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Abstract: Understanding the strength development of alkali-activated materials (AAMs) with fly ash
(FA) and granulated blast furnace slag (GBFS) is crucial for designing high-performance AAMs. This
study investigates the strength development mechanism of AAMs using machine learning. A total
of 616 uniaxial compressive strength (UCS) data points from FA-GBFS-based AAM mixtures were
collected from published literature to train four tree-based machine learning models. Among these
models, Gradient Boosting Regression (GBR) demonstrated the highest prediction accuracy, with a
correlation coefficient (R-value) of 0.970 and a root mean square error (RMSE) of 4.110 MPa on the test
dataset. The SHapley Additive exPlanations (SHAP) analysis revealed that water content is the most
influential variable in strength development, followed by curing periods. The study recommends a
calcium-to-silicon ratio of around 1.3, a sodium-to-aluminum ratio slightly below 1, and a silicon-
to-aluminum ratio slightly above 3 for optimal AAM performance. The proposed design model
was validated through laboratory experiments with FA-GBFS-based AAM mixtures, confirming the
model’s reliability. This research provides novel insights into the strength development mechanism
of AAMs and offers a practical guide for elemental design, potentially leading to more sustainable
construction materials.

Keywords: fly ash; granulated blast furnace slag; alkali-activated materials; strength; machine learning

1. Introduction

The carbon dioxide (CO2) emissions generated by the construction industry constitute
38% of the total emissions related to energy production globally, with nearly half of this
proportion attributed to cement production [1–3]. These carbon emissions are part of
greenhouse gases, causing adverse effects on global climate change [4,5]. Additionally, the
cement production process is accompanied by the emission of other air pollutants such
as nitrogen oxides and sulfur oxides, which may have detrimental impacts on air quality
and ecosystem health. Consequently, there is an imperative to identify a novel material
to substitute ordinary portland cement (OPC) [6]. In contrast to OPC, alkali-activated
materials (AAMs) not only offer superior performance but also effectively address the issue
of excessive CO2 emissions associated with OPC production [7].

AAMs, fundamentally, are an inorganic polymer formed through the alkaline activa-
tion of aluminosilicate materials, undergoing a series of activation reactions [8]. In terms
of raw materials, industrial by-products such as granulated blast furnace slag (GBFS), fly
ash (FA), metakaolin, and the slurry from ceramic tile production offer significant poten-
tial as precursors for geopolymers. This slurry contains fine fractions of kaolinite and
quartz, which are highly reactive under alkaline conditions [9]. Simultaneously, alkaline
activators such as sodium hydroxide, water glass, and sodium carbonate, chosen for their
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cost-effectiveness, are widely employed [8,10–13]. AAMs not only exhibit excellent me-
chanical properties, including compressive, tensile, and shear strengths, but also display
high resistance to chemical corrosion [14–19]. As described above, the ability to reuse
industrial waste products like GBFS and FA, coupled with the use of cost-effective alkaline
activators, allows for the recycling of waste solids. It is precisely these characteristics of
AAMs that drive their widespread application and gradual substitution for OPC, offering
significant commercial and societal benefits [20–23]. In addition, AAMs are quite sensitive
to environmental temperature and humidity changes and require high precision during
mixing and construction. The long-term stability of AAMs needs to be further studied [24].

To address the problems related to mechanical properties and durability, mixture opti-
mization methods should be developed. In terms of precursors, the elemental composition
ratios within various materials, such as Ca/Si, Na/Al, Si/Al ratios, and water content (WC),
play a predominant role in the development of UCS of AAMs [25]. Regarding environmen-
tal conditions, the uniaxial compressive strength (UCS) development of AAMs is primarily
influenced by curing periods (CP), curing temperature (CT), and humidity (H) [26]. In
the process of strength formation in AAMs, the hydration reaction is a crucial step. This
involves the reaction of minerals in the materials with water, leading to the formation of a
gel that primarily determines its strength through its formation and structure. Additionally,
the interaction between water and the gel is another important influencing factor [27].

The challenge lies in the fact that, whether in terms of precursor-related factors or
environmental factors, the impacts generated by these factors on the development of UCS
in AAMs are not mutually independent but rather intricately intertwined and complex [25].
This has also led to the realization that traditional trial-and-error methods in the laboratory
not only consume significant human and financial resources but also fall far short of
meeting the time demands. The limitations of traditional laboratory trial-and-error methods
have been glaringly exposed [28–31]. Some have attempted to substitute laboratory trial-
and-error methods with formulaic analytical approaches and statistical methods, but the
ultimate results have not proven to be very satisfactory [32]. The former is based on a clear
relationship between the relevant empirical formulas and the components of the system,
both computationally and analytically, and lacks flexibility in practical application [33,34],
while the latter requires a large amount of laboratory mix data to fit the model, but even so,
there are still shortcomings in predictive performance and other functions [35,36].

In order to solve this problem, advanced machine learning (ML) methods can be
used to assist in the mixture design of AAMs [25]. ML algorithms such as support vector
machine (SVM), random forest (RF), and artificial neural network (ANN) can be used
to model without knowing the explicit relationship and accurately predict the UCS, dry
shrinkage, and air permeability of concrete [37–40]. The method of ML greatly compensates
for the shortcomings of the previously mentioned methods and opens up new possibilities
for the development of the field of civil engineering.

Nguyen et al. [31] employed a deep neural network to forecast the compressive
strength of FA-based AAMs and obtained good prediction accuracy. Tanyildizi et al. [41]
successfully used deep long short-term memory (LSTM) to forecast the dissolution peak
heat, dissolution peak time, polymerization peak heat, and polymerization peak time of
FA-based AAMs. Zhang et al. [42] proposed a chemical engineering feature based on the
working performance of ML models such as gradient enhancement and extra trees, and
the results showed that the prediction performance was very accurate. Huo et al. [43] con-
structed a tree-like ensemble model based on multiple regression models and successfully
realized the multi-objective optimization of fly ash-slag base polymers combined with the
non-dominant ranking genetic algorithm. However, the above studies only predicted the
strength of alkali-activated materials from a macroscopic perspective (such as precursor
content and curing periods, etc.) or optimized the characteristics of AAMs but did not
explain the strength formation mechanism of AAMs from a microscopic perspective. The
ML models can interpret the influence of composition variables through various techniques
and approaches, such as the SHapley Additive exPlanations (SHAP) [44]. SHAP values
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provide a way to interpret the impact of each feature on an individual prediction. These
methods are grounded in cooperative game theory and offer a cohesive metric for evaluat-
ing feature significance. Therefore, this paper uses ML techniques to reveal the strength
development mechanism and facilitate the elemental design of AAMs.

This research bridges significant knowledge gaps by providing a clearer understand-
ing of the microscopic mechanisms underlying AAM strength development and by offering
practical solutions to optimize the design and performance of AAMs. Additionally, the
study addresses the environmental and economic challenges associated with AAMs, con-
tributing to the advancement of sustainable construction materials [45]. We use the Ca/Si
ratio, Na/Al ratio, Si/Al ratio, water content, curing periods, curing temperature, and
humidity as input variables to train ML models from the datasets compiled in the published
literature, optimize their hyper-parameters through the Bayesian optimization algorithm
(BOA), comprehensively analyze the final results, and put forward the findings of this
study, hoping to promote the discussion of scholars in AAM and other fields.

2. Dataset Description

In this paper, based on a large number of previous studies on AAMs [46–69], 616 data
instances with water content, Ca/Si ratio, Na/Al ratio, and Si/Al ratio were selected as
internal factors, and curing periods, curing temperature, and humidity were selected as
external factors [26]. The data are included in the Supplementary Materials in this paper in
this paper. The following are the criteria used in this article to select datasets:

(1) The UCS data were extracted from studies published in internationally recognized
journals, ensuring that the data used in this research were of high quality and
peer-reviewed.

(2) Only datasets involving AAMs using FA and GBFS as precursors were considered.
This selection criterion was established to maintain consistency in the chemical compo-
sition and reaction mechanisms across all samples, thereby eliminating the influence
of other precursor materials such as metakaolin or rice husk ash.

(3) The dataset excluded any AAMs that included aggregates in their composition. This
decision was made to focus solely on the binder’s properties without the additional
variability introduced by different aggregate types.

(4) All selected data pertained to AAMs that were formulated and cured under controlled
laboratory conditions. Specifically, the samples were prepared and cured in curing
chambers, ensuring uniform curing periods, temperatures, and humidity levels. This
consistency is crucial for the accurate modeling of UCS development.

(5) Only studies that clearly reported the chemical composition and proportions of the
alkali activators used (e.g., sodium hydroxide, sodium silicate) were included. This
transparency allows for precise replication of the mix design and activation process in
future studies.

The data collection process involved meticulously extracting data points from each
study, ensuring that all relevant variables, such as precursor ratios, water content, curing
periods, and environmental conditions, were accurately recorded and then organized into
a standardized format for analysis. Prior to analysis, the dataset underwent thorough
processing to identify and correct any inconsistencies, including discrepancies in units of
measurement or reporting formats, and outliers were carefully examined to determine
whether they were experimental errors or legitimate variations in material behavior. The
selected input variables for the machine learning models, including the Ca/Si ratio, Na/Al
ratio, Si/Al ratio, water content, curing temperature, curing periods, and humidity, were
chosen based on their recognized influence on the strength development of AAMs, as
identified in the literature [70,71].

The selected data are organized into a complete data set, and the input variables and
UCS statistics are listed, as shown in Table 1. Figure 1 displays the correlation coefficient
matrix among the input variables, revealing the degree of interdependence among them.
Positive values denote a positive correlation, while negative values indicate the opposite,
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with larger absolute values signifying stronger correlations. As can be seen from Figure 1,
the absolute value of the correlation coefficient between most of the input variables remains
below 0.5, which indicates that the input variables maintain good independence as a whole.

Table 1. Overview of dataset statistics.

Type Variables Min 25% 50% 75% Max Mean SD

Input

Si/Al 1.37 1.70 2.07 2.76 9.61 2.46 1.16
Na/Al 0.00 0.31 0.53 0.90 4.46 0.69 0.58
Ca/Si 0.05 0.34 0.66 0.98 3.10 0.77 0.60

Water Content 0.01 0.16 0.26 0.34 0.50 0.27 1.34
Curing

Temperature
(◦C)

20.00 20.00 21.00 25.00 80.00 28.67 18.39

Humidity 0.50 0.75 0.95 0.98 1.00 0.86 0.18
Curing Periods (days) 1.0 3.00 7.00 28.00 28.00 14.06 11.03

Output UCS (MPa) 0.00 5.19 14.93 27.95 72.46 19.17 16.90
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3. Methodology
3.1. Machine Learning Methods

Tree-based ensemble models work by combining multiple tree-like models with each
other to improve the prediction performance and stability of the overall model, which is
superior to traditional empirical models, and such ensemble methods are widely used
in classification, regression, and feature selection [72–74]. In this study, Random Forest
Regression (RFR), Extremely Randomized Trees (ERT), Gradient Boosting Regression (GBR),
and Extreme Gradient Boosting Regression (XGBR) are employed, and their performance
on UCS prediction of AAMs is compared.

Tree-based ensemble models were chosen for this study due to their ability to signif-
icantly improve prediction performance and stability compared to traditional empirical
models. These models combine multiple decision trees, each trained on different subsets
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of the data, to form an ensemble, which reduces variance and prevents overfitting—an
issue often encountered with single decision trees [25]. This approach is particularly suited
for handling the complex and non-linear interactions between variables in AAMs, such as
precursor ratios, curing conditions, and environmental factors. Unlike traditional empirical
models, which rely on predefined equations that may not fully capture these interactions,
ensemble models can learn these relationships directly from the data without explicit
assumptions. Moreover, ensemble methods like Random Forest and Gradient Boosting
offer valuable insights into feature importance, helping to identify which variables most
significantly impact strength development in AAMs. This adaptability to different data
types and the ability to generalize better to unseen data make tree-based ensemble models
a powerful and flexible tool for modeling the intricate relationships in AAMs, ensuring
more accurate and reliable predictions of UCS.

3.1.1. Random Forest Regression

Random Forest Regression (RFR) is a common decision tree-based ensemble ML
method [75,76]. By constructing a large number of decision trees during the training phase,
decision tree ensembles (hereinafter referred to as ‘ensembles’) are formed. The features
used in constructing each decision tree (input variables of various classes in the model)
are all random (randomly sampled using the Bagging model). Here, we define T as the
total dataset, in which there are N samples. The training set comprises d features, and only
k(k < d) is selected for building the decision tree at a time. The following is the procedure
to establish a random forest regressor.

1. From the total dataset T, N samples are randomly selected for training a decision tree.
As they are put back in the selection process, it is almost impossible to select all the
samples, although N samples are selected, and each choice will not be exactly the
same. These N samples serve as the data points at the root node of the decision tree.

2. At each node where a decision tree requires splitting, m(m < M) attributes are ran-
domly selected from the M attributes, given that each sample has M attributes. Subse-
quently, one attribute is chosen from this subset of m attributes to serve as the splitting
attribute for that particular node.

3. Step (b) is repeated until the decision tree can no longer be divided, and the entire
decision tree is not pruned during the formation process.

4. By repeating steps (a)~(b), an extensive array of decision trees is constructed to form
random forests.

5. Randomly selecting features and a subset of data to train all decision trees in the set
helps reduce the correlation between each tree in the set and prevents overfitting.

6. The average of all decision tree predictions in the set is taken as the final regression
value of the model.

Random forests are robust to missing and outliers. In the face of missing and outliers,
they can process datasets that mix numeric and categorical features and calculate the
relative importance of the features in question.

3.1.2. Extremely Randomized Trees

Extremely Randomized Trees (ERT), also known as extra tree, is a new extension
algorithm for RFR [77,78]. ERT also uses the Bagging model; however, the distinction
lies in the fact that ERT utilizes all the training samples to construct each decision tree,
meaning each decision tree applies the entire set of training examples uniformly. RFR
selects the best features and their corresponding values in a random subset to obtain the
best bifurcation attributes. In contrast, ERT achieves the branching of the decision tree by
randomly selecting the split values, ensuring a random bifurcation process. Compared with
RFR, this bifurcation method emphasizes randomness, reduces variance, and improves the
robustness of the model.
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3.1.3. Gradient Boosting Regression

Gradient Boosting Regression (GBR) is an ensemble learning method based on the
Boosting model, also known as the Gradient Boosting Decision Tree algorithm. It is
characterized by high predictive accuracy and stability [79]. To build GBR, a weak learner
(typically a decision tree) is built on the original dataset. Then, this weak learner is used for
predictions, and then the differences between the actual values and the predicted values
(residuals) are computed. Subsequently, the next weak learner continues to be trained, and
the residuals of the previous weak learner are predicted. The above process is repeated
until training a predetermined quantity of weak learners or achieving a certain level of
predictive performance. The ultimate prediction is derived by summing up the predictions
generated by all weak learners. The learning rate parameter can control the step size
during model optimization, and theoretically, a smaller learning rate can improve the
predictive performance of the algorithm but may also increase the number of iterations
during model optimization.

3.1.4. Extreme Gradient Boosting Regression

Extreme Gradient Boosting Regression (XGBR) is similar to GBR in that it is essentially
k classification and regression trees (CART), where k is a positive integer [80]. The loss
function in XGBR employs a second-order Taylor expansion, which is more accurate than
GBR (first-order Taylor expansion).

Overfitting is prevented through L1 regularization (penalizing weights based on the
sum of their absolute values) and L2 regularization (penalizing weights based on the sum
of squares of weights). This process continuously builds new weak learners to fit and
reduces the residuals of the previous weak learners until the specified criteria are met. The
predicted values from all weak learners are averaged as the final output of the algorithm.

3.2. Hyper-Parameter Tuning

The hyper-parameter tuning algorithm used in this article is the BOA. BOA dis-
tinguishes itself from Grid search and Random search by leveraging information from
previously explored points to inform the selection of the next search point. This adaptive
approach enhances both the quality and efficiency of the search process by intelligently
guiding it based on past observations [81,82]:

p(wD) =
p(Dw)p(w)

p(D)
(1)

where p(w) and p(wD) denote the prior and posterior distributions, respectively; p(Dw)
represents the probability, and w is the unseen data.

In detail, the entire dataset is partitioned in a 7:3 ratio, allocating 70% of the instances
to the training set and 30% to the test set. Five-fold cross-validation is used to avoid
overfitting [83]. The training set undergoes division into five subsets. In each fold, the
BOA seeks the optimal hyper-parameters of the machine learning algorithm within four of
these subsets and calculates the mean absolute error (MAE) on the validation set (the last
subset) to describe the model performance under this hyper-parameter. The above process
is repeated five times, and the validation set is different each time, and finally the average
of the five sets of hyper-parameters is used as the final hyper-parameter (Figure 2).

Note that, for tree-based ML models, the number of weak learners (n_estimators) can
significantly impact the performance of the ML model. In particular, for GBR and XGBR
models, the learning rate is a critical factor influencing the performance of the machine
learning model. Therefore, it is essential to carefully balance these two hyper-parameters,
learning rate and the number of weak learners, to achieve optimal robustness for the
machine learning model. The range of hyper-parameter tuning for each model is shown
in Table 2.
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Table 2. The range of hyper-parameter tuning for each model.

Model
Max_Depth Max_Features Min_Samples_Leaf Min_Samples_Split N_Estimators Learning_Rate

Min Max Min Max Min Max Min Max Min Max Min Max

RFR 1 30 1 7 1 40 2 40 100 500
ERT 1 30 1 7 1 40 2 40 50 500
GBR 1 30 1 7 1 30 2 30 200 800 0 1

XGBR 1 30 1 7 1 40 2 40 50 500 0 1

Note: Max_Depth: Maximum Depth (of the decision trees in the model); Max_Features: Maximum Features (the
number of features to consider when looking for the best split); Min_Samples_Leaf: Minimum Samples per Leaf
(the minimum number of samples required to be at a leaf node); Min_Samples_Split: Minimum Samples per Split
(the minimum number of samples required to split an internal node); N_Estimators: Number of Estimators (the
number of trees in the ensemble for methods like Random Forest or Gradient Boosting); Learning_Rate: Learning
Rate (a parameter that controls the contribution of each tree in boosting algorithms).

3.3. Performance Evaluation Methods

For the convenience of providing an intuitive assessment of the predictive performance
of various ML models, this paper employs the correlation coefficient (R), coefficient of
determination (R2), mean absolute error (MAE), and root mean square error (RMSE) as
evaluation metrics. The following are their definitions:

R is the product of the covariance/standard deviation of the independent variable
X and the dependent variable Y and is a measure of the linear correlation between the
variables [84].

R =
∑n

i=1(yi
∗ − y∗)(yi − y)√

∑n
i=1(yi

∗ − y∗)2
√

∑n
i=1(yi − y)2

(2)

where y∗ and y are the means of the predicted and actual values, respectively; n is the
number of instances.

R2 represents the goodness of fit of regression model coefficients after performing
linear regression on the model [84].

R2 =
SSR
SST

= 1 − SSE
SST

(3)

where SST is the total sum of squares; SSR is the regression sum of squares; SSE is the error
sum of squares.
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MAE is the average value of the difference between the predicted value and the true
value, which can better reflect the actual situation of the error of the predicted value [84].

MAE =
1
m ∑m

i=1

∣∣Yi − Ŷi
∣∣ (4)

where Yi and Ŷi denote observed and predicted outputs; m is the number of instances.
RMSE represents the deviation between the estimated value and the target value, and

unlike MAE, RMSE is the L2 specification and MAE is the L1 specification, which results
in RMSE having a higher sensitivity than MAE. When there are many outliers in the
dataset, RMSE will show a high value, which is often used as a measure of the prediction
results of ML models [84]:

RMSE =

√
1
n ∑n

i=1(yi
∗ − yi)

2 (5)

where yi and yi
∗ denote the actual and predicted values, respectively; n refers to the number

of instances.

3.4. SHAP Analysis

ML models belong to a highly complex category of ‘black-box’ models, and the internal
opacity of ML algorithms results in the difficulty in interpretability of the majority of ML
models. In order to gain a deeper understanding of the working principles of ML models,
this paper introduces Shapley Additive Explanation (SHAP) as a tool for explaining ML
models. SHAP, a “model interpretation” tool, interprets the output of any machine learning
model by treating all input features as contributors. For each prediction sample, the model
generates a prediction value, with the SHAP value representing the contribution of each
feature in that sample [85]. The SHAP values for changes in the model output due to
variations in input features follow the following rules [86]:

φj( f ) = ∑S⊆{x1,...,xp}{xj}
|S|!(p − |S| − 1)!

p!

(
f
(

S ∪
{

xj
}))

− f (S) (6)

where xj is the feature variable; p is the number of features. S denotes a subset of the
features and f

(
xj) is the output of the model.

The SHAP importance coefficient for a specific input feature is calculated by altering
the input value of that feature and measuring the resulting prediction error. SHAP treats
the output model as an interpretable model by linearly adding input variables and uses
an additive feature attribution method to describe the working process of the trained
model. For example, for a model with k input variables xi, the original model f (x) can be
represented as an explanatory model h(xs) with reduced input xs:

f (x) = h(xs) = φ0 + ∑k
i=1 φixi

s (7)

where k is the number of input features and φ0 denotes the constant value. When no inputs
are used. Inputs x and xs are related by a mapping function. A more vivid explanation is
shown in Figure 3, where φ0, φ1, φ2, and φ4 increases the value of the prediction target
and φ3 decreases the value of the prediction target.

3.5. Limitation of the Methodology

While these machine learning models offer several advantages, including high pre-
diction accuracy and the ability to model non-linear relationships, they are not without
limitations. One significant limitation is the requirement for a large and diverse dataset to
train the models effectively. In situations where data are scarce or not sufficiently varied,
the models may overfit the training data and perform poorly on unseen data. Additionally,
these models can be sensitive to the quality of the input data; any inaccuracies or incon-
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sistencies in the dataset can lead to biased or incorrect predictions. Another limitation is
that while tree-based models can identify relationships between variables, they do not
inherently provide a mechanistic understanding of the underlying processes. This means
that while they can predict outcomes based on input data, they may not fully capture
the underlying physical or chemical phenomena influencing AAM strength development.
Furthermore, the models used in this study were optimized for the specific dataset at hand,
and their applicability to other types of AAMs or different environmental conditions may
be limited [43].
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4. Results & Discussion
4.1. Hyper-Parameter Tuning Results

Setting appropriate hyper-parameters is crucial for developing excellent ML models,
and optimized hyper-parameters can maximize the predictive performance of ML algo-
rithms. In this study, the models all underwent hyper-parameter optimization using the
BOA algorithm and the 5-fold CV approach.

Figure 4 depicts the curves illustrating the variation of MAE with the number of
iterations for these four ML models. In detail, the hyper-parameters obtained from the
5-fold CV are averaged in each iteration, and this value is used to evaluate the prediction
performance of each ML model in subsequent operations. Obviously, all models gradually
converge with the increase in the number of iterations, and the prediction performance of
all models has been basically exerted when the number of iterations reaches about 110. This
suggests that the BOA algorithm excels in fine-tuning the hyper-parameters of tree-based
machine learning models. Compared with the other three ML models, GBR converges
faster and has a smaller final MAE value overall. The tuned hyper-parameters of each ML
model are listed in Table 3.

Materials 2024, 17, x FOR PEER REVIEW 10 of 27 
 

 

performance of each ML model in subsequent operations. Obviously, all models gradu-

ally converge with the increase in the number of iterations, and the prediction perfor-

mance of all models has been basically exerted when the number of iterations reaches 

about 110. This suggests that the BOA algorithm excels in fine-tuning the hyper-parame-

ters of tree-based machine learning models. Compared with the other three ML models, 

GBR converges faster and has a smaller final MAE value overall. The tuned hyper-param-

eters of each ML model are listed in Table 3. 

 

Figure 4. MAE of the ML model as a function of the number of iterations. 

Table 3. List of hyper-parameters used in ML models. 

Model Max_Depth Max_Features Min_Samples_Leaf Min_Samples_Split N_Estimators Learning_Rate 

RFR 24 4 1 2 412  

ERT 16 7 1 2 50  

GBR 4 3 1 2 800 0.077 

XGBR 4 3 40 40 282 0.126 

4.2. Prediction Performance of the ML Models 

The prediction performances of the ML models with the optimal hyper-parameters 

on the training set and the test set are compared in this section. In Figure 5, the horizontal 

axis represents the serial numbers of each data group in the training set, comprising a total 

of 185 data groups (30% of the entire dataset). The left vertical axis corresponds to the UCS 

values of the AAMs, with the solid and dashed lines representing the observed and pre-

dicted UCS, respectively. The right vertical axis represents the error values between the 

observed and predicted values. It can be seen that in the four ML models, except for a few 

exceptions, most of the errors are pretty small, indicating the excellent prediction perfor-

mance of the four ML models. 

Figure 4. MAE of the ML model as a function of the number of iterations.



Materials 2024, 17, 4573 10 of 24

Table 3. List of hyper-parameters used in ML models.

Model Max_Depth Max_Features Min_Samples_Leaf Min_Samples_Split N_Estimators Learning_Rate

RFR 24 4 1 2 412
ERT 16 7 1 2 50
GBR 4 3 1 2 800 0.077

XGBR 4 3 40 40 282 0.126

4.2. Prediction Performance of the ML Models

The prediction performances of the ML models with the optimal hyper-parameters
on the training set and the test set are compared in this section. In Figure 5, the horizontal
axis represents the serial numbers of each data group in the training set, comprising a total
of 185 data groups (30% of the entire dataset). The left vertical axis corresponds to the
UCS values of the AAMs, with the solid and dashed lines representing the observed and
predicted UCS, respectively. The right vertical axis represents the error values between
the observed and predicted values. It can be seen that in the four ML models, except for
a few exceptions, most of the errors are pretty small, indicating the excellent prediction
performance of the four ML models.
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Figure 6 illustrates the correlation between the predicted and observed values of each
machine learning model on both the training and test sets. In general, the lower UCS values
tend to result in higher prediction errors, whereas higher UCS observation values correlate
with improved prediction accuracy. This is because the data points with lower UCS values
are not enough for training. Therefore, more mixtures with lower UCS should be collected
in the future for training the models. The various performance evaluation indices of the
four ML models are shown in Table 4. In the test set, GBR exhibits the highest R value
(0.970) among the four ML models. Additionally, the MAE value (2.821 MPa) and RMSE
value (4.110 MPa) of GBR are also the lowest.
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Table 4. The values of various performance evaluation indicators of the four ML models.

RFR ERT GBR XGBR

Train Set Test Set Train Set Test Set Train Set Test Set Train Set Test Set

R 0.992 0.949 0.998 0.942 0.998 0.970 0.998 0.942
R2 0.981 0.895 0.996 0.886 0.996 0.940 0.996 0.885

MAE
(MPa) 1.581 3.692 0.291 3.648 0.448 2.821 0.324 3.503

RMSE
(MPa) 2.356 5.461 1.058 5.694 1.088 4.110 1.060 5.718

A Taylor diagram is a common means to compare the performance of various ML
models [87] using R, RMSE, and standard deviation (SD) as standards. The prediction
performance of each ML model will appear in the Taylor diagram in the form of points,
and the closer a point is to Ref., the higher the R value of the ML model represented by the
point, and the lower the RMSE and SD values, the better the prediction performance. As
shown in Figure 7, among the four ML models of RFR, ERT, GBR, and XGBR, the point
representing GBR is closest to Ref., which means that compared with other models, GBR
has the most outstanding prediction performance.
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(XGBR, RFR, GBR, and ERT) using Pearson correlation coefficient, standard deviation, and RMSE. The
red curve represents the reference line (Ref.), and the green dashed lines represent standard deviation
contours. The blue dashed lines indicate correlation coefficient contours, with values ranging from 0
to 1.

4.3. Feature Analysis of the Input Variables

After adjusting the hyper-parameters by the BOA algorithm, the GBR is better than
other models in terms of prediction accuracy, and then we use the trained GBR to explain
the importance of each input variable to the UCS of AAMs and the influence mechanism.

In general, the degree to which GBR’s prediction accuracy decreases can be observed
by excluding an input variable in the dataset, and the importance of that variable among
all input variables can be inferred [88,89]. As shown in Figure 8, among all the input
variables, the importance of water content is much higher than that of other variables, and
its importance index exceeds 4. The variable curing periods rank second and are followed
by the Ca/Si ratio and Si/Al ratio, with the SHAP value between 3~3.5. It can be also seen
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that the importance coefficient of curing temperature is the lowest (2.1). This indicates that
the strength of FA-GGBS-based AAMs can be well developed at ambient temperature. In
the next section, we will focus on the mechanism of the most important variable water
content on UCS, and the internal factors, such as the Ca/Si ratio, Na/Al ratio, and Si/Al
ratio, also deserve attention [90].
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Figure 8. Importance index of input variables.

The SHAP value was used to analyze the impact of all input features on the UCS
development of AAMs [85]. Observing from Figure 9a, it can be seen that for the “water
content” the red dot on the far left shows that when the input value of water content is high,
it has a negative impact on the UCS development of AAMs, and the strength of AAMs is
reduced by about 10 MPa at most. Reduction of water content can increase the strength by
5–10 MPa.
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Figure 9b shows a local interpretation of the strength of the AAMs for the first sample
in the data set. In the figure, the predicted UCS value for the first sample is 6.45 MPa, and
the input values of humidity, curing periods, Ca/Si ratio, Na/Al ratio, Si/Al ratio, and
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water content are 95%, 3 days, 0.42, 1.59, 0.31, and 33%, and their SHAP characteristic
values are 1.34, −4.77, −3.05, −2.93, −1.93, and −1.23, respectively. This indicates that the
humidity positively influences the strength of the material and the other factors have a
negative effect, which is consistent with the SHAP violin plot shown in Figure 9a.

4.4. Sensitivity Study

The decrease in water content does not increase the strength of the material contin-
uously. When its value exceeds a certain threshold, the positive effect on the material’s
strength development begins to decrease, and negative impacts may even occur. In fact,
factors such as the Ca/Si ratio, curing temperature, and other influencing variables can
exhibit a “rebound” phenomenon. Because of this, finding the optimal input values for
each variable and explaining the reasons for the occurrence of such phenomena has become
the key to exploring the mechanisms through which various input variables affect the
strength of AAMs.

Figure 10 shows the change of the predicted UCS with changing the influencing
variables. It can be seen from Figure 10a that for each temperature, the UCS increases with
increasing water content from 0.12 to 0.2. However, beyond 0.2, the UCS decreases and
ultimately enters a relatively stable fluctuation state after 0.3. This phenomenon aligns with
some previous research findings [91–94]. This occurs because alkali activation primarily
involves chemical reactions between dissolved silicate and aluminate ions, and water acts
as a transport fluid during the alkali activation of materials. This not only improves the
degree of complete reaction of these salt ions but also promotes the formation of the gel
phase [25,91]. However, too high water content can also lead to an increase in the porosity
of AAMs, which in turn leads to a rapid decrease in material strength [92,93,95]. An
obvious increase is observed with increasing temperature from 20 ◦C to 30 ◦C because the
activation temperature of fly ash generally requires temperatures around 30 ◦C to 85 ◦C.
Before reaching 30 ◦C, the internal fly ash of AAMs is not fully activated, and the strength
development varies significantly with temperature changes. After 30 ◦C, the internal
fly ash of AAMs is essentially involved in the reaction, and the strength development
stabilizes [61].

Figure 10b illustrates a steady increase in the strength of AAMs with curing time. The
strength of AAMs typically increases rapidly in the first few days to weeks, but the reaction
continues at a slower rate for an extended period. This prolonged reaction contributes
to further densification and strengthening of the material, leading to continued strength
development beyond the initial curing period [96–98]. The increase in external humidity
from 0.6 to 0.8 is beneficial to the development of UCS in AAMs. However, excessive
curing humidity can negatively impact the strength development of AAMs. Firstly, high
humidity conditions can lead to increased water content in the AAMs, potentially diluting
the concentration of alkaline activators. Also, high humidity may result in the leaching
of alkaline components from the AAMs. This leaching process can weaken the structure
by removing essential components needed for the chemical reactions that contribute to
strength development [99–102].

As shown in Figure 10c, the strength of the geopolymer continues to increase with
increasing the Ca/Si ratio to 1.3 [103]. The calcium ions in AAMs primarily originate from
GBFS. Calcium ions form strong cohesive planes with the negatively charged layers of
C-(N-)A-S-H gel, accelerating the hardening process of AAMs. This promotes the formation
and precipitation of nuclei as C-(N-)A-S-H gel, ultimately leading to the rapid formation of
AAMs gel. These gels gradually encapsulate the fly ash particles in subsequent reactions,
forming a complete matrix [103–105]. Meanwhile, when the Ca/Si is too high in the
C-(N-)A-S-H gel, the average chain length of the aluminosilicate chains (Q²) is shorter,
and there are fewer cross-linking groups (Q³). This leads to a decrease in the strength of
AAMs [106].



Materials 2024, 17, 4573 15 of 24Materials 2024, 17, x FOR PEER REVIEW 16 of 27 
 

 

 

Figure 10. Variation curves of UCS for FA-GBFS-based AAMs generated by the GBR model. The 

curves illustrate the interdependency of variables: (a) Water Content (WC) at different curing tem-

peratures (CT), (b) UCS variation with curing periods (CP) at varying levels of ambient humidity 

(H), (c) UCS as a function of the Ca/Si ratio, (d) UCS variation with Na/Al ratio under different water 

content conditions, and (e) UCS as a function of the Si/Al ratio. Each curve represents a specific FA-

GBFS AAM mixture as modeled by the GBR, highlighting the interactions between these critical 

input variables. 

Figure 10b illustrates a steady increase in the strength of AAMs with curing time. The 

strength of AAMs typically increases rapidly in the first few days to weeks, but the reac-

tion continues at a slower rate for an extended period. This prolonged reaction contributes 

to further densification and strengthening of the material, leading to continued strength 

development beyond the initial curing period [96–98]. The increase in external humidity 

from 0.6 to 0.8 is beneficial to the development of UCS in AAMs. However, excessive cur-

ing humidity can negatively impact the strength development of AAMs. Firstly, high hu-

midity conditions can lead to increased water content in the AAMs, potentially diluting 

the concentration of alkaline activators. Also, high humidity may result in the leaching of 

alkaline components from the AAMs. This leaching process can weaken the structure by 

removing essential components needed for the chemical reactions that contribute to 

strength development [99–102]. 

As shown in Figure 10c, the strength of the geopolymer continues to increase with 

increasing the Ca/Si ratio to 1.3 [103]. The calcium ions in AAMs primarily originate from 

Figure 10. Variation curves of UCS for FA-GBFS-based AAMs generated by the GBR model. The
curves illustrate the interdependency of variables: (a) Water Content (WC) at different curing temper-
atures (CT), (b) UCS variation with curing periods (CP) at varying levels of ambient humidity (H),
(c) UCS as a function of the Ca/Si ratio, (d) UCS variation with Na/Al ratio under different water
content conditions, and (e) UCS as a function of the Si/Al ratio. Each curve represents a specific
FA-GBFS AAM mixture as modeled by the GBR, highlighting the interactions between these critical
input variables.

Figure 10d demonstrates that when the Na/Al ratio approaches 1, the maximum UCS
for AAMs is achieved. The sodium element in FA-GBFS AAMs primarily originates from
the alkaline activator; an appropriate amount of alkaline activator maximally catalyzes
the reaction between slag and fly ash [107]. It is known that Mn[−(SiO2)z − AlO2]n·wH2O
is the empirical formula of AAMs, where M is the alkali metal elements such as Na+,
K+, etc.; z is the Si/Al ratio, n is the degree of polymerization, and w is the number of
bound water [108,109]. This indicates that a Na/Al of 1 can lead to optimal polymerization,
resulting in a more cross-linked and denser gel structure. This denser structure enhances
the mechanical properties of AAMs. Figure 10d also indicates that the water content has
some influence on the optimal value of the Na/Al. When the water content is 0.25, the
optimal value of the Na/Al ratio is closer to 1. However, when the water content increases
to 0.3, the optimal value of the Na/Al ratio decreases (to around 0.8). This is because when
the surrounding water content increases, more aluminum ions transform into crystalline
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aluminum and are preserved, leading to a decrease in the optimal value of the Na/Al
ratio [110,111].

Figure 10e demonstrates that the strength of AAMs increases with increasing the
Si/Al ratio until 3. The products of AAMs can be roughly categorized into three types,
as delineated by Davidovits et al. [112–114]: -Si-O-Al-(PS) type, -Si-O-Al-O-Si-(PSS), and
-Si-O-Al-O-Si-O-Si-(PSDS). When the Si/Al ratio increases, the number of -Si-O-Si- chemical
bonds in the products of AAMs increases, while the number of -Si-O-Al- chemical bonds
decreases. In comparison to -Si-O-Al- bonds, -Si-O-Si- bonds exhibit higher strength and
are more challenging to form [115,116]. Exactly because of this, to generate more PSS-type
and PSDS-type chemical bonds with higher strength, it is necessary to increase the Si/Al
ratio higher than the theoretical value (2~3). This also explains why the actual peak strength
of AAMs consistently occurs around a Si/Al ratio of 3 or higher [117].

5. Validation of the Design Model by Laboratory Experiments

The trained ML model is used to help design high-performance binary AAMs. A few
mixtures of AAMs are designed and cast in the laboratory to verify the proposed method
in this section.

5.1. Raw Materials

The precursor for the synthesis of AAMs consists of FA and GBFS, provided by
Jintaicheng Company, Liaoning, China. The chemical composition of the precursor was
determined using X-ray fluorescence (Rigaku ZSX Primus 2, Rigaku Corporation, Tokyo,
Japan), as shown in Table 5. The particle size distribution of the precursor was measured
by laser diffraction (Malvern Mastersizer 2000, Malvern Panalytical, Malvern, UK), and
their particle distributions are listed in Table 6. The particle size distribution of FA showed
that the d10, d50, and d90 values were 4.37 µm, 60.03 µm, and 176.81 µm, respectively. This
indicates that the majority of FA particles are within the fine to medium size range, which
is conducive to effective reaction and gel formation when used in AAMs. The particle size
distribution for GBFS showed d10, d50, and d90 values of 1.07 µm, 8.35 µm, and 30.56 µm,
respectively. The finer particle size of GBFS, compared to FA, enhances its reactivity,
contributing to the formation of a dense and durable matrix in the resulting AAM.

Table 5. Oxide composition of FA and GBFS (%).

Oxide SiO2 Al2O3 Fe2O3 CaO MgO SO3 Other Minor Oxides

FA 52.1 34.3 5.42 2.77 0.49 1.45 3.47
GBFS 28.04 14.33 0.88 44.99 5.086 3.15 3.524

Table 6. Particle size analysis of solid precursors.

Solid Precursors d10 (µm) d50 (µm) d90 (µm)

FA 4.37 60.03 176.81
GBFS 1.07 8.35 30.56

Na2SiO3 was selected as the alkali activator, purchased from Youso, China, with a
modulus of 1.4 (SiO2: Na2O = 1.4). Water was sourced from laboratory-grade water. The
experimental procedure is illustrated in Figure 11.

The high CaO content in GBFS, combined with its appropriate SiO2 and Al2O3 lev-
els, ensures that the precursor material is highly reactive and capable of forming a strong,
durable binder when activated. This compliance with the CaO/(SiO2 + Al2O3) > 1.00 criterion
underscores the suitability of the materials used in this research for producing high-
performance AAMs, further validating the results obtained from the study [24].
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5.2. Sample Preparation

The mixing proportions of the experimental samples are shown in Table 7, and the
elemental ratios are presented in Table 8. The SiO2/Na2O molarity ratio in the sodium
silicate solution was maintained at 1.4, ensuring sufficient silica availability to react with
sodium ions and form a stable, cohesive gel matrix. The sodium silicate was added in a
fixed proportion of 8% by weight relative to the total mass of the precursors, a dosage deter-
mined through preliminary testing to provide an optimal balance between workability and
mechanical performance, effectively enhancing the strength and durability of the AAMs.

Table 7. Mix proportions of the AAMs (sodium silicate is in the form of powder).

Sample ID
Components (wt.%)

FA GBFS Water Sodium Silicate

A55 50 50 41 8
B37 30 70 41 8
C19 10 90 41 8

Table 8. Elemental ratios of mixed AAMs.

Sample ID Ca/Si Si/Al Na/Al

A55 0.573 1.562 0.230
B37 0.869 1.667 0.275
C19 1.246 1.824 0.342

The experimental procedure involved using a planetary mixer to blend fly ash, slag,
and alkali activator in a 5 L mixing bowl. The dry mixing process lasted for 3 min, followed
by a slow, uniform addition of water while continuing to stir for an additional 3 min. The
prepared AAMs were then cast into sample molds and subjected to approximately 2 min of
vibration on a vibrating table until air bubbles were eliminated. Subsequently, the samples
were allowed to cure at room temperature (approximately 25 °C, with a relative humidity
of 40% to 50%) and covered with plastic film to minimize excess water evaporation. After
24 h, demolding was carried out, and the specimens were placed in sealed plastic bags.
They were then cured for an additional 72 h at room temperature before removing them
from the plastic bags for further curing until testing.

5.3. Experimental Results

According to the provisions of GB/T 50081-2002 [3], a universal testing machine with
a capacity of 2500 kN (YAWS-2500J, Jinan Yangyi Instrument Co., Ltd., Jinan, China) was
used to test specimens of dimensions 50 mm × 50 mm × 50 mm at 3, 7, and 28 days at a
loading rate of 0.5 MPa/s. The obtained UCS results are listed in Figure 12.
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5.4. Simulation Results

The UCS values of the mixtures (Table 7) are predicted using the trained ML model
(GBR) with a curing temperature of 25 ◦C and humidity of 41%. The predicted results are
depicted in Figure 13. It can be observed that the predicted results are very close to the
experimental results. This is also indicated by the minor RMSE and MAE values shown in
Table 9. This suggests that the GBR model, optimized through the BOA algorithm, exhibits
excellent predictive performance and can be used to design high-performance AAMs. It
is worth noting that due to the extensive size of the ML dataset, we could not conduct
field tests for every situation. Strictly speaking, the experimental results in this chapter
specifically support studies conducted at “41% water content,” and variability in other
water content conditions cannot be ruled out. This work still requires further collaboration
from researchers to continually refine and improve the conclusions.
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Table 9. Error analysis.

Sample ID MAE (MPa) RMSE (MPa)

A55 0.59 0.52
B37 0.77 0.58
C19 0.78 0.52

6. Conclusions

This study first establishes four tree-based ML models to explore the development
mechanism and influencing factors of the UCS of AAMs. Utilizing the BOA algorithm
for hyper-parameter optimization, 616 sets of data gathered from published literature are
utilized for training and testing the ML models. Finally, the following conclusions were
reached through the machine learning modeling, with effective results specifically obtained
on the tested samples at a water content of 41%, which may not directly sustain all the
presented conclusions:

(1) The performance of GBR is the most outstanding, with an R value of 0.970, an MAE of
2.821 MPa, and an RMSE of 4.110 MPa. The GBR model is recommended for molding
the UCS of binary AAMs.

(2) The water content and curing periods were the most important variables affecting
the development of UCS of AAMs, while humidity had a minimal effect on the UCS
of AAMs.

(3) To design high-performance AAMs, it is recommended to maintain the Ca/Si, Na/Al,
and Si/Al ratios at approximately 1.3, 1, and 3, respectively. Additionally, the moisture
content should be around 0.2 while maintaining the temperature and humidity at
approximately 30 ◦C and around 0.8, respectively.

Future work should focus on expanding the dataset to include a broader range of
precursor compositions and environmental conditions to enhance the generalizability of the
machine learning models. Investigating the long-term durability of AAMs under various
environmental conditions, including exposure to aggressive chemicals and freeze-thaw
cycles, is also essential. Furthermore, exploring the effects of different alkaline activators
and their combinations could lead to more cost-effective and environmentally friendly
AAM formulations. Finally, pilot-scale field studies are needed to validate the laboratory
findings and assess the practical applicability of the optimized AAM formulations in
real-world construction projects.
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Abbreviations and Their Full Names in the Paper

AAMs Alkali-Activated Materials
R Correlation Coefficient
UCS Uniaxial Compressive Strength
FA Fly Ash
R² Coefficient Of Determination
RFR Random Forest Regression
GBFS Granulated Blast Furnace Slag
MAE Mean Absolute Error
ERT Extremely Randomized Trees
OPC Ordinary Portland Cement
RMSE Root Mean Square Error
GBR Gradient Boosting Regression
ML Machine Learning
SD Standard Deviation
XGBR Extreme Gradient Boosting Regression
SVM Support Vector Machine
SHAP SHapley Additive exPlanations
CART Classification And Regression Trees
RF Random Forest
WC Water Content
PS -Si-O-Al-
ANN Artificial Neural Network
CP Curing Periods
PSS -Si-O-Al-O-Si-
LSTM Long Short-Term Memory
CT Curing Temperature
PSDS -Si-O-Al-O-Si-O-Si-
BOA Bayesian Optimization Algorithm
H Humidity
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75. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm.
Remote Sens. 2016, 114, 24–31. [CrossRef]

76. Breiman, L.; Cutler, R.A. Random forests machine learning. J. Clin. Microbiol. 2001, 2, 199–228.
77. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
78. Band, S.S.; Janizadeh, S.; Pal, S.C.; Saha, A.; Chakrabortty, R.; Melesse, A.M.; Mosavi, A. Flash flood susceptibility modeling using

new approaches of hybrid and ensemble tree-based machine learning algorithms. Remote Sens. 2020, 12, 3568. [CrossRef]
79. Das, M.; Deb, C.K.; Pal, R.; Marwaha, S. A Machine Learning Approach for the Non-Destructive Estimation of Leaf Area in

Medicinal Orchid Dendrobium nobile L. Appl. Sci. 2022, 12, 4770. [CrossRef]
80. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
81. Alam, M.S.; Sultana, N.; Hossain, S.M.Z. Bayesian optimization algorithm based support vector regression analysis for estimation

of shear capacity of FRP reinforced concrete members. Appl. Soft Comput. 2021, 105, 107281. [CrossRef]
82. Frazier, P.I. A tutorial on Bayesian optimization. arXiv 2018, arXiv:1807.02811.
83. Cawley, G.C.; Talbot, N.L.C. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach.

Learn. Res. 2010, 11, 2079–2107.
84. Zhang, J.; Huang, Y.; Wang, Y.; Ma, G. Multi-objective optimization of concrete mixture proportions using machine learning and

metaheuristic algorithms. Constr. Build. Mater. 2020, 253, 119208. [CrossRef]
85. Mangalathu, S.; Hwang, S.-H.; Jeon, J.-S. Failure mode and effects analysis of RC members based on machine-learning-based

SHapley Additive exPlanations (SHAP) approach. Eng. Struct. 2020, 219, 110927. [CrossRef]
86. Lyngdoh, G.A.; Zaki, M.; Krishnan, N.M.A.; Das, S. Prediction of concrete strengths enabled by missing data imputation and

interpretable machine learning. Cem. Concr. Compos. 2022, 128, 104414. [CrossRef]
87. Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192.

[CrossRef]
88. Biau, G.; Scornet, E. A random forest guided tour. Test 2016, 25, 197–227. [CrossRef]
89. Agarwal, S.; Mehta, S.; Joshi, K. Understanding the ml black box with simple descriptors to predict cluster–adsorbate interaction

energy. New J. Chem. 2020, 44, 8545–8553. [CrossRef]
90. Ali, R.; Muayad, M.; Mohammed, A.S.; Asteris, P.G. Analysis and prediction of the effect of Nanosilica on the compressive

strength of concrete with different mix proportions and specimen sizes using various numerical approaches. Struct. Concr. 2023,
24, 4161–4184. [CrossRef]

91. Chindaprasirt, P.; Chareerat, T.; Sirivivatnanon, V. Workability and strength of coarse high calcium fly ash geopolymer. Cem.
Concr. Compos. 2007, 29, 224–229. [CrossRef]

92. Ahmari, S.; Zhang, L. Production of eco-friendly bricks from copper mine tailings through geopolymerization. Constr. Build.
Mater. 2012, 29, 323–331. [CrossRef]

93. Zhao, F.-Q.; Zhao, J.; Liu, H.-J. Autoclaved brick from low-silicon tailings. Constr. Build. Mater. 2009, 23, 538–541. [CrossRef]
94. Luga, E.; Atis, C.D. Optimization of heat cured fly ash/slag blend geopolymer mortars designed by “Combined Design” method:

Part 1. Constr. Build. Mater. 2018, 178, 393–404. [CrossRef]
95. Zhang, Z.; Wang, H. Analysing the relation between pore structure and permeability of alkali-activated concrete binders,

Handbook of Alkali-Activated Cements. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Pacheco-Torgal, F.,
Labrincha, J.A., Leonelli, C., Palomo, A., Chindaprasirt, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 235–264.

96. Pavithra, P.; Reddy, M.S.; Dinakar, P.; Rao, B.H.; Satpathy, B.K.; Mohanty, A.N. Effect of the Na2SiO3/NaOH ratio and NaOH
molarity on the synthesis of fly ash-based geopolymer mortar. In Proceedings of the Geo-Chicago, Chicago, IL, USA, 14–18
August 2016; pp. 336–344.

97. John, S.K.; Nadir, Y.; Girija, K. Effect of source materials, additives on the mechanical properties and durability of fly ash and fly
ash-slag geopolymer mortar: A review. Constr. Build. Mater. 2021, 280, 122443. [CrossRef]

98. Zhou, H.; Pozrikidis, C. The flow of ordered and random suspensions of two-dimensional drops in a channel. J. Fluid Mech. 1993,
255, 103–127. [CrossRef]

99. Gomaa, E.; Han, T.; ElGawady, M.; Huang, J.; Kumar, A. Machine learning to predict properties of fresh and hardened alkali-
activated concrete. Cem. Concr. Compos. 2021, 115, 103863. [CrossRef]

100. Provis, J.L.; Van Deventer, J.S.J. Geopolymers: Structures; Processing, Properties and Industrial Applications; Elsevier: Amsterdam, The
Netherlands, 2009.

https://doi.org/10.3390/ma15186436
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002852
https://doi.org/10.1061/(ASCE)MT.1943-5533.0003525
https://doi.org/10.1016/j.istruc.2021.02.049
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.3390/rs12213568
https://doi.org/10.3390/app12094770
https://doi.org/10.1016/j.asoc.2021.107281
https://doi.org/10.1016/j.conbuildmat.2020.119208
https://doi.org/10.1016/j.engstruct.2020.110927
https://doi.org/10.1016/j.cemconcomp.2022.104414
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1039/D0NJ00633E
https://doi.org/10.1002/suco.202200718
https://doi.org/10.1016/j.cemconcomp.2006.11.002
https://doi.org/10.1016/j.conbuildmat.2011.10.048
https://doi.org/10.1016/j.conbuildmat.2007.10.013
https://doi.org/10.1016/j.conbuildmat.2018.05.140
https://doi.org/10.1016/j.conbuildmat.2021.122443
https://doi.org/10.1017/S0022112093002411
https://doi.org/10.1016/j.cemconcomp.2020.103863


Materials 2024, 17, 4573 24 of 24

101. Duxson, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Kriven, W.M.; Van Deventer, J.S.J. Understanding the relationship between
geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005, 269, 47–58.
[CrossRef]

102. Van Jaarsveld, J.G.S.; Van Deventer, J.S.J.; Lukey, G.C. The effect of composition and temperature on the properties of fly ash-and
kaolinite-based geopolymers. Chem. Eng. J. 2002, 89, 63–73. [CrossRef]

103. Puligilla, S.; Mondal, P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem. Concr. Res.
2013, 43, 70–80. [CrossRef]

104. Yip, C.K.; Lukey, G.C.; Provis, J.L.; Van Deventer, J.S.J. Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res.
2008, 38, 554–564. [CrossRef]

105. Richardson, I.G. Model structures for c-(a)-sh (i), Acta Crystallographica Section B: Structural Science. Cryst. Eng. Mater. 2014,
70, 903–923.

106. Zhang, S.; Li, Z.; Ghiassi, B.; Yin, S.; Ye, G. Fracture properties and microstructure formation of hardened alkali-activated slag/fly
ash pastes. Cem. Concr. Res. 2021, 144, 106447. [CrossRef]

107. Shi, C.; Roy, D.; Krivenko, P. Alkali-Activated Cements and Concretes; CRC Press: Boca Raton, FL, USA, 2003.
108. Liew, Y.-M.; Heah, C.-Y.; Kamarudin, H. Structure and properties of clay-based geopolymer cements: A review. Prog. Mater. Sci.

2016, 83, 595–629. [CrossRef]
109. Davidovits, J. Geopolymers: Inorganic polymeric new materials. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [CrossRef]
110. Zhang, M.; Zhao, M.; Zhang, G.; El-Korchi, T.; Tao, M. A multiscale investigation of reaction kinetics, phase formation, and

mechanical properties of metakaolin geopolymers. Cem. Concr. Compos. 2017, 78, 21–32. [CrossRef]
111. Zhang, M.; Zhao, M.; Zhang, G.; Sietins, J.M.; Granados-Focil, S.; Pepi, M.S.; Xu, Y.; Tao, M. Reaction kinetics of red mud-fly ash

based geopolymers: Effects of curing temperature on chemical bonding, porosity, and mechanical strength. Cem. Concr. Compos.
2018, 93, 175–185. [CrossRef]

112. Davidovits, J. Geopolymer, green chemistry and sustainable development solutions. In Geopolymer, Green Chemistry and Sustainable
Development Solutions: Proceedings of the World Congress Geopolymer; Geopolymer Institute: Saint-Quentin, France, 2005.

113. Hajimohammadi, A.; Ngo, T.; Kashani, A. Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer
binders. J. Clean. Prod. 2018, 193, 593–603. [CrossRef]

114. Davidovits, J. Properties of geopolymer cements. In Proceedings of the 1st International Conference on Alkaline Cements and
Concretes, Kiev, Ukraine, 11–14 October 1994; pp. 131–149.

115. Lee, B.; Kim, G.; Kim, R.; Cho, B.; Lee, S.; Chon, C.-M.J.C. Strength development properties of geopolymer paste and mortar with
respect to amorphous Si/Al ratio of fly ash. Constr. Build. Mater. 2017, 151, 512–519. [CrossRef]

116. He, P.; Wang, M.; Fu, S.; Jia, D.; Yan, S.; Yuan, J.; Xu, J.; Wang, P.; Zhou, Y. Effects of Si/Al ratio on the structure and properties of
metakaolin based geopolymer. Ceram. Int. 2016, 42, 14416–14422. [CrossRef]

117. Ravikumar, D.; Neithalath, N. Effects of activator characteristics on the reaction product formation in slag binders activated using
alkali silicate powder and NaOH. Cem. Concr. Compos. 2012, 34, 809–818. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.colsurfa.2005.06.060
https://doi.org/10.1016/S1385-8947(02)00025-6
https://doi.org/10.1016/j.cemconres.2012.10.004
https://doi.org/10.1016/j.cemconres.2007.11.001
https://doi.org/10.1016/j.cemconres.2021.106447
https://doi.org/10.1016/j.pmatsci.2016.08.002
https://doi.org/10.1007/BF01912193
https://doi.org/10.1016/j.cemconcomp.2016.12.010
https://doi.org/10.1016/j.cemconcomp.2018.07.008
https://doi.org/10.1016/j.jclepro.2018.05.086
https://doi.org/10.1016/j.conbuildmat.2017.06.078
https://doi.org/10.1016/j.ceramint.2016.06.033
https://doi.org/10.1016/j.cemconcomp.2012.03.006

	Introduction 
	Dataset Description 
	Methodology 
	Machine Learning Methods 
	Random Forest Regression 
	Extremely Randomized Trees 
	Gradient Boosting Regression 
	Extreme Gradient Boosting Regression 

	Hyper-Parameter Tuning 
	Performance Evaluation Methods 
	SHAP Analysis 
	Limitation of the Methodology 

	Results & Discussion 
	Hyper-Parameter Tuning Results 
	Prediction Performance of the ML Models 
	Feature Analysis of the Input Variables 
	Sensitivity Study 

	Validation of the Design Model by Laboratory Experiments 
	Raw Materials 
	Sample Preparation 
	Experimental Results 
	Simulation Results 

	Conclusions 
	References

