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Abstract: This study compares the structural, microstructural, thermal, and mechanical properties of
geopolymer pastes (GPs) created through traditional methods and those derived from ready-to-use
powders for geopolymer (RUPG) materials. The metakaolin (MK) precursor was activated using a
sodium silicate solution or CaO and MOH (where M is Na or K). Various ratios of precursor/activator
and Na2SiO3 or CaO/MOH were tested to determine the optimal combination. For RUPG, the
MK precursor was activated by replacing the sodium silicate solution with quicklime. Metakaolin,
alkaline hydroxide, and quicklime powders were mixed at different CaO ratios (wt%) and subjected
to extensive ball milling to produce RUPG. The RUPG was then hydrated, molded, and cured at
20 ◦C and 50% relative humidity until testing. Analytical methods were used to characterize the raw
and synthesized materials. Classic geopolymers (CGPs) activated with quicklime burst after one hour
of molding. The results indicated slight amorphization of GP compared to raw MK, as confirmed
by X-ray diffraction analysis, showing N(K)-A-S-H in CGP and N(K)-A-S-H with calcium silicate
hydrate (C-S-H/C-A-S-H) in RUPG. The compressive strength of MK-based geopolymers reached
31.45 MPa and 34.92 MPa for GP and CGP, respectively, after 28 days of curing.

Keywords: metakaolin; geopolymer; mechanosynthesis; quicklime; compressive strength

1. Introduction

Geopolymer is a type of inorganic polymer made from the reaction of an aluminosili-
cate source material with an alkaline activator solution. Geopolymerization is the process
by which these materials are transformed into solid, durable materials with properties
similar to traditional cement [1].

Geopolymers have several advantages, including high strength and durability, low
permeability, and resistance to chemical attack. They also have a lower carbon footprint
than cement-based binders, as they require less energy and do not produce as much carbon
dioxide during production [2–4]. Therefore, they can be used in a variety of applications,
including construction materials, coatings, and composites. They have the potential to
be a sustainable alternative to traditional cement-based concrete and can help reduce the
environmental impact of the construction industry [5].

While geopolymer technology offers several advantages over traditional cement-based
materials, there are also some limitations to their use, such as the following:

• The complexity of production: The process of elaboration of geopolymer materials can
be complex and requires specialized knowledge and equipment [6,7].
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• Environmental concerns: While geopolymer materials have lower greenhouse gas
emissions than traditional cement-based materials, the production of the alkaline
activator solution can still have an environmental impact and can cause significant
health risks [6,7].

For these reasons, the use of geopolymers is still limited to prefabricated applications.
The best way to achieve the large-scale application of geopolymers is to propose new
manufacturing methods.

Researchers have implemented new ways to produce geopolymers from a ready-
to-use precursor powder that can be mixed directly with water like OPC. The first dry
mix alkali-activated binder was proposed in 1940 by Purdon et al., who mixed slag and
solid sodium hydroxide with water to prepare a mortar mixture [8]. After that (in the
1980s), Heitzmann et al. [9] patented a dry mixture of a binder, composed of different types
of aluminosilicate (metakaolin, slag, fly ash, calcined clay), with sources of silicate and
potassium hydroxide blended with Portland cement or with a combination of Portland
cement and fly ash to provide a curable composition. Kolousek et al. [10] calcined low-grade
kaolin together with alkali hydroxides at 550 ◦C for 4 h and then pulverized them with water
to produce one-part geopolymers. However, the one-part geopolymers exhibited extremely
low compressive strength. Nematollahi et al. [11,12] developed a sustainable ambient
temperature-cured ‘dry-mix’ geopolymer composite. They used a mix of fly ash and two
distinct types of slag, which were activated using different solid activators, specifically,
different forms of dry sodium silicates in conjunction with sodium hydroxide. To produce
the one-part geopolymer matrix, the fly ash, slag, and solid activators—each in powdered
form—were first introduced into a Hobart mixer and dry-mixed for approximately three
minutes. Following this, water was gradually added to the mixture, and the blending
process was continued for an additional eight minutes.

Among the one-part formulation processes, mechanosynthesis should be mentioned.
Mechanosynthesis is defined as a “solventless” method of high-energy ball milling, char-
acterized by the motion of repeated soldering/desoldering of the powder mixture. This
motion allows one to obtain metastable crystalline or nanocrystalline phases and convert
crystalline phases into amorphous phases and vice versa [13,14]. Mechanosynthesis, or
high-energy milling, has been widely used in construction. Nevertheless, it has been tested
very little in geopolymer materials. This technique is widely used to increase the reactivity
of aluminosilicate precursors and has been effective in improving the mechanical proper-
ties of geopolymers obtained from these precursors, even with poor-quality ones [15–17].
This would expand the list of aluminosilicate precursors that can be recovered for the
production of geopolymer materials. Mechanosynthesis can also reduce the size of the
aluminosilicate precursors and combine them with the solid alkaline activators to form
precursor powders with geopolymers (pre-geopolymer powders) that are ready to use,
storable, easy to transport, and only need to be mixed with water.

Kumar and Kumar [15] studied the effect of the mechanical activation of fly ash
on the reaction, structure, and properties of the resulting geopolymer at ambient and
elevated (60 ◦C) temperatures using a isothermal conduction calorimeter. The mechanical
activation of fly ash was carried out in laboratory-size eccentric vibrating mills for different
milling times (from 5 to 90 min). The authors concluded that under both the conditions
(ambient and 60 ◦C), mechanical activation enhanced the rate and decreased the time of
reaction. Mucsi et al. [16] compared different milling techniques (drum-ball, vibratory, and
agitated mills) to improve the fly ash’s reactivity; they were used as precursors for the
production of geopolymers. The use of the agitator mill resulted in an elevated specific
surface area of fly ash and the increase in geopolymer compressive strength, compared to
the binders elaborated with the unmilled fly ash. Xia and Sanjayan [17] milled activators
(anhydrous sodium and metasilicate beads) in a planetary ball mill for 5 min before mixing
them with a slag aluminosilicate source and fine sand in a Hobart mixer to obtain a
homogeneous concrete mixture. The compressive strength reached 16 MPa after 7 days
of curing. Zerzouri et al. [6,7] studied the feasibility of preparing a geopolymer precursor
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powder (pre-geopolymer powder (PGP)) using the mechanosynthesis process. A dry
mixture of aluminosilicate source (fly ash or blast furnace slag) and alkaline activators with
different Na2SiO3/NaOH mass ratios were milled together using planetary ball milling.
The results showed that hydrated PGP binders present a similar structure to the classic
geopolymers. Testing of mechanical properties showed that mechanosynthesis could
improve flexural and compressive strength [6].

Metakaolin is a natural material that is rich in silica and alumina. It is obtained
by the calcination of crude kaolin, which contains kaolinite as the main mineral [18–20].
Metakaolin has both an amorphous character, identified in X-ray diffraction by the presence
of a centered halo, and a crystalline character, depicted by the presence of crystalline phases
such as quartz, anatase, muscovite, kaolinite, etc. It is a material with a high reactivity:
its reaction with alkaline solutions leads to the formation of a geopolymer with high
mechanical performance [18–20]. Metakaolin stands out as the most frequently employed
aluminosilicate precursor for geopolymer materials in the existing literature. The primary
challenge associated with the use of metakaolin aluminosilicate is related to its cost, which
come from its distinct manufacturing process compared to by-products like fly ash [21,22].
In this research, we addressed the cost challenge by utilizing flash-calcined metakaolin.
R. San Nicolas et al. [22] conducted a study comparing traditional calcined metakaolin
with flash-calcined metakaolin, demonstrating that the flash calcination process induces
certain physical modifications and imparts a specific composition, resulting in a relatively
reasonable price [21,22].

In the geopolymerization reaction, sodium/potassium hydroxide is considered as the
primary activator by providing the alkalinity needed for the initiation of the geopolymer-
ization reaction. Sodium silicate, on the other hand, supports the reaction by supplying
additional silica and alumina ions, contributing to the overall formation and stability of the
geopolymer structure [23,24].

The use of CaO as activator was proved by many researchers to be advantageous for
geopolymers with a room temperature curing condition and has an especially significant
influence on the mechanical properties of metakaolin-based geopolymers. The added CaO
can react with the silica (in the metakaolin) to form C-A-S-H/C-S-H hydrates. The formation
of such hydrates might cause a water reduction in the alkaline medium, resulting in a higher
alkalinity medium, therefore enhancing the dissolution of the Si and Al species [25,26].

In this study, the mechanosynthesis technique was employed to produce ready-to-use
metakaolin-based powders that are safe for health and easy to store and transport. This
work aims to elaborate ready-to-use powders for geopolymers (RUPGs) on metakaolin,
activated by a mixture of alkaline hydroxides and quicklime and to investigate their
physico-chemical and mechanical properties before and after hydration.

2. Materials and Methods
2.1. Materials

The metakaolin (MK) used in this work came from Argeco® (Argeco Développement
Usine de production Rue Fournie Gorre 47500 FUMEL, France). It was obtained through
the flash calcination of kaolin. Argeco metakaolin is characterized by its pinkish color and
its high content of SiO2 and Al2O3 (Table 1).

Table 1. Chemical composition of the used raw MK.

SiO2
(%)

Al2O3
(%)

Fe2O3
(%)

CaO
(%)

SO3
(%)

K2O
(%)

TiO2
(%)

P2O5
(%)

SiO2/Al2O3
(%)

MK 62.62 29.03 3.19 1.44 0.43 0.50 1.65 0.64 2.16

Two types of alkali hydroxide were selected: sodium hydroxide in the form of mi-
crobeads with a purity of 99%, distributed by Asserdis(39 bis rue du Moulin Rouge 10150,
Charmont-sous-Barbuise, France), and potassium hydroxide obtained from Sigma Aldrich
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(Sigma Aldrich Chimie 80 Rue de Luzais, 38070 Saint-Quentin-Fallavier, France) in the
form of white pellets with a purity of 99%.

Sodium metasilicate (meta-Si) microbeads with about 40.3% SiO2 and 56.10% Na2O
and sodium silicate solution with about 68.27% SiO2 and 28.20% Na2O were distributed
by Asserdis.

Quicklime was used instead of alkaline silicates. It was supplied by Asserdis and is
characterized by a beige color and a purity of 93%.

2.2. Methods

In this study, a Retsch PM 400 planetary ball mill (Retsch France Verder S.A.R.L.8 Allée
Rosa Luxembourg Immeuble Arizona 95610 Eragny sur Oise France) with 500 mL steel jars
was utilized. To prepare RUPG samples, 250 g of powder was added to each jar, resulting
in a ball-to-powder weight ratio of approximately 3.6, selected based on previous research
for optimal results with the specific material used. This setup aimed to achieve a uniform
and fine powder suitable for subsequent analysis.

Sodium metasilicate caused pre-geopolymer powders to stick in the jars after 3 min of
grinding, leading to the replacement of metasilicate with quicklime, in combination with
alkaline hydroxide as activators. Two types of alkaline hydroxide, KOH and NaOH, were
tested, along with three CaO/MOH ratios (M = K or Na) to find the optimal formula.

To obtain RUPG (Figure 1), the metakaolin (MK) precursor was mixed with solid-state
alkaline activator and quicklime in jars, following the parameters listed in Table 2. The
mixture was then milled to produce RUPG. The mass ratio R1 of MK/alkali-activating mix
(AA) was kept constant at 4, while the mass ratio R2 of CaO/NaOH or CaO/KOH varied
from 0.5 to 1.5. Milling conditions were set to 400 rpm for 3 min. Samples were labeled
according to the following convention: RUPG-MK-CN (CaO/NaOH); CK (CaO/KOH); R2
(ratio): Milling time (Mt); Milling speed (Ms).
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Table 2. Mix design and milling parameters.

Sample ID R1 CaO/MOH Mt (min) Ball/Powder Ms (rpm)

RUPG-MK-CM1.5 4 1.5 3 4 400
RUPG-MK-CM1 4 1 3 4 400

RUPG-MK-CM0.5 4 0.5 3 4 400
M = K or Na.
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To prepare the geopolymer pastes, the synthesized RUPG was hydrated with a fixed
water-to-solid ratio of 0.25 (wt), determined after conducting several water demand tests.
The resulting geopolymer paste (GP) was molded into rectangular polystyrene molds
measuring 4 cm × 4 cm × 16 cm. The paste was cured at 20 ◦C and 50% relative humidity
until the day of testing. Physicochemical properties were evaluated after 7 days of curing,
while mechanical properties were assessed after 7 and 28 days of curing.

The paste produced using the classic method with quicklime exhibited immediate
swelling starting from the initial time point (t0) and continued to expand significantly
during the first few minutes of drying. This behavior was observed consistently across all
tested ratios, as illustrated in Figure 2. Therefore, classic geopolymers based on MK with
different ratios of sodium silicate solution (R1 = Na2SiO3/(NaOH or KOH) (2.5 and 3.5) and
R2 = Metakaolin/Alkaline activator (2.5 and 3.5)) were made, labeled as CGP-MK-R1-R2.
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Figure 2. Images of traditional geopolymer pastes synthesized from metakaolin, activated by quick-
lime and sodium hydroxide (NaOH), showing surface morphology and texture.

Various analytical methods were employed to characterize both the raw and synthe-
sized materials. The geopolymer pastes were analyzed after being crushed at 7 days of
curing. Pieces of the geopolymer materials were first crushed and then sieved to a particle
size of 200 µm prior to analysis.

The particle size distribution was determined using a laser particle analyzer (LS 13
320 XR, Beckman Coulter, Brea, CA, USA). The chemical composition was analyzed by
X-ray fluorescence spectrometry using an S2 Ranger model instrument (Bruker, Billerica,
MA, USA) in pellet mode.

To determine the mineralogy, X-ray diffraction (XRD) was utilized with a D2 Phaser
diffractometer (Bruker) equipped with a Cu-Kα copper X-ray tube (λ = 1.54 Å). The samples
were scanned at an angular range between 5 and 60◦ (2θ), with a step size of 0.02 and a time
interval of 0.1 s. The software DIFFRAC.EVATM, including the ICDD PDF4 database, was
used for analysis. The Rietveld method was used to quantify the mineral phases identified
by XRD and the sample’s amorphization rate, using Bruker’s Topas V6 software.

Thermal characteristics were assessed using TG analysis with a TGA/DSC 2 instru-
ment (Mettler–Toledo, Columbus, OH, USA) at a heating rate of 20 ◦C/min, ranging from
25 ◦C to 1000 ◦C, with nitrogen as the purge gas at a flow rate of 40 mL/min.

Chemical bonds were determined using Attenuated Total Reflectance Fourier Trans-
form Infrared (ATR-FTIR) spectrometry with a Spectrum Two instrument (Perkin Elmer,
Waltham, MA, USA). Powders or crushed solid pastes were placed on a diamond crystal for
analysis, and spectra were collected in the range of 4000–400 cm−1, with 4 cm−1 resolution
and 64 scans.

The compressive strength of the geopolymer pastes was measured using a Syntax
electromechanical press (3R) with a maximum force of 300 kN after 7 and 28 days of curing.
Scanning electron microscopy observations were conducted in the laboratory of Sorbonne
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University, UPMC campus, using a Gemini microscope model SUPRA 55VP (Zeiss, Jena,
Germany) coupled to an energy-dispersive analysis probe (EDS).

3. Results and Discussions
3.1. Ready to Use Powders

The particle size distributions of the raw metakaolin (MK) and MK-RUPG powders
are presented in Figure 3. Raw MK exhibits a wide particle size distribution ranging from
0.4 to 310 µm. During the milling process of the different MK-based RUPG samples, new
peaks appear between 20 and 70 µm, which are attributed to the high-energy milling
process, allowing the mixture of metakaolin with the alkaline activators. This phenomenon
is possibly due to the agglomeration of particles, which is related to the cold-welding
effect. These findings are consistent with the results obtained by Bouchenafa et al. [27],
who performed high-energy milling of fly ash using a planetary ball mill. The authors
pointed out the emergence of a new zone after 15 min of milling and explained it as the
agglomeration of fine particles during the milling process.
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Generally, the effect of the mechanosynthesis process on particle performance can
be summarized in three stages. In the first stage, particles rearrange and stack, sliding
past each other with minimal deformation and fracture, resulting in a reduction in particle
size and shape modification. In the second stage, particles undergo elastic and plastic
deformations, and the cold-welding phenomenon is observed, resulting in agglomeration
and an increase in the particle size of the powder. In the last stage, particles are fractured,
leading to further deformation and fragmentation and ultimately reducing the particle
size [27–29]. It is important to note that the milling process steps depend directly on the
size of the initial powders. If the particle size is less than 5 µm, the grinding process can
initially promote agglomeration, resulting in the formation of coarse particles that can
undergo the necessary deformations for the take-off phenomenon. Typically, the finished
product consists of a combination of fine, medium, and coarse particles, where further
grinding has no significant effect on the particle size. At this stage, a stationary state of
milling is reached [27–29]. In this study, planetary ball mills were used, and depending on
the milling conditions and the elements placed in the vials, three distinct motion types of
the milling balls were characterized: cascading, cataracting, and rolling. In the cascading
regime, the milling balls are carried along by the vial’s wall and tumble over each other,
moving from the top of the bulk to its base. For the cataracting regime, balls detaching
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from the wall and impact the treated material or the opposite wall with high intensity. The
rolling regime or centrifuging balls are aligned to the wall rotation with almost no relative
velocity, and milling thus becomes less efficient [30].

In Figure 4, the X-ray diffraction (XRD) pattern of both raw metakaolin (MK) and
RUPG are presented. Raw MK mainly consists of quartz and some traces of kaolinite. In
the RUPG, we observe a slight amorphization, indicated by a decrease in intensities and
broadening of the quartz peaks, which is attributed to the effect of mechanosynthesis [27,31].
The amorphization is further confirmed through quantification using the Rietveld method
(Figure 5). The sample with a CaO/KOH ratio of 0.5 exhibits an optimum amorphization
rate of 61.08%.
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The infrared spectra analysis of metakaolin (depicted in Figure 6) reveals three main
bands at 1049, 778, and 692 cm−1. The band located at 1049 cm−1 corresponds to the
asymmetric stretching vibration of Si-O-T bonds, where T stands for Si or Al [32]. The two
bands observed at 778 and 692 cm−1 are associated with the deformation vibrations of the
Si-O bonds from quartz [33].
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Remarkably, all pre-geopolymer powders show a shift in the band related to asymmet-
ric stretching vibration of Si-O-T (1049 cm−1) bonds toward lower wavenumbers, leading
to the emergence of the bands around 1030–1032 cm−1 that are commonly reported as
characteristic bands of Si-O asymmetric stretching vibrations [34]. This shift decreases with
an increase in the CaO/(NaOH or KOH) ratio, reflecting the decrease in the alkalinity of
the activator mixture [35].

Furthermore, the bands observed around 930 cm−1 indicate the presence of Si-O-Ca
bond vibrations [36]. The interval of 1350–1450 cm−1 contains bands that can be attributed
to the vibration modes of the C–O group, resulting from the carbonation reaction between
the unreacted CaO and the CO2 in the atmosphere [37,38]. Additionally, the signals present
in the 692–702 cm−1 region may be attributed to Si-O-Si vibrations [34].

3.2. Comparative Study of the Properties of Geopolymer Pastes Produced from RUPG and
Classic Geopolymers

XRD patterns of geopolymer pastes manufactured using the classic method (Figure 7)
show a shift in the halo observed in the raw MK between (20◦ and 30◦) to higher 2θ value
(25◦ to 35◦) whatever the activator nature (KOH Figure 7a, or NaOH Figure 7b). This halo
shift is characteristic of the formation N(K)-A-S-H geopolymer product [39,40].

XRD patterns in Figure 8 showed that the produced geopolymer pastes from RUPG
kept the same structure as the raw MK. We note the appearance of C-S-H and C-A-S-H,
following the alkaline activation reaction with quicklime. The C-S-H peaks are more visible
with higher CaO/MOH ratios. Samples with KOH show the appearance of C-A-S-H as well.
A decrease in the peak’s intensities corresponding to quartz is also noted; this indicates an
amorphization under the effect of milling.
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Figure 8. XRD diffractograms of raw metakaolin and geopolymer pastes based on RUPG activated
with (a) NaOH and (b) KOH (K: kaolinite (PDF 01-078-2110), Q: quartz (PDF 00-005-0490), CSH:
calcium silicate hydrate (PDF 00-003-0548), CASH: calcium aluminum silicate hydrate (PDF
00-015-0171)).
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Figure 9 shows TGA curves of raw MK and geopolymer pastes. Raw MK (Figure 9)
presents two identified minor mass loss areas, the first one between 50 and 100 ◦C and the
second one between 550◦ and 680 ◦C, corresponding to the evaporation of water and the
dihydroxylation of the residual kaolinite present in the MK (as shown by the XRD analysis),
respectively [20,41,42].
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Figure 9. Thermograms of raw metakaolin, geopolymer pastes based on RUPG, and classic geopoly-
mer pastes.

In all the samples of geopolymer pastes, the predominant weight loss was observed at
temperatures below 200 ◦C across all specimens. This phenomenon primarily resulted from
the swift migration of interstitial water towards the surface, followed by its subsequent
evaporation [43]. Moreover, a progressive reduction in mass (approximately 1 to 2%) is
observed at a slow rate between 350◦ and 650 ◦C. This phenomenon is likely associated with
the dihydroxylation process and the establishment of new T-O-T linkages, contributing
to the compaction of all matrices [43]. During this phase, the minor mass loss is probably
attributed to the evaporation of the chemically bonded water, the degradation of the
N(K)-A-S-H gel, and hydroxyl groups in the geopolymer matrix. [43–45].

Geopolymer pastes derived from RUPG using a NaOH activator exhibit an additional
mass loss within the range of 180–250 ◦C, a characteristic commonly associated with C-S-H
dehydration, as documented in the literature [46–49]. Conversely, geopolymer pastes from
RUPG with KOH display a more substantial mass loss at 110 ◦C, potentially attributable to
the presence of C-A-S-H in this context [50,51].

As noticed in the pre-geopolymer powder spectra, the main band of raw MK lo-
cated around 1049 cm−1 moved towards lower wavenumbers. For the classic geopolymer
(Figure 10a), the main band moved from 1049 cm−1 to 930 cm−1 after 13 h of geopoly-
merization reaction. After hydration (Figures 10 and 11a,b), this band continues to move
toward lower wavenumbers. This characteristic shift of the polycondensation reaction,
accompanied by a decrease in the intensity of the bands characteristic of the H-O-H groups
observed at 1640–1560 cm−1 and of the Si-O-H groups at 3200 cm−1, is representative of the
formation of a geopolymer network. The displacement is less important for samples with a
high CaO content. The GP-MK-CK1.5 sample (Figure 11b) shows a different behavior. The
main MK band moves from 1049 cm−1 to 1019 cm−1, then moves in the opposite direction
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starting at 60 min and stabilizes around 1030 cm−1. This well-known band characterizes the
C-S-H entities [52]. GP-MK-CK0.5 sample shows the largest displacement in the series of
MK and CaO samples, with a maximum displacement of 1049 to 960 cm−1. We also note the
appearance of bands relating to carbonates in the 1380–1430 cm−1 region, corresponding to
O-C-O [36,53].
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Materials 2024, 17, 4151 12 of 19
Materials 2024, 17, x FOR PEER REVIEW 13 of 21 
 

 

4000 3500 3000 2500 2000 1500 1000 500
Wavenumber (cm-1)

 t=700min
 t=600min
 t=500min
 t=400min
 t=300min
 t=200min
 t=100min
 t=60min
 t=50min
 t=40min
 t=30min
 t=20min
 t=10min
 t=0

 
4000 3500 3000 2500 2000 1500 1000 500

Wavenumber (cm-1)

 t=700min
 t=600min
 t=500min
 t=400min
 t=300min
 t=200min
 t=100min
 t=60min
 t=50min
 t=40min
 t=30min
 t=20min
 t=10min
 t=0 min

 
(f) (g) 

Figure 10. In situ ATR-FTIR spectra of (a) CGP-MK-K2.5-3.5, (b) GP-MK-CN0.5, (c) GP-MK-CK0.5, 
(d) GP-MK-CN1, (e) GP-MK-CK1, (f) GP-MK-CN1.5, (g) GP-MK-CK1.5. 

0 50 100 150 200 250
920

940

960

980

1000

1020

1040

 GP-MK-CN0.5
 GP-MK-CN1
 GP-MK-CN1.5

Si
-O

-T
 p

os
iti

on
 (c

m
-1

)

Time (min)  
0 50 100 150 200 250

960

970

980

990

1000

1010

1020

1030

1040
Si

-O
-T

 p
os

iti
on

 (c
m

-1
)

Time (min)

 GP-MK-CK0.5
 GP-MK-CK1
 GP-MK-CK1.5

 
(a) (b) 

Figure 11. Shift in the Si-O-T band position from IR spectra versus time for hydrated RUPG activated 
with NaOH (a) and KOH (b). 

Observation of raw MK (Figure 12a by electron microscopy reveals a fairly diversi-
fied morphology that is very heterogeneous and mostly small in size. With a higher mag-
nification, a microstructure is observed in the form of sheets glued together. These obser-
vations are in agreement with what is reported in the literature on the microstructure of 
MK [55]. 
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692–702  Si-O-Si vibration 

MK-based geopolymer pastes show the appearance of a continuous dense structure 
characteristic of geopolymer gels. GP-MK-CK0.5 sample (Figure 12b) shows in EDS a large 
percentage of the K element, thus indicating the formation of a K-A-S-H network charac-
teristic of potassium-based geopolymers. A ratio of (Ca/Si) of 0.8 with a low presence of 

Figure 10. In situ ATR-FTIR spectra of (a) CGP-MK-K2.5-3.5, (b) GP-MK-CN0.5, (c) GP-MK-CK0.5,
(d) GP-MK-CN1, (e) GP-MK-CK1, (f) GP-MK-CN1.5, (g) GP-MK-CK1.5.
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This result agrees well with the one found by the XRD technique, indicating the
coexistence of geopolymer network and C-S-H/C-A-S-H networks. Yip et al. [54] were the
first to consider the coexistence of the compounds C-A-S-H and N-A-S-H, by conducting
an alkali-activation study of metakaolin and blast-furnace slag. The authors concluded that
the simultaneous formation of C-A S-H and N-A-S-H helps to bridge the gaps between
different phases and unreacted particles, resulting in better mechanical performance [54].
The main observed bands are summarized in Table 3.

Table 3. Infrared spectroscopy bands summary.

Wavenumber (cm−1) Attribution

1350–1450 C-O group vibration
1049 Si-O-T (T = Si. Al) asymmetric stretching vibration
1030 Si-O asymmetric stretching vibration
930 Si-O-Ca bond vibration

778 and 692 Si-O bond strain vibration of quartz
692–702 Si-O-Si vibration

Observation of raw MK (Figure 12a) by electron microscopy reveals a fairly diversified
morphology that is very heterogeneous and mostly small in size. With a higher magnifica-
tion, a microstructure is observed in the form of sheets glued together. These observations
are in agreement with what is reported in the literature on the microstructure of MK [55].
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Figure 12. SEM micrographs with EDS analysis of (a) raw MK, (b) GP-MK-CK0.5, (c) GP-MK-CN1,
and (d) GP-MK-CK1.
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MK-based geopolymer pastes show the appearance of a continuous dense structure
characteristic of geopolymer gels. GP-MK-CK0.5 sample (Figure 12b) shows in EDS a
large percentage of the K element, thus indicating the formation of a K-A-S-H network
characteristic of potassium-based geopolymers. A ratio of (Ca/Si) of 0.8 with a low presence
of Al, which can be attributed to the existence of C-S-H in low quantity, was observed
by XRD, confirming peaks of small C-S-H intensities [46,54]. In addition it is found that
the GP-MK-CN1 sample (Figure 12c) shows a significant level of Na and Al and traces of
Ca, thus confirming the creation of a N-A-S-H network in parallel with C-S-H. Sample
GP-MK-CK1 (Figure 12d) shows high levels of Si, Al, Ca, and K, indicating the presence of
C-A-S-H in parallel of K-A-S-H, as observed by XRD.

Figure 13 shows the compressive strengths of the different samples. The KOH-based
samples resulted in higher mechanical strengths. This agrees with what has been reported in
the literature by several scientific researchers [20,56,57]. The best mechanical performance
for RUPG-based pastes (Figure 13a) was recorded for GP-MK-CK0.5 and GP-MK-CN1
samples, with values of 31.45 and 24.5 MPa, respectively, for the two types of activators.
Classic geopolymer pastes (Figure 13b) show the best compressive strength for the sample
CGP-K2.5-3.5 of about 34.39, which is close to the results found with pastes based on RUPG.
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The particle size of the precursor powder plays a significant role in these outcomes.
Finer particles increase the surface area, enhancing the reactivity and degree of geopoly-
merization, which in turn improves the mechanical properties. The in situ IRTF monitoring
results revealed the coexistence of two distinct networks: an M-rich network (N-A-S-H or
K-A-S-H) and a Ca-rich network (C-S-H and/or C-A-S-H). This was evidenced by the shift-
ing of the characteristic Si-O-T (T=Si, Al) band toward lower, then higher wavenumbers.
Notably, the GP-MK-CK0.5 and GP-MK-CK1 samples exhibited the most significant shifts
toward lower wavenumbers, indicating a higher degree of geopolymerization. This en-
hanced geopolymerization, facilitated by the fine particle size, likely explains the superior
mechanical resistance observed in these samples, as the high N-A-S-H content contributes
to improved mechanical strength over time [6,7].

4. Conclusions

This study aimed to evaluate and compare traditional and mechanosynthesis meth-
ods of geopolymerization, focusing on the properties of geopolymers produced using
metakaolin (MK) activated by different reagents. Specifically, we sought to assess the
effectiveness of traditional methods involving sodium silicate or calcium-based hydrox-
ides (CaO/MOH) against a new approach using ready-to-use powders for geopolymers
(RUPGs), which utilize mechanosynthesis with quicklime as a substitute for sodium silicate.

Our findings indicate that traditional geopolymerization methods yield geopolymer
pastes (GP) with significant properties. The RUPG method, which simplifies prepara-
tion and enhances storage convenience, presents a promising alternative. This approach
demonstrates the potential for improved practicality in industrial applications.

• Structural and microstructural insights: X-ray diffraction (XRD) analysis reveals that
traditional methods produce slight amorphization in MK, resulting in N(K)-A-S-H gels.
Conversely, RUPG incorporates additional calcium silicate hydrate (C-S-H/C-A-S-H)
phases, suggesting a potentially more robust microstructure that could contribute to
enhanced mechanical properties and durability.

• Mechanical properties: Both GP and classic geopolymer pastes (CGPs) achieved
notable compressive strengths of 31.45 MPa and 34.92 MPa, respectively, after 28 days
of curing. The slightly superior compressive strength of CGP underscores the potential
advantages of traditional methods in applications where high strength is crucial.

The study also highlighted challenges such as swelling and expansion during the
initial curing of CGP, particularly with quicklime activation. Despite these challenges, the
RUPG method offers a safer and more manageable approach with potential for broader
industrial application.
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