A.; Vlasukova, L.A.; Komarov, F.F.; Popov, A.I.; Akilbekov, A.T. Ion-Track Template Synthesis and Characterization of ZnSeO3 Nanocrystals. Crystals 2022, 12, 817. [Google Scholar] [CrossRef]
- Bundyukova, V.; Yakimchuk, D.; Shumskaya, E.; Smirnov, A.; Yarmolich, M.; Kaniukov, E. Post-processing of SiO2/Si ion-track template images for pores parameters analysis. Mater. Today Proc. 2019, 7, 828–834. [Google Scholar] [CrossRef]
- Akilbekov, A.; Balakhayeva, R.; Zdorovets, M.; Baymukhanov, Z.; Komarov, F.F.; Karim, K.; Popov, A.I.; Dauletbekova, A. Ion track template technology for fabrication of CdTe and CdO nanocrystals. Nucl. Inst. Methods Phys. Res. B 2020, 481, 30–34. [Google Scholar] [CrossRef]
- Giniyatova, S.; Dauletbekova, A.; Baimukhanov, Z.; Vlasukova, L.; Akilbekov, A.; Usseinov, A.; Kozlovskiy, A.; Akylbekova, A. Structure, electrical properties and luminescence of ZnO nanocrystals deposited in SiO2/Si track templates. Radiat. Meas. 2019, 125, 52–56. [Google Scholar] [CrossRef]
- Akilbekov, A.; Akylbekova, A.; Usseinov, A.; Kozlovskyi, A.; Baymukhanov, Z.; Giniyatova, S.; Popov, A.I.; Dauletbekova, A. Ion track template technique for fabrication of ZnSe2O5 nanocrystals. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2020, 476, 10–13. [Google Scholar] [CrossRef]
- Dauletbekova, A.; Vlasukova, L.; Baimukhanov, Z.; Akilbekov, A.; Kozlovskiy, A.; Giniyatova, S.; Seitbayev, A.; Usseinov, A.; Akylbekova, A. Synthesis of ZnO nanocrystals in SiO2/Si track template: Effect of electrodeposition parameters on structure. Phys. Status Solidi B 2019, 256, 1800408. [Google Scholar] [CrossRef]
- Balakhayeva, R.; Akilbekov, A.; Baimukhanov, Z.; Usseinov, A.; Giniyatova, S.; Zdorovets, M.; Vlasukova, L.; Popov, A.I.; Dauletbekova, A. CdTe Nanocrystal Synthesis in SiO2/Si Ion-Track Template: The Study of Electronic and Structural Properties. Phys. Status Solidi A 2021, 218, 2000231. [Google Scholar] [CrossRef]
- Balakhayeva, R.; Akilbekov, A.; Baimukhanov, Z.; Giniyatova, S.; Zdorovets, M.; Gorin, Y.; Popov, A.I.; Dauletbekova, A. Structure properties of CdTe nanocrystals created in SiO2/Si ion track templates. Surf. Coat. Technol. 2020, 401, 126269. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H.; Ma, Y.; Zhai, T. ZnSe nanostructures: Synthesis, properties and applications. Prog. Mater. Sci. 2016, 83, 472–535. [Google Scholar] [CrossRef]
- Avetissov, I.; Chang, K.; Zhavoronkov, N.; Davydov, A.; Mozhevitina, E.; Khomyakov, A.; Kobeleva, S.; Neustroev, S. Nonstoichiometry and luminescent properties of ZnSe crystals grown from melt and vapor. J. Crystal Growth. 2014, 401, 686–690. [Google Scholar] [CrossRef]
- Yadav, K.; Dwivedi, Y.; Jaggi, N. Effect of annealing temperature on the structural and optical properties of ZnSe nanoparticles. J. Mater. Sci. Mater. Electron. 2015, 26, 2198–2204. [Google Scholar] [CrossRef]
- Hile, D.D.; Swart, H.C.; Motloung, S.; Kroon, R.E.; Egbo, K.O.; Koao, L. Phase transformation on zinc selenide thin films deposited by photo-assisted chemical bath method: The effect of annealing temperature. Mater. Sci. Semicond. Process. 2020, 115, 105118. [Google Scholar] [CrossRef]
- Kozlovskiy, A.L.; Konuhova, M.; Shlimas, D.I.; Borgekov, D.B.; Zdorovets, M.V.; Shakirziyanov, R.I.; Popov, A.I. Study of the Effect of Nanostructured Grains on the Radiation Resistance of Zirconium Dioxide Ceramics During Gas Swelling under High-dose Irradiation with Helium Ions. ES Mater. Manuf. 2024, 24, 1165. [Google Scholar] [CrossRef]
- Inerbaev, T.; Akilbekov, A.; Kenbayev, D.; Dauletbekova, A.; Shalaev, A.; Polisadova, E.; Konuhova, M.; Piskunov, S.; Popov, A.I. Color Centers in BaFBr Crystals: Experimental Study and Theoretical Modeling. Materials 2024, 17, 3340. [Google Scholar] [CrossRef] [PubMed]
- Zdorovets, M.V.; Kozlovskiy, A.L.; Borgekov, D.B.; Shlimas, D.I. Influence of irradiation with heavy Kr15+ ions on the structural, optical and strength properties of BeO ceramic. J. Mater. Sci. Mater. Electron. 2021, 32, 15375–15385. [Google Scholar] [CrossRef]
- Kadyrzhanov, K.K.; Kozlovskiy, A.A.; Konuhova, M.; Popov, A.I.; Shlimas, D.D.; Borgekov, D.B. Determination of gamma radiation shielding efficiency by radiation-resistant composite ZrO2-Al2O3-TiO2-WO3-Nb2O5 ceramics. Opt. Mater. 2024, 154, 115752. [Google Scholar] [CrossRef]
- Kozlovskiy, A.L.; Shlimas, D.I.; Zdorovets, M.V.; Elsts, E.; Konuhova, M.; Popov, A.I. Investigation of the Effect of PbO Doping on Telluride Glass Ceramics as a Potential Material for Gamma Radiation Shielding. Materials 2023, 16, 2366. [Google Scholar] [CrossRef] [PubMed]
- Krylov, P.N.; Zakirova, R.M.; Kobziev, V.F.; Kostenkov, N.V.; Fedotova, I.V.; Khamidullin, R.R.; Dedyukhin, A.A. Structure and optical properties of layered ZnSe/SiO2 nanocomposites. J. Tech. Phys. 2016, 86, 1027–1031. [Google Scholar] [CrossRef]
- Sofronova, E.M.; Sofronov, D.S.; Starikov, V.V.; Kurbatov, D.I.; Opanasiuk, A.S.; Mateychenko, P.V. Preparation and optical properties of ZnSe films. J. Nano-Ta Electron Phys. 2012, 4, 04016. [Google Scholar]
- Continenza, A.; Massidda, S.; Freeman, A.J. Structural and electronic properties of bulk ZnSe. Phys. Rev. B 1988, 38, 12996. [Google Scholar] [CrossRef]
- Schreder, B.; Materny, A.; Kiefer, W.; Bacher, G.; Forchel, A.; Landwehr, G. Resonance Raman spectroscopy on strain relaxed CdZnSe/ZnSe quantum wires. J. Raman Spectrosc. 2000, 31, 959–963. [Google Scholar] [CrossRef]
- Lermann, G.; Bischof, T.; Materny, A.; Kiefer, W.; Kummell, T.; Bacher, G.; Forchell, A.; Landwehr, G.J. Resonant micro-Raman investigations of the ZnSe–LO splitting in II–VI semiconductor quantum wires. Appl. Phys. 1997, 81, 1446–1450. [Google Scholar] [CrossRef]
- Sarigiannis, D.; Pack, J.D.; Kioseoglou, G.; Petrou, A.; Mountziaris, T.J. Characterization of vapor-phase-grown ZnSe nanoparticlesppl. Appl. Phys. Lett. 2002, 80, 4024–4026. [Google Scholar] [CrossRef]
- Mountziaris, T.J.; Pack, J.D.; Stoltz, S.; Yu, W.Y.; Petrou, A.; Mattocks, P.G. Metalorganic vapor phase epitaxy and characterization of Zn1−xFexSe films. Appl. Phys. Lett. 1996, 68, 2270. [Google Scholar] [CrossRef]
- Gong, K.; Kelley, D.F.; Kelley, A.M. Resonance and Anne Myers Kelley. Raman Spectroscopy and Electron−Phonon Coupling in Zinc Selenide Quantum Dots. J. Phys. Chem. C 2016, 120, 29533–29539. [Google Scholar] [CrossRef]
- Aminov, U.A.; Galaev, A.A.; Georgobiani, A.N.; Eltazarov, B.T. Photoluminescence of zinc selenide ion-implanted with oxygen. Bull. Lebedev Phys. Inst. 1996, 11, 18–22. [Google Scholar]
- Kazmersky, L.L. Polycrystalline and Amorphous Thin Films and Devices, 1st ed.; Academic Press: New York, NY, USA, 1980; pp. 135–152. [Google Scholar]
- Yamaguchi, M.; Yamamoto, A.; Kondo, M. Photoluminescence of ZnSe single crystals diffused with a group-III element. J. Appl. Phys. 1977, 48, 5237–5244. [Google Scholar] [CrossRef]
- Gryaznov, D.; Blokhin, E.; Sorokine, A.; Kotomin, E.A.; Evarestov, R.A.; Bussmann-Holder, A.; Maier, J. A Comparative Ab Initio Thermodynamic Study of Oxygen Vacancies in ZnO and SrTiO3: Emphasis on Phonon Contribution. J. Phys. Chem. C 2013, 117, 13776–13784. [Google Scholar] [CrossRef]
- Teke, A.; Özgür, Ü.; Doğan, S.; Gu, X.; Morkoç, H.; Nemeth, B.; Nause, J.; Everitt, H.O. Excitonic fine structure and recombination dynamics in single-crystalline. Phys. Rev. B 2004, 70, 195207. [Google Scholar] [CrossRef]
- Hayashi, M.; Iwano, T.; Nasu, H.; Kamiya, K.; Sugimoto, N.; Hirao, K. Quantum size effect of ZnSe microcrystal doped SiO2 glass thin films prepared by RF-sputtering method. J. Mater. Rec. 1997, 12, 2552–2558. [Google Scholar] [CrossRef]
- Agrawal, B.K.; Yasav, P.S.; Agrawal, S. Ab initio calculation of the electronic, structural, and dynamical properties of Zn-based semiconductors. Phys. Rev. B 1994, 50, 14881–14887. [Google Scholar] [CrossRef]
- Lee, G.-D.; Lee, M.H.; Ihm, J. Role of d electrons in the zinc-blende semiconductors ZnS, ZnSe, and ZnTe. Phys. Rev. B 1995, 52, 1459–1462. [Google Scholar] [CrossRef] [PubMed]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef]
- Behloul, M.; Salmani, E.; Ez-Zahraouy, H.; Benyoussef, A. Theoretical investigation of electronic, magnetic and optical properties of ZnSe doped TM and co-doped with MnTM (TM: Fe, Cr, Co): AB-initio study. J. Magn. Magn. Mater. 2016, 419, 233–239. [Google Scholar] [CrossRef]
- Benstaali, W.; Bentata, S.; Abbad, A.; Belaidi, A. Ab-initio study of magnetic, electronic and optical properties of ZnSe doped-transition metals. Mater. Sci. Semicond. Process. 2013, 16, 231–237. [Google Scholar] [CrossRef]
- Marple, D.T.F. Electron Effective Mass in ZnSe. J. Appl. Phys. 1964, 35, 1879–1882. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Ming, H.; Quan, L. Obtaining the effective electron mass from valence electron energy-loss spectroscopy. Solid State Commun. 2009, 149, 1856–1859. [Google Scholar] [CrossRef]
- Freeouf, J.L. Far-ultraviolet reflectance of II-VI compounds and correlation with the penn—Phillips gap. Phys. Rev. B 1973, 7, 3810. [Google Scholar] [CrossRef]
- Morkoc, B.H.; Strite, S.; Gao, G.B.; Lin, M.E.; Sverdlov, B.; Burns, M. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 1994, 76, 1363–1398. [Google Scholar] [CrossRef]
- Cardona, M. Fundamental Reflectivity Spectrum of Semiconductors with Zinc-Blende Structure. J. Appl. Phys. 1961, 32, 2151–2155. [Google Scholar] [CrossRef]
- Ves, S.; Strössner, K.; Christensen, N.E.; Kim, C.K.; Cardona, M. Pressure dependence of the lowest direct absorption edge of ZnSe. Solid State Commun. 1985, 56, 479–483. [Google Scholar] [CrossRef]
- Matatagui, E.; Thompson, A.G.; Cardona, M. Thermoreflectance in semiconductors. Phys. Rev. 1968, 176, 950. [Google Scholar] [CrossRef]
- Jaszczyn-Kopec, P.; Canny, B.; Syfosse, G.; Hamel, G. Excitation spectra of self-activated luminescence in ZnSe crystals under pressure. Solid State Commun. 1984, 49, 795–798. [Google Scholar] [CrossRef]
- Hite, G.E.; Marple, D.T.F.; Aven, M.; Segall, B. Excitons and the absorption edge in ZnSe. Phys. Rev. 1967, 156, 850. [Google Scholar] [CrossRef]
Property | Our Results | Other | ||
---|---|---|---|---|
Before annealing | After annealing | Calculated by DFT (HSE06) | Continenza et al. [40] | |
Type of structure | Cubic | Cubic + hexagonal ZnO | – | Cubic |
Space group | 216 (F-43m) | 216 (F-43m), 186 (P63mc) | – | 216 (F-43m) |
L, nm | 25 | 25.7; 32.3 | – | – |
Phase content, % | 100 | 78.8; 21.2 | – | – |
a, Å | 5.59 | 5.63; a = 3.23, c = 5.20 | 5.71 | 5.668 |
V, Å3 | 174.87 | 174.88; 49.27 | 186.25 | – |
ρ, g/cm3 | 5.48 | 5.36; 5.65 | 5.13 | 5.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akylbekova, A.; Dauletbekova, A.; Baimukhanov, Z.; Vlasukova, L.A.; Usseinov, A.; Saduova, N.; Akilbekov, A.T.; Pankratov, V.A.; Popov, A.I. Annealing Effect on Structural, Optical and Electrophysical Properties of ZnSe Nanocrystals Synthesized into SiO2/Si Ion Track Template. Materials 2024, 17, 4149. https://doi.org/10.3390/ma17164149
Akylbekova A, Dauletbekova A, Baimukhanov Z, Vlasukova LA, Usseinov A, Saduova N, Akilbekov AT, Pankratov VA, Popov AI. Annealing Effect on Structural, Optical and Electrophysical Properties of ZnSe Nanocrystals Synthesized into SiO2/Si Ion Track Template. Materials. 2024; 17(16):4149. https://doi.org/10.3390/ma17164149
Chicago/Turabian StyleAkylbekova, Aiman, Alma Dauletbekova, Zein Baimukhanov, Liudmila A. Vlasukova, Abay Usseinov, Nuray Saduova, Abdirash T. Akilbekov, Vladimir A. Pankratov, and Anatoli I. Popov. 2024. "Annealing Effect on Structural, Optical and Electrophysical Properties of ZnSe Nanocrystals Synthesized into SiO2/Si Ion Track Template" Materials 17, no. 16: 4149. https://doi.org/10.3390/ma17164149
APA StyleAkylbekova, A., Dauletbekova, A., Baimukhanov, Z., Vlasukova, L. A., Usseinov, A., Saduova, N., Akilbekov, A. T., Pankratov, V. A., & Popov, A. I. (2024). Annealing Effect on Structural, Optical and Electrophysical Properties of ZnSe Nanocrystals Synthesized into SiO2/Si Ion Track Template. Materials, 17(16), 4149. https://doi.org/10.3390/ma17164149