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Abstract: The processes of hemp bast fiber retting, forming, and drying offer the opportunity for
value-added products such as natural fiber-reinforced composites. A new process for the retting of
raw bast fibers through enzyme-triggered self-cultured bacterial retting was developed in the lab-
scale setup. This study focused on comparing the energy consumption and environmental impacts of
this bacterial retting process with the thermochemical retting process currently widely used to obtain
lignocellulosic fibers for composites. The gate-to-gate life cycle assessment (LCA) models of the
two retting processes were constructed to run a comparison analysis using the TRACI (the tool for the
reduction and assessment of chemical and other environmental impacts) method for environmental
impacts and the cumulative energy demand (CED) method for energy consumptions. This work
has demonstrated the advantages of the bacterial retting method from an environmental standpoint.
The result of our research shows about a 24% gate-to-gate reduction in CED for bacterial retting
and 20–25% lower environmental impacts relating to global warming, smog formation, acidification,
carcinogenics, non-carcinogenics, respiratory effects, ecotoxicity, and fossil fuel depletion when
compared to that of thermochemical retting.

Keywords: hemp bast fiber; bacterial retting; life cycle assessment; environmental impact; cumulative
energy demand; plant-based materials

1. Introduction

Renewable natural fibers are gaining popularity due to the environmental protection
challenges associated with fossil fuel-based fibers. The automotive industry has been
making efforts to replace traditional glass- or carbon fiber-reinforced polymer composites
with natural fiber composites for some automotive parts. Because natural fiber composites
are lightweight, fuel efficiency or battery mileage can be reduced, thus reducing greenhouse
gas (GHG) emissions. A 10% reduction in vehicle weight could potentially yield a fuel
economy improvement of 6–8% [1]. It has been demonstrated that the use of natural fiber
composites in the construction and building industry can reduce the carbon footprint [2].
Hemp-based boards showed lower GHG emissions compared to gypsum plasterboards
due to the sequestered biogenic carbon during hemp growth [3]. Galan-Marin et al. studied
the global warming potential (GWP) of natural fiber composites in construction [4]. Natural
fiber composite block walls (containing natural fiber wool and natural polymer calcium
alginate) have a lower total GWP than that of the fired clay brick walls and concrete block
walls. Other studies also showed that the environmental impact of the buildings could be
decreased by using bio-based materials [5,6]. Among the many natural fibers, hemp has
received increasing attention in the United States after it was fully legalized for growing in
2018 [7].
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Retting is a process to convert the harvested biomass into fibers. Proper retting ensures
the quality of the hemp bast fibers for fiber-reinforced polymer composites. Zimniewska [8],
Manian et al. [9], and Lee et al. [10] summarized the different retting methods and their
advantages and disadvantages. With the study of microorganisms in the retting process,
biological retting methods, including enzymatic retting, bacterial retting, and fungal retting,
have become increasingly popular in recent years. The contribution of bacteria in the
retting process is being explored. Zhao et al. found that the bacteria Bacillus cereus
HDYM-02 significantly changed bacterial successions during flax retting and accelerated
the process compared to natural retting [11]. The cellulase-free crude enzyme produced
by Bacillus cereus HDYM-02 contained high pectinase and mannanase activity, which
acted synergistically in the retting of flax [12]. It has been proven that pectinolytic bacteria
reduced the jute retting period and improved fiber quality [13]. Although many retting
methods have been practiced in labs, studies on the environmental impacts of these retting
methods are limited.

Life cycle assessment (LCA) is a holistic method to systematically assess the envi-
ronmental impact of products, processes, or services from cradle-to-grave, cradle-to-gate,
or gate-to-gate system boundaries, following the ISO standards [14,15]. LCA has been
applied to evaluate natural fiber-reinforced products such as kenaf fiber-reinforced compos-
ites [16–18], flax fiber-reinforced composites [19], and hemp fiber-reinforced composites [20].
Generally, the interfacial bonding between fibers and the matrix [21] plays a pivotal role in
regulating the properties and performance of composites [22]. However, little is known
about the environmental impact of fiber retting. Corona and Birved assessed the life cycle
performance for enzymatic retting and field retting of hemp [23]. It was found that the
enzymatic retting process had a higher environmental impact than the field retting process.
The enzymatic retting scenario in this study included hydrothermal pretreatment and
enzymatic (endo-polygalacturonase and pectin-lyase) treatment with a NaOH buffer. The
increase in the environmental impact for this enzymatic retting scenario was attributed to
the consumption of electricity and auxiliary material. Considering the final application
of the composite material in car doors instead of interior furniture, the environmental
impact of enzymatic retting was reduced [23]. In addition to obtaining the overall envi-
ronmental impact of natural fiber-reinforced composites, it is necessary to understand
the environmental impact of emerging retting methods in order to find alternative ways
that may further reduce the impact to the environment. In this study, a comparative LCA
of thermochemical retting and enzyme-triggered self-cultured bacterial retting was con-
ducted using SimaPro v9.1 software with the DATASMART Life Cycle Inventory (LCI)
database Package (https://simapro.com/products/datasmart-lci-package/ accessed on 27
October 2022).

2. Methods and Materials
2.1. Goal and Scope

This study aimed to assess the environmental impacts associated with a laboratory
scale enzyme-triggered self-cultured bacterial retting process and compare those impacts
with the traditional thermochemical retting process. A functional unit is defined to provide
a reference point for quantification and comparison of the two processes’ environmental
impacts. The functional unit for this study is defined as 1 g dry mass of retted hemp fiber
with comparable properties that are ready to be delivered to the composite manufacturing
“factory gate”. The materials and energy were appropriately scaled up to produce this 1 g
hemp fiber.

2.2. System Boundary

The system boundary of this comparative LCA study is gate-to-gate from the raw
hemp fiber shipping to the lab for fiber-retting treatment ready to be shipped out for further
manufacturing into composites. Figure 1 shows the process and boundary system. The
comparison included transportation of raw hemp fiber from distributors to the lab, fiber
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retting, and mat forming until the final product fiber mat is ready to be delivered to the
composite manufacturing “factory gate” of both processes. The system input in this study
included hemp bast fiber, energy (in the form of electricity), water, chemical or pectinase,
and raw material transportation from distributor to lab. Since very little information is
available on the environmental impact of pectinase production, data on an established
enzyme (alpha-amylase, Novozymes Liquozyme®) were researched and used in the LCA
modeling of the bacterial process. All the transportation of raw materials (hemp bast
fibers, NaOH pellet, and pectinase) from distributors to the lab were included. Manufac-
turing of process equipment was excluded because laboratory-scale equipment is used
for many processes whose contribution is considered negligible over the life of the equip-
ment [24]. The corresponding outputs are the final product hemp fiber, wastewater from
the retting process, and emissions associated with upstream raw material processing and
energy production.
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Figure 1. Flow chart of the processes of lab-scale bacterial and thermochemical fiber treatments.
Green dotted lines define the system boundary of the comparative LCA.

2.3. Description of Processes

Fiber mats manufactured from the bacterial retting and fabrication processes included
three stages: (1) bacterial aggregation triggered by pectinase, (2) bacterial retting, and
(3) mat production (Figure 1). First, short bast fiber (20 g, 0.25 in) was immersed in pectinase
solution (1000 mL, 1% w/v) and incubated in 40 ◦C water to trigger the aggregation of
bacteria. Subsequently, the fibers were filtered out and the remaining liquid portion was
used to ret the next batch of fibers (20 g, 0.25 in) in the 40 ◦C water bath for three days.
Finally, the retted fibers were dispersed in water for 3 h under magnetic stirring (500 rpm),
followed by washing and tapping in water with a mesh mold to form 4-inch by 6.5-inch
mats. The total water consumption for this stage was 1000 mL. Before they were ready
for the composite manufacturing gate, the wet fiber mats were dried in an oven at 80 ◦C
for 10 h.

The conventional chemical retting process was the one-hour alkali (NaOH, 5%, w/v)
retting process in a hermetical reactor (251 M, Parr Instrument Co., Moline, IL, USA) at
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160 ◦C [25]. Unlike bacterial retting, fibers retted by this process need to be washed several
times. The total water consumption was 3000 mL to obtain clear fiber from raw hemp bast
fiber (20 g). The tapping and drying of wet mats were the same as the bacterial process.

2.4. Life Cycle Inventory and Life Cycle Inventory Analysis

Table 1 lists the materials and energy inputs to produce this 1 g hemp fiber. The
life cycle inventory data of each stage were quantified, and the impacts were modeled in
SimaPro v9.1 software. Ozone depletion (kg CFC-11 eq), global warming (kg CO2 eq), smog
formation (kg O3 eq), acidification (kg SO2 eq), eutrophication (kg N eq), carcinogenics
(CTUh), non-carcinogenics (CTUh), respiratory effects (kg PM2.5 eq), ecotoxicity (CTUe),
and fossil fuel depletion (MJ surplus) were evaluated using the embedded TRACI 2.1
impact method [26] and are reported in the following section.

Table 1. Materials and energy inputs of the two processes to produce 1 g of retted hemp fiber.

Input

Materials Bacterial Retting Chemical Retting Unit

Raw hemp fiber 1.25 1.82 g
Enzyme 0.63 -- g

Sodium hydroxide -- 4.55 g
Water 125.00 272.73 mL

Electricity
Retting 0.09 0.11 kWh
Stirring 0.0038 -- kWh
Drying 0.101 0.147 kWh

Transport
Hemp 56.25 81.82 gkm

Sodium hydroxide -- 11,818.18 gkm
Enzyme 1187.5 -- gkm

Waste flow

Wastewater 31.25 272.73 mL

2.5. FTIR Spectroscopy

For providing chemical characterization of hemp bast before and after retting, FT
infrared spectroscopy (FTIR) was carried out on Bruker Invenio R device within the range
from 400 to 4000 cm−1.

3. Results and Discussion

The contributions of six different types of energy were investigated (Table 2). The
damage categories are divided into nonrenewable (e.g., fossil, nuclear, and biomass) and
renewable (e.g., biomass, wind, solar, geothermal, and water), while the corresponding
indicators were calculated in mega joule (MJ). A total cumulative energy demand (CED)
of 2.862 MJ/g dry hemp fiber for thermochemical retting was required. Non-renewable
fossil was the highest and had a major impact, accounting for approximately 99% of the
total CED. Compared to the thermochemical retting process, the cumulative energy de-
mand to produce 1 g of retted hemp fiber through the bacterial retting process saved
23.9% of energy. The impact category of total renewable energy for bacterial retting was
−1.6 × 10−5 MJ/g retted hemp fiber, which indicated the potential renewable energy saving.

The environmental performance of the two processes is shown in Table 3 for each
impact category. The global warming potential for bacterial retting was calculated at
0.132 kg CO2 eq/g dry hemp fiber produced. This is around 79% of that for thermochemical
retting (0.167 kg CO2 eq/g dry hemp fiber produced). The ecotoxicity of the bacterial retting
process was 0.099 CTUe, and it is approximately 25% lower than that of the thermochemical
retting process (0.132 CTUe).
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Table 2. Cumulative energy demand of the two processes to produce 1 g of retted dry hemp.

Impact Category Unit Thermochemical
Retting Bacterial Retting

Non-renewable, fossil MJ 2.82 2.18
Non-renewable, nuclear MJ 3.61 × 10−2 −2.19 × 10−4

Non-renewable, biomass MJ 9.57 × 10−12 2.08 × 10−12

Renewable, biomass MJ 1.38 × 10−5 6.53 × 10−7

Renewable, wind, solar, geothermal MJ 2.00 × 10−4 5.70 × 10−7

Renewable, water MJ 4.51 × 10−3 −1.70 × 10−5

Total non-renewable MJ 2.86 2.18
Total renewable MJ 4.72 × 10−3 −1.58 × 10−5

Total energy MJ 2.862 2.179

Table 3. Comparison of life cycle environmental impacts for bacterial retting process and thermo-
chemical retting process.

Impact Category Unit Bacterial Retting Thermochemical
Retting

Ozone depletion kg CFC-11 eq −5.59 × 10−12 9.19 × 10−10

Global warming kg CO2 eq 1.32 × 10−1 1.67 × 10−1

Smog kg O3 eq 6.03 × 10−3 7.81 × 10−3

Acidification kg SO2 eq 1.18 × 10−3 1.54 × 10−3

Eutrophication kg N eq 1.27 × 10−5 8.49 × 10−6

Carcinogenics CTUh 3.36 × 10−10 4.20 × 10−10

Non-carcinogenics CTUh 5.36 × 10−9 7.19 × 10−9

Respiratory effects kg PM2.5 eq 5.99 × 10−5 7.90 × 10−5

Ecotoxicity CTUe 9.93 × 10−2 1.32 × 10−1

Fossil fuel depletion MJ surplus 1.92 × 10−1 2.50 × 10−1

The gate-to-gate LCA outputs (Figure 2) showed that the bacterial retting process
has less environmental impact than that from the thermochemical retting process for all
environmental categories except for eutrophication. The eutrophication impact of the
thermochemical process was about 33% lower than that of the bacterial retting process. For
the rest of the environmental impact categories, the current bacterial retting process was
approximately 20–25% lower than that from thermochemical retting. Bacterial retting even
resulted in a negative ozone depletion potential, which represents the beneficial effect on
the ozone layer.

The negative impact of bacterial retting processes on eutrophication is greater than that
of thermochemical retting processes, mainly because the wastewater generated by thermo-
chemical retting has a greater beneficial impact (−56%) on eutrophication
(Figures 3 and 4). Eutrophication is mainly due to the excessive accumulation of nu-
trients such as nitrogen and phosphorous in water [27]. It should be noted that nitrogen
and phosphorous are critical to the soil quality for plant growth. A positive linear response
of the hemp biomass yield to nitrogen fertilization was observed with the application
of nitrogen fertilizer in industrial hemp cultivation [28]. Water used in bacterial retting
was recyclable because the bacteria proliferated in water during the retting, which can
be used to ret the next batch of fibers. The recycled bacterial liquid could also improve
the concrete’s healing performance. Shaaban et al. incorporated Bacillus Subtilis into the
concrete mix, and a significant increase in the compressive and tensile strengths of bacterial
concrete was observed [29]. The thermochemical retting process generated much more
unrecyclable wastewater than the bacterial retting process. Therefore, the impact of wastew-
ater in thermochemical retting was much higher than in bacterial retting. Meanwhile, the
beneficial effect of ozone depletion from wastewater can offset ozone depletion damage
from the use of electricity and transportation. Compared to the thermochemical retting
process, bacterial retting can reduce ozone depletion overall. Electricity consumption in
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both retting methods is the main contributor to the environmental impact. In addition
to ozone depletion and eutrophication, the environmental impact is mainly due to the
electricity consumed by drying for both methods. The environmental impact caused using
electricity can be replaced using clean energy. For instance, the electricity used to provide
a warm environment (40 ◦C) suitable for bacterial multiplication in the bacterial retting
process can be reduced by using insulation materials or by using solar thermal storage
systems. Compared to bacterial retting, thermochemical retting has a short retting cycle.
However, 99.6% of the ozone depletion came from the use of sodium hydroxide (Figure 4).
Despite the fact that the self-cultivated bacterial retting process has advantages over the
thermochemical retting process in terms of environmental impacts in this lab-scale LCA
analysis, uncertainties exist that need to be taken into account in real-world applications.
Since currently little information is available about the LCI of pectinase, a well-developed
alpha-amylase in the developed database was used in the analysis.
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Figure 2. Comparison of environmental impacts for bacterial retting and thermochemical retting.

The results of the FT-IR spectra of bacterial-retted fiber and thermochemical-retted
fiber are shown in Figure 5, from which the common bands in 3100–3600 cm−1 are for OH
stretching and 2800–3000 cm−1 are for C-H stretching. For the thermochemical-retted hemp
fiber, the absence of the 1735 cm−1 (C=O stretching) peak could be due to the removal
of carboxylic acids, aldehydes, or esters [30] from the fibers by sodium hydroxide. It is
known that alkali is commonly used to extract hemicellulose and eliminate lignin from
the plant-based material [31]. The spectral band around 1735 cm−1 was used to identify
the pectin [32]. The peak at 1640 cm−1 (OH stretching) was due to the absorbed water in
the tested samples [33]. Both retted hemp samples did not show the significant peak at
1245 cm−1 which was attributed to the C-O stretching in the hemicellulose or pectin [30],
indicating that both retting procedures removed part of either the pectin or hemicellulose.
The peaks between 995 and 1048 cm indicated the C-C, C-OH, and C-H rings and side-group
vibration in the cellulose or hemicellulose [34].
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4. Conclusions

From the gate-to-gate LCA models developed from this study based on data collected
from the lab scale study, the enzyme-triggered self-cultured bacterial retting process had
approximately 20–25% lower environmental impacts relating to global warming, smog,
acidification, carcinogenics, non-carcinogenics, respiratory effects, ecotoxicity, and fossil
fuel depletion than that from the thermochemical retting process. The major source of
environmental impact for bacterial retting is the consumption of electricity. In terms of
the ozone depletion impact, the enzyme-triggered self-cultured bacterial retting process
caused almost no effect overall. The FTIR results indicate that hemp fibers obtained by
bacterial retting showed comparable chemical characteristics to the thermochemical-retted
fiber. This demonstrates the feasibility of using a self-cultured bacterial retting process to
convert hemp bast into lignocellulosic fibers for further applications, such as reinforcement
in composites. A future economic analysis comparing the different retting processes would
be needed to add more insights into the different natural fiber retting processes.
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