Ultra-High Strength in FCC+BCC High-Entropy Alloy via Different Gradual Morphology
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Microstructure Evolution of Al0.5CoCrFeNi High-Entropy Alloy
3.1.1. XRD Analysis
3.1.2. SEM-BSE Images of Al0.5CoCrFeNi High-Entropy Alloy
3.2. Mechanical Properties
3.2.1. Hardness Evolution after HPT Processing
3.2.2. Tensile Properties
3.2.3. Fracture Analysis
4. Conclusions
- The shear strain introduced by high-pressure torsion led to the refinement of the second phase, grain fragmentation, and rearrangement effects, without altering the alloy’s phase composition.
- Significant enhancement in hardness was observed after high-pressure torsion processing of the Al0.5CoCrFeNi high-entropy alloy. The hardness gradually increased with the number of processing turns, and the hardness of various regions on the sample surface became progressively uniform. The hardness enhancement reached saturation, with a saturation hardness of approximately 530 HV, representing an increase of about 113% compared to the initial as-cast state.
- The strength of the alloy was greatly improved after high-pressure torsion processing, increasing from 323 MPa to over 1500 MPa, but there was a decrease in ductility. The second phase was fragmented and refined by the introduction of shear strain, resulting in an increase in the ductility with an increasing number of processing turns.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- George, E.P.; Raabe, D.; Ritchie, R.O. High-Entropy Alloys. Nat. Rev. Mater. 2019, 4, 515–534. [Google Scholar] [CrossRef]
- George, E.P.; Curtin, W.A.; Tasan, C.C. High Entropy Alloys: A Focused Review of Mechanical Properties and Deformation Mechanisms. Acta Mater. 2020, 188, 435–474. [Google Scholar] [CrossRef]
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-Entropy Alloy: Challenges and Prospects. Mater. Today 2016, 19, 349–362. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, M.; He, T.; Li, T.; Di, Y.; Yan, H.; Zhang, Y.; Lu, Y. Ultrastrong High-Ductility Ni35Co35Fe10Al10Ti8B2 High-Entropy Alloy Strengthened with Super-High Concentration L12 Precipitates. Adv. Eng. Mater. 2023, 25, 2300689. [Google Scholar] [CrossRef]
- Shi, Z.; Fang, Q.; Liaw, P.K.; Li, J. Corrosion-Resistant Biomedical High-Entropy Alloys: A Review. Adv. Eng. Mater. 2023, 25, 2300968. [Google Scholar] [CrossRef]
- Zheng, Q.; Lu, W.; Han, D.; Li, T.; Guo, H.; Qiu, K.; Yang, B.; Wang, J. Effect of Al Content On Microstructure, Mechanical, and Corrosion Properties of (Fe33Cr36Ni15Co15Ti1)100−XAlX High-Entropy Alloys. Adv. Eng. Mater. 2023, 25, 2301013. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, Z.; Chen, W.; Fan, H.; Fu, Z. Microstructural Evolution and Mechanical Behavior of Co-Free (Fe40Ni30Cr20Al10)100−XTix High-Entropy Alloys. Adv. Eng. Mater. 2023, 25, 2300946. [Google Scholar] [CrossRef]
- Abbasi, A.; Zarei-Hanzaki, A.; Charkhchian, J.; Moshiri, A.; Malayeri, N.A.; Lee, J.; Park, N.; Abedi, H.R. Revealing the Effects of Friction Stir Processing On the Microstructural Evolutions and Mechanical Properties of as-Cast Interstitial Femncocrn High-Entropy Alloy. Adv. Eng. Mater. 2024, 26, 2301908. [Google Scholar] [CrossRef]
- Zhang, K.B.; Fu, Z.Y.; Zhang, J.Y.; Wang, W.M.; Wang, H.; Wang, Y.C.; Zhang, Q.J.; Shi, J. Microstructure and Mechanical Properties of CoCrFeNiTiAlx High-Entropy Alloys. Mater. Sci. Eng. A 2009, 508, 214–219. [Google Scholar] [CrossRef]
- Shaysultanov, D.G.; Salishchev, G.A.; Ivanisenko, Y.V.; Zherebtsov, S.V.; Tikhonovsky, M.A.; Stepanov, N.D. Novel Fe36Mn21Cr18Ni15Al10 High Entropy Alloy with Bcc/B2 Dual-Phase Structure. J. Alloys Compd. 2017, 705, 756–763. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, R.D.; Wu, F.F.; Lin, S.B.; Jiang, S.S.; Huang, Y.J.; Chen, S.H.; Eckert, J. Transformation-Enhanced Strength and Ductility in a Fecocrnimn Dual Phase High-Entropy Alloy. Mater. Sci. Eng. A 2020, 780, 139182. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, L.; Gao, T.; Du, H.; Liu, X. On the Room-Temperature Tensile Deformation Behavior of a Cast Dual-Phase High-Entropy Alloy CrFeCoNiAl0.7. J. Mater. Sci. Technol. 2021, 87, 29–38. [Google Scholar] [CrossRef]
- Bönisch, M.; Wu, Y.; Sehitoglu, H. Twinning-Induced Strain Hardening in Dual-Phase FeCoCrNiAl0.5 at Room and Cryogenic Temperature. Sci. Rep. 2018, 8, 10663. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Li, B.S.; Ren, M.X.; Yang, C.; Fu, H.Z. Microstructure and Compressive Properties of Alcrfeconi High Entropy Alloy. Mater. Sci. Eng. A 2008, 491, 154–158. [Google Scholar] [CrossRef]
- Gwalani, B.; Soni, V.; Choudhuri, D.; Lee, M.; Hwang, J.Y.; Nam, S.J.; Ryu, H.; Hong, S.H.; Banerjee, R. Stability of Ordered L12 and B2 Precipitates in Face Centered Cubic Based High Entropy Alloys-Al0.3CoFeCrNi and Al0.3CuFeCrNi2. Scr. Mater. 2016, 123, 130–134. [Google Scholar] [CrossRef]
- Huang, L.; Sun, Y.; Amar, A.; Wu, C.; Liu, X.; Le, G.; Wang, X.; Wu, J.; Li, K.; Jiang, C.; et al. Microstructure Evolution and Mechanical Properties of AlxCoCrFeNi High-Entropy Alloys by Laser Melting Deposition. Vacuum 2021, 183, 109875. [Google Scholar] [CrossRef]
- Zhiqin, Y.; Jianxing, B.; Chaogang, D.; Sujung, S.; Zhiliang, N.; Jie, X.; Debin, S.; Bin, G.; Seop, K.H. Electroplasticity in the Al0.6Cocrfenimn High Entropy Alloy Subjected to Electrically-Assisted Uniaxial Tension. J. Mater. Sci. Technol. 2023, 148, 209–221. [Google Scholar]
- Joseph, J.; Stanford, N.; Hodgson, P.; Fabijanic, D.M. Understanding the Mechanical Behaviour and the Large Strength/Ductility Differences Between Fcc and Bcc Alxcocrfeni High Entropy Alloys. J. Alloys Compd. 2017, 726, 885–895. [Google Scholar] [CrossRef]
- Aizenshtein, M.; Strumza, E.; Brosh, E.; Hayun, S. Microstructure, Kinetics and Thermodynamics of Hea Al0.5CoCrFeNi at T ≥ 800 °C. Mater. Charact. 2021, 171, 110738. [Google Scholar] [CrossRef]
- Niu, S.; Kou, H.; Guo, T.; Zhang, Y.; Wang, J.; Li, J. Strengthening of Nanoprecipitations in an Annealed Al0.5CoCrFeNi High Entropy Alloy. Mater. Sci. Eng. A 2016, 671, 82–86. [Google Scholar] [CrossRef]
- Fang, Q.; Chen, Y.; Li, J.; Jiang, C.; Liu, B.; Liu, Y.; Liaw, P.K. Probing the Phase Transformation and Dislocation Evolution in Dual-Phase High-Entropy Alloys. Int. J. Plast. 2019, 114, 161–173. [Google Scholar] [CrossRef]
- Li, Z.; Tasan, C.C.; Pradeep, K.G.; Raabe, D. A Trip-Assisted Dual-Phase High-Entropy Alloy: Grain Size and Phase Fraction Effects On Deformation Behavior. Acta Mater. 2017, 131, 323–335. [Google Scholar] [CrossRef]
- Gludovatz, B.; George, E.P.; Ritchie, R.O. Processing, Microstructure and Mechanical Properties of the Crmnfeconi High-Entropy Alloy. Jom 2015, 67, 2262–2270. [Google Scholar] [CrossRef]
- Arivu, M.; Hoffman, A.; Duan, J.; Poplawsky, J.; Zhang, X.; Liou, F.; Islamgaliev, R.; Valiev, R.; Wen, H. Comparison of the Thermal Stability in Equal-Channel-Angular-Pressed and High-Pressure-Torsion-Processed Fe–21Cr–5Al Alloy. Adv. Eng. Mater. 2023, 25, 2300756. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, D.; Yang, M.; Ming, D. Grain Refinement in Az31 Magnesium Alloy Rod Fabricated by Extrusion-Shearing Severe Plastic Deformation Process. Trans. Nonferrous Met. Soc. China 2011, 21, 243–249. [Google Scholar] [CrossRef]
- Maziarz, W.; Greger, M.; Długosz, P.; Dutkiewicz, J.; Wójcik, A.; Rogal, A.; Stan-Głowińska, K.; Hilser, O.; Pastrnak, M.; Cizek, L. Effect of Severe Plastic Deformation Process On Microstructure and Mechanical Properties Ofalsi/Sic Composite. J. Mater. Res. Technol. 2022, 17, 948–960. [Google Scholar] [CrossRef]
- Lowe, T.C.; Valiev, R.Z. Investigations and Applications of Severe Plastic Deformation; Springer Science & Business Media: Dordrecht, The Netherlands, 2000; Volume 80. [Google Scholar]
- Gutkin, M.Y.; Ovid’Ko, I.; Pande, C.S. Theoretical Models of Plastic Deformation Processes in Nanocrystalline Materials. Rev. Adv. Mater. Sci. 2001, 2, 80–102. [Google Scholar]
- Chen, W.; Xu, J.; Liu, D.; Bao, J.; Sabbaghianrad, S.; Shan, D.; Guo, B.; Langdon, T.G. Microstructural Evolution and Microhardness Variations in Pure Titanium Processed by High-Pressure Torsion. Adv. Eng. Mater. 2020, 22, 1901462. [Google Scholar] [CrossRef]
- Mohamed, I.F.; Masuda, T.; Lee, S.; Edalati, K.; Horita, Z.; Hirosawa, S.; Matsuda, K.; Terada, D.; Omar, M.Z. Strengthening of a2024 Alloy by High-Pressure Torsion and Subsequent Aging. Mater. Sci. Eng. A 2017, 704, 112–118. [Google Scholar] [CrossRef]
- Zhilyaev, A.P.; Langdon, T.G. Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications. Prog. Mater. Sci. 2008, 53, 893–979. [Google Scholar] [CrossRef]
- Zhilyaev, A.P.; Nurislamova, G.V.; Kim, B.; Baró, M.D.; Szpunar, J.A.; Langdon, T.G. Experimental Parameters Influencing Grain Refinement and Microstructural Evolution During High-Pressure Torsion. Acta Mater. 2003, 51, 753–765. [Google Scholar] [CrossRef]
- Zheng, R.; Chen, J.; Xiao, W.; Ma, C. Microstructure and Tensile Properties of Nanocrystalline (FeNiCoCu) 1−XTixAlx High Entropy Alloys Processed by High Pressure Torsion. Intermetallics 2016, 74, 38–45. [Google Scholar] [CrossRef]
- Kim, H.; Ha, H.; Lee, J.; Son, S.; Kim, H.S.; Sung, H.; Seol, J.B.; Kim, J.G. Outstanding Mechanical Properties of Ultrafine-Grained Al7075 Alloys by High-Pressure Torsion. Mater. Sci. Eng. A 2021, 810, 141020. [Google Scholar] [CrossRef]
- Yu, P.F.; Cheng, H.; Zhang, L.J.; Zhang, H.; Jing, Q.; Ma, M.Z.; Liaw, P.K.; Li, G.; Liu, R.P. Effects of High Pressure Torsion On Microstructures and Properties of an Al0.1CoCrFeNi High-Entropy Alloy. Mater. Sci. Eng. A 2016, 655, 283–291. [Google Scholar] [CrossRef]
- Yeh, J.; Chang, S.; Hong, Y.; Chen, S.; Lin, S. Anomalous Decrease in X-Ray Diffraction Intensities of Cu–Ni–Al–Co–Cr–Fe–Si Alloy Systems with Multi-Principal Elements. Mater. Chem. Phys. 2007, 103, 41–46. [Google Scholar] [CrossRef]
- Zhilyaev, A.P.; McNelley, T.R.; Langdon, T.G. Evolution of Microstructure and Microtexture in Fcc Metals During High-Pressure Torsion. J. Mater. Sci. 2007, 42, 1517–1528. [Google Scholar] [CrossRef]
- Xue, K.; Luo, Z.; Xia, S.; Dong, J.; Li, P. Study of Microstructural Evolution, Mechanical Properties and Plastic Deformation Behavior of Mg-Gd-Y-Zn-Zr Alloy Prepared by High-Pressure Torsion. Mater. Sci. Eng. A 2024, 891, 145953. [Google Scholar] [CrossRef]
- Fátay, D.; Bastarash, E.; Nyilas, K.; Dobatkin, S.; Gubicza, J.; Ungár, T. X-Ray Diffraction Study On the Microstructure of an Al–Mg–Sc–Zr Alloy Deformed by High-Pressure Torsion. Int. J. Mater. Res. 2022, 94, 842–847. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, H.; Huang, H.; Yang, L.; Hu, Y.; Liang, X.; Hua, M.; Zhang, J. Strengthening Mechanism of Cocrnimox High Entropy Alloys by High-Throughput Nanoindentation Mapping Technique. Intermetallics 2021, 135, 107209. [Google Scholar] [CrossRef]
- Ghaderi, A.; Moghanni, H.; Dehghani, K. Microstructural Evolution and Mechanical Properties of Al0.5CoCrFeNi High-Entropy Alloy After Cold Rolling and Annealing Treatments. J. Mater. Eng. Perform. 2021, 30, 7817–7825. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, X.; Gu, X. Effect of Annealing On Microstructure and Mechanical Properties of Al0.5CoCrFeMoxNi High-Entropy Alloys. Entropy 2018, 20, 812. [Google Scholar] [CrossRef]
- Liu, X.; Ding, H.; Huang, Y.; Bai, X.; Zhang, Q.; Zhang, H.; Langdon, T.G.; Cui, J. Evidence for a Phase Transition in an AlCrFe2Ni2 High Entropy Alloy Processed by High-Pressure Torsion. J. Alloys Compd. 2021, 867, 159063. [Google Scholar] [CrossRef]
- Yang, J.; Wang, G.; Park, J.M.; Kim, H.S. Microstructural Behavior and Mechanical Properties of Nanocrystalline Ti-22Al-25Nb Alloy Processed by High-Pressure Torsion. Mater. Charact. 2019, 151, 129–136. [Google Scholar] [CrossRef]
- Renk, O.; Pippan, R. Saturation of Grain Refinement During Severe Plastic Deformation of Single Phase Materials: Reconsiderations, Current Status and Open Questions. Mater. Trans. 2019, 60, 1270–1282. [Google Scholar] [CrossRef]
- Edalati, P.; Mohammadi, A.; Ketabchi, M.; Edalati, K. Microstructure and Microhardness of Dual-Phase High-Entropy Alloy by High-Pressure Torsion: Twins and Stacking Faults in Fcc and Dislocations in Bcc. J. Alloys Compd. 2022, 894, 162413. [Google Scholar] [CrossRef]
- Kawasaki, M.; Ahn, B.; Langdon, T.G. Microstructural Evolution in a Two-Phase Alloy Processed by High-Pressure Torsion. Acta Mater. 2010, 58, 919–930. [Google Scholar] [CrossRef]
- Sabbaghianrad, S.; Kawasaki, M.; Langdon, T.G. Microstructural Evolution and the Mechanical Properties of an Aluminum Alloy Processed by High-Pressure Torsion. J. Mater. Sci. 2012, 47, 7789–7795. [Google Scholar] [CrossRef]
- Kawasaki, M. Different Models of Hardness Evolution in Ultrafine-Grained Materials Processed by High-Pressure Torsion. J. Mater. Sci. 2014, 49, 18–34. [Google Scholar] [CrossRef]
- Wei, D.; Koizumi, Y.; Yamanaka, A.; Yoshino, M.; Li, Y.; Chiba, A. Control of Γ Lamella Precipitation in Ti–39at.% Al Single Crystals by Nanogroove-Induced Dislocation Bands. Acta Mater. 2015, 96, 352–365. [Google Scholar] [CrossRef]
- Shahmir, H.; Langdon, T.G. Using Heat Treatments, High-Pressure Torsion and Post-Deformation Annealing to Optimize the Properties of Ti-6Al-4V Alloys. Acta Mater. 2017, 141, 419–426. [Google Scholar] [CrossRef]
- Heczel, A.; Kawasaki, M.; Lábár, J.L.; Jang, J.; Langdon, T.G.; Gubicza, J. Defect Structure and Hardness in Nanocrystalline Cocrfemnni High-Entropy Alloy Processed by High-Pressure Torsion. J. Alloys Compd. 2017, 711, 143–154. [Google Scholar] [CrossRef]
- Volokitin, A.; Naizabekov, A.; Volokitina, I.; Kolesnikov, A. Changes in Microstructure and Properties of Austenitic Steel Aisi 316 During High-Pressure Torsion. J. Chem. Technol. Metall. 2022, 57, 809–815. [Google Scholar]
- Skrotzki, W.; Pukenas, A.; Odor, E.; Joni, B.; Ungar, T.; Völker, B.; Hohenwarter, A.; Pippan, R.; George, E.P. Microstructure, Texture, and Strength Development During High-Pressure Torsion of Crmnfeconi High-Entropy Alloy. Crystals 2020, 10, 336. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, Z.; Zhao, H.; Ren, L. Refinement Strengthening, Second Phase Strengthening and Spinodal Microstructure-Induced Strength-Ductility Trade-Off in a High-Entropy Alloy. Mater. Sci. Eng. A 2022, 847, 143343. [Google Scholar] [CrossRef]
- Shi, Z.; Li, C.; Li, M.; Li, X.; Wang, L. Second Phase Refining Induced Optimization of Fe Alloying in Zn: Significantly Enhanced Strengthening Effect and Corrosion Uniformity. Int. J. Miner. Metall. Mater. 2022, 29, 796–806. [Google Scholar] [CrossRef]
- Srinivasarao, B.; Zhilyaev, A.P.; Langdon, T.G.; Perez-Prado, M.T. On the Relation Between the Microstructure and the Mechanical Behavior of Pure Zn Processed by High Pressure Torsion. Mater. Sci. Eng. A 2013, 562, 196–202. [Google Scholar] [CrossRef]
- Niu, S.; Kou, H.; Wang, J.; Li, J. Improved Tensile Properties of Al0.5CoCrFeNi High-Entropy Alloy by Tailoring Microstructures. Rare Met. 2021, 40, 1–6. [Google Scholar] [CrossRef]
- Guo, T.; Li, J.; Wang, J.; Wang, W.Y.; Liu, Y.; Luo, X.; Kou, H.; Beaugnon, E. Microstructure and Properties of Bulk Al0.5CoCrFeNi High-Entropy Alloy by Cold Rolling and Subsequent Annealing. Mater. Sci. Eng. A 2018, 729, 141–148. [Google Scholar] [CrossRef]
- Yang, H.; Li, J.; Pan, X.; Wang, W.Y.; Kou, H.; Wang, J. Nanophase Precipitation and Strengthening in a Dual-Phase Al0.5CoCrFeNi High-Entropy Alloy. J. Mater. Sci. Technol. 2021, 72, 1–7. [Google Scholar] [CrossRef]
- Hossain, A.M.; Kumar, N. Microstructure and Mechanical Properties of a Dual Phase Transformation Induced Plasticity Fe-Mn-Co-Cr High Entropy Alloy. J. Alloys Compd. 2022, 893, 162152. [Google Scholar] [CrossRef]
- Park, J.M.; Moon, J.; Bae, J.W.; Kim, D.H.; Jo, Y.H.; Lee, S.; Kim, H.S. Role of Bcc Phase On Tensile Behavior of Dual-Phase Al0.5CoCrFeMnNi High-Entropy Alloy at Cryogenic Temperature. Mater. Sci. Eng. A 2019, 746, 443–447. [Google Scholar] [CrossRef]
Element | Al | Co | Cr | Fe | Ni |
---|---|---|---|---|---|
at.% | 11.21 | 22.19 | 22.24 | 22.23 | 22.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Z.; Ding, C.; Yang, Z.; Zhang, H.; Wang, F.; Li, H.; Xu, J.; Shan, D.; Guo, B. Ultra-High Strength in FCC+BCC High-Entropy Alloy via Different Gradual Morphology. Materials 2024, 17, 4535. https://doi.org/10.3390/ma17184535
Ding Z, Ding C, Yang Z, Zhang H, Wang F, Li H, Xu J, Shan D, Guo B. Ultra-High Strength in FCC+BCC High-Entropy Alloy via Different Gradual Morphology. Materials. 2024; 17(18):4535. https://doi.org/10.3390/ma17184535
Chicago/Turabian StyleDing, Ziheng, Chaogang Ding, Zhiqin Yang, Hao Zhang, Fanghui Wang, Hushan Li, Jie Xu, Debin Shan, and Bin Guo. 2024. "Ultra-High Strength in FCC+BCC High-Entropy Alloy via Different Gradual Morphology" Materials 17, no. 18: 4535. https://doi.org/10.3390/ma17184535
APA StyleDing, Z., Ding, C., Yang, Z., Zhang, H., Wang, F., Li, H., Xu, J., Shan, D., & Guo, B. (2024). Ultra-High Strength in FCC+BCC High-Entropy Alloy via Different Gradual Morphology. Materials, 17(18), 4535. https://doi.org/10.3390/ma17184535